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Machine learning models identify predictive
features of patient mortality across dementia types
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Abstract

Background Dementia care is challenging due to the divergent trajectories in disease pro-

gression and outcomes. Predictive models are needed to flag patients at risk of near-term

mortality and identify factors contributing to mortality risk across different dementia types.

Methods Here, we developed machine-learning models predicting dementia patient mor-

tality at four different survival thresholds using a dataset of 45,275 unique participants and

163,782 visit records from the U.S. National Alzheimer’s Coordinating Center (NACC). We

built multi-factorial XGBoost models using a small set of mortality predictors and conducted

stratified analyses with dementiatype-specific models.

Results Our models achieved an area under the receiver operating characteristic curve

(AUC-ROC) of over 0.82 utilizing nine parsimonious features for all 1-, 3-, 5-, and 10-year

thresholds. The trained models mainly consisted of dementia-related predictors such as

specific neuropsychological tests and were minimally affected by other age-related causes of

death, e.g., stroke and cardiovascular conditions. Notably, stratified analyses revealed shared

and distinct predictors of mortality across eight dementia types. Unsupervised clustering of

mortality predictors grouped vascular dementia with depression and Lewy body dementia

with frontotemporal lobar dementia.

Conclusions This study demonstrates the feasibility of flagging dementia patients at risk of

mortality for personalized clinical management. Parsimonious machine-learning models can

be used to predict dementia patient mortality with a limited set of clinical features, and

dementiatype-specific models can be applied to heterogeneous dementia patient populations.
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Plain language summary
Dementia has emerged as a major

cause of death in societies with

increasingly aging populations. How-

ever, predicting the exact timing of

death in dementia cases is challen-

ging, due to variations in the gradual

process where cognitive decline

interferes with the body’s normal

functions. In our study, we build

machine-learning models to predict

whether a patient diagnosed with

dementia will survive or die within 1,

3, 5, or 10 years. We found that the

prediction models can work well

across patients from different parts of

the US and across patients with dif-

ferent types of dementia. The key

predictive factor was the information

that is already used to diagnose and

stage dementia, such as the results of

memory tests. Interestingly, broader

risk factors related to other causes of

death, such as heart conditions, were

less significant for predicting death in

dementia patients. The ability of

these models to identify dementia

patients at a heightened risk of mor-

tality could aid clinical practices,

potentially allowing for earlier inter-

ventions and tailored treatment stra-

tegies to improve patient outcomes.
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Dementia has become a growing public health concern,
classified as the seventh leading cause of death1 and the
fourth most burdensome disease or injury in the United

States in 2016 based on years of life lost2. As of 2022, an estimated
$1 trillion of global annual costs3 can be attributed to Alzheimer’s
disease and other dementias, affecting an estimated 6.5 million
Americans4 and 57.4 million people worldwide, and those
numbers are expected to triple by 20505. Unfortunately, the true
mortality burden associated with dementia may still be under-
estimated, as dementia itself tends to be underreported on death
certificates as the underlying cause of death6.

This immense healthcare burden of dementia can be attributed
to the lack of curative drugs7,8, the challenge in predicting patient
trajectory, and the intrinsic difficulty in diagnosing dementia,
which often requires the evaluation of various criteria9,10,
including risk factors (e.g., old age and family history), cognitive
impairment screening questionnaires, neuropsychological testing
(e.g., the Mini-Mental State Examination (MMSE)11 and the
Alzheimer’s Disease Assessment Scale—Cognitive Subscale
(ADAS-Cog)12), physical examination, biomarkers, and neuroi-
maging. To aid the detection, diagnosis, and treatment of Alz-
heimer’s disease and related dementias, the National Institute of
Aging (NIA) founded the National Alzheimer’s Coordinating
Center (NACC)13 in 1999. Using existing protocols, standardized
and multi-institutional databases were collected and built over the
past decades, encompassing clinical records for tens of thousands
of patients that may be used to develop predictive models14.

While machine-learning models have been developed for the
diagnosis or classification of dementia4,15–20, they have rarely
been applied to the prediction of near-term survival or mortality
in dementia patients. Most dementia survival prediction studies
utilize traditional nonparametric estimator and regression mod-
els, such as Kaplan–Meier estimator curves and Cox proportional
hazards models21,22, rather than advanced machine-learning
models. However, due to the issues of high dimensionality, non-
linearity, censoring, heterogeneity, and missingness present in
dementia clinical data, machine learning can often provide more
accurate predictions as compared to traditional statistical
methods23. In the few published studies that utilized machine
learning to predict dementia patient mortality23–25, the models
achieved reasonable performance. However, two of these studies
were conducted within small cohorts (<2000 patients) derived
from single health systems or geographical regions, and impor-
tant predictors of dementia patient mortality varied between
studies. Moreover, none of these studies differentiated among
dementia types, which remains a crucial next step for the per-
sonalized treatment and management of dementia26,27. A sys-
tematic effort to build predictive models using a cross-
institutional database encompassing multiple dementia types is
required to resolve these open questions.

To resolve these challenges, we utilize the NACC database, the
largest resource of its kind in the United States, to (1) develop
robust machine-learning models for predicting dementia
patient mortality across various time frames, (2) identify key
predictors of mortality, and (3) demonstrate how these predictors
differ across dementia subtypes. Our models provide a robust
method of flagging dementia patients at risk of near-term death,
achieving an area under the receiver operating characteristic
curve (AUC-ROC) of over 0.82 for all of 1-, 3-, 5-, and 10-year
thresholds while utilizing a set of only nine features, most of
which consist of dementia-related predictors as opposed to more
general age-related risk factors. Our models also highlight crucial
differences between dementia types, grouping vascular dementia
with depression, Lewy body dementia with frontotemporal lobar
dementia, and Alzheimer’s disease with other (unclassified)
dementia, in addition to revealing shared and distinct predictors

of mortality among the various dementia types. Overall, our
models can be used both with a limited set of clinical features and
in the presence of heterogeneous dementia patient populations,
which can contribute to the precision care of dementia.

Methods
Data sources. Our study utilized longitudinal data taken from the
National Alzheimer’s Coordinating Center (NACC) database,
following over 40,000 unique patients and spanning 39 past and
present Alzheimer’s disease centers (ADCs) across the United
States13. The NACC currently maintains a large relational data-
base comprised of numerous individual datasets and forms.
When the ADC program was first established in 1984, ADCs
primarily collected cross-sectional data as part of a Minimum
Data Set (MDS), which contained limited demographic and
clinical data from each patient’s most recent visit. However, after
the NACC was established in 1999, ADCs began collecting more
extensive neuropathological data via the 2001 NP form, and then
in 2005, a comprehensive longitudinal dataset known as the
Uniform Data Set (UDS), replaced the MDS and became stan-
dardized across all ADCs13,28. In 2015, version 3 of the UDS was
implemented and currently remains in use13.

The Institutional Review Board (IRB) at the University of
Washington authorizes the release and research of the NACC
database28. Each contributing ADC is required to obtain
informed consent from all participants and receive approval
from its own individual IRB in order to submit data to the NACC.
The specific dataset used in this study was obtained from the
NACC by submitting a data request that was approved. The
National Alzheimer’s Coordinating Center data used herein were
de-identified. All methods were carried out in accordance with
relevant guidelines and regulations, including the NACC Data
Use Agreement.

The raw, unprocessed dataset used for our study contained
data from June 2005 up to the September 2021 data freeze,
comprising 163,792 patient visits and 1,061 variables. These
variables constituted a combination of demographic, comorbidity,
neurological examination, clinical diagnosis, neuropathological,
and genetic data that are linked to the NACC’s Uniform Data Set
(UDS). The variables used in this study and their corresponding
descriptors are available in Supplementary Table 1.

Survival analysis. To gain preliminary insights into the rela-
tionship between dementia and patient survival/mortality, we first
conducted a survival analysis using global clinical dementia rating
(CDR) and dementia type as stratification variables, excluding
dementia types with fewer than 100 patients. For our survival
analysis, we built Kaplan–Meier estimator curves with the
“survfit” function from the survival29 R package. We used each
unique patient’s first visit as the starting point for tracking patient
survival, and we calculated days of survival since the first visit
based on (1) the time of death if the patient’s death was recorded
within the timespan of the dataset or (2) the expiration date of the
dataset if the patient was still alive.

Data cleaning. All data cleaning was conducted in R v4.1.2 (R
Foundation for Statistical Computing, Vienna, Austria). First, we
preserved NACCID (subject ID number) and NACCADC (ADC
at which the subject was seen) but removed all other form header
information and text field variables. We then re-encoded the
remaining features, which consisted primarily of categorical
variables that were originally encoded as type numeric. Accord-
ingly, we converted all “Not available” codes (−4 and −4.4), “Not
assessed” or “Not applicable” codes (8, 88, 888, 888.8, and 8888),
and “Unknown” codes (9, 99, 999, 999.9, 9999) to NA, accounting
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for the specific special code(s) corresponding to each variable.
Additionally, we re-encoded the extra categories in the Neu-
ropsychological Battery Summary Score variables (95, 96, 97, 98,
995, 996, 997, 998), which corresponded to an inability or refusal
to complete the Mini-Mental State Exam (MMSE), to NA as well.
Any variables with inconsistent coding (e.g., RACE with code 50
for “Other”) were manually re-encoded as appropriate. Finally,
we converted all categorical variables from type numeric to type
factor.

Missing data imputation. Generally, readily available machine-
learning models are not compatible with missing data. Moreover,
having large amounts of missing data can often affect model
performance and generalizability across populations. Within the
NACC dataset, which contains a large feature space and missing
values scattered across variables, the removal of a row due to a
single missing value can be especially detrimental and drastically
reduce sample sizes. To avert potential bias introduced by
manually selecting features, we opted to impute variables with
missing values rather than only include patients with
complete data.

The NACC Uniform Data Set has undergone several revisions
since its inception in 2005, and the most recent version (version 3)
was implemented in 2015. Consequently, certain variables that
were collected in older versions of the UDS were no longer
collected in UDS v3, and vice versa. Therefore, to minimize the
number of features that did not contain sufficient non-missing
values, we first omitted all variables with over 40% missing values.
For the 189 remaining features, we imputed missing values using
MICE (Multivariate Imputation by Chained Equations)30. Multiple
imputation is an imputation strategy that accounts for variability in
missingness by generating multiple imputed datasets, which can
then be aggregated into a single complete dataset31. Thus, multiple
imputation generally outperforms traditional machine-learning
methods used for imputation32,33. MICE implements a form of
multiple imputation that relies on predictive mean matching to
predict the value of a given missing variable based on data points
that most closely resemble the missing data point.

Data splitting. To evaluate patient survival status, we employed 1
year, 3 years, 5 years, and 10 years as survival-time thresholds.
Accordingly, we determined each patient’s survival status based
on survival threshold year length, clinic visit date, and patient’s
time of death that was derived from variables NACCMOD
(Month of Death) and NACCYOD (Year of Death), labeling each
patient’s 1-year, 3-year, 5-year, and 10-year survival as either 0
(survival) or 1 (deceased).

To assess the accuracy of our prediction models, we divided the
whole cohort into a training/internal test dataset and a separate
external test dataset. In addition, to maximize the utilization of
the dataset, our train/internal-test datasets contained all patients
who visited before June 2019—[Survival Years] or died before
June 2019, while our external test datasets contained all patients
who visited after June 2019—[Survival Years] and had not died by
June 2019. Thus, the model would have no access to the new
records from the external test set in the training phase. For all
train/internal-test datasets and external test datasets, we firstly
excluded patients with unknown time of death or lost follow-up
(NACCMOD or NACCYOD= “99/9999: Unknown”) and kept
all non-deceased patient records (NACCMOD and NAC-
CYOD= “88/8888: subjects not deceased”) and patient records
with a specific time of death. Then, we labeled patients who died
before [Visit Date] + [Survival Years] as 1 (deceased), while the
others in the datasets were labeled as 0 (survival).

Subsequently, for each survival-time threshold, we stratified
each survival dataset by date into a pan-dementia dataset that we
used for training and internal tests and a separate external test
cohort that we used to externally evaluate model performance.
For our pan-dementia analysis, we included all dementia patients
(i.e., all patients who received an impaired, not MCI, MCI, or
dementia diagnosis). However, for our sub-dementia analysis, we
stratified our datasets by dementia type, including non-dementia
patients as a baseline for comparison.

Machine-learning models. After experimenting with several
machine-learning algorithms (i.e., random forest, logistic regres-
sion, and gradient boosting), our machine-learning algorithm of
choice was eXtreme Gradient Boosting (XGBoost), a high-per-
formance, tree-based ensemble learning method that uses gra-
dient tree boosting to sequentially add new trees to reduce the
errors from previous trees34. As compared to other gradient-
boosting algorithms like light gradient-boosting machine
(LightGBM), previous literature has found that XGBoost provides
an optimal balance between accuracy and training speed35. When
we evaluated the predictive performance of XGBoost vs.
LightGBM, we found that they achieved AUC-ROC scores within
0.01 of each other at all four survival thresholds: 0.81 vs. 0.82 for
1-year, 0.82 vs 0.83 for 3-year, 0.82 vs. 0.83 for 5-year, and 0.83 vs.
0.83 for 10-year. Thus, we opted to proceed with XGBoost for the
rest of our analyses. We built XGBoost models for each of the 1-
year, 3-year, 5-year, and 10-year datasets, with the goal of pre-
dicting dementia patient survival/mortality under varying survi-
val thresholds. We built all of our machine-learning models in
Python v.3.7.12 using the xgboost and scikit-learn36 libraries.

Class imbalance. All four survival datasets exhibited some degree
of class imbalance: the 1-year, 3-year, and 5-year datasets con-
tained a higher proportion of survival patients than mortality
patients, whereas the 10-year dataset contained a higher pro-
portion of mortality patients than survival patients. In order to
address this class imbalance, we chose to apply a class-weighted
loss function when training our models via XGBoost’s built-in
“scale_pos_weight” parameter. This parameter controls the bal-
ance of positive and negative weights, such that setting this
parameter equal to the ratio between the number of samples in
the negative class and the number of samples in the positive class
produces a class-weighted loss function for the XGBoost model37.
For the two-feature and multi-factorial models, the “scale_pos_-
weight” parameter was set to 15.081 for 1 year, 3.862 for 3 years,
1.872 for 5 years, and 0.476 for 10 years (Supplementary Table 2).
We opted to use a class-weighted loss function rather than a
class-based resampling method because previous studies have
demonstrated the superior performance of weighted methods as
compared to resampling methods in addressing class
imbalance38, and we also wanted to avoid the additional com-
putational complexity incurred by oversampling.

Feature selection. For our pan-dementia analyses, we aimed to
build XGBoost models to predict 1-year, 3-year, 5-year, and 10-
year survival among all dementia patients. Our first set of
machine-learning models utilized only two features: age and
standard global CDR. These preliminary models served as a
baseline of comparison for the more complex models and pro-
vided insight into how much of the mortality prediction could be
explained by age and standard global CDR alone.

Subsequently, we built a more complex set of machine-learning
models that employed the larger feature space. However, in order
to make our machine-learning models more clinically feasible, we
conducted feature selection using SHapley Additive exPlanations
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(SHAP)39, a unified, model-agnostic framework for interpreting
the predictions of machine-learning models. The SHAP algo-
rithm is rooted in game theory, relying on the calculation of
Shapley values to evaluate the relative contribution of each feature
to a given prediction. Though SHAP is most often used as a
feature importance metric, it has demonstrated considerable
utility as a feature selection method as well, even outperforming
many conventional feature selection methods40. In our study, we
trained default XGBoost classifiers with five-fold cross-validation
on each of the four training sets, aggregating SHAP values across
each partition before taking the union of the top five features
from each model, ranked in order of decreasing mean absolute
SHAP value.

Model training, internal testing, and external testing. We
trained our four XGBoost models on their respective training sets
and tested their performance on their respective internal test sets,
corresponding to their survival threshold. To account for any
variability that may have been introduced by the random state of
the train-internal test split, we conducted bootstrap resampling by
generating fifty bootstrap samples, re-fitting the models on each
bootstrap train set, and evaluating their performance on each
bootstrap test set. All confidence intervals generated represent the
95% confidence intervals derived from bootstrap resampling. We
also validated each model’s performance on its respective external
test set, which we set aside during data splitting.

Hyperparameter optimization. To optimize model performance,
we used Bayesian optimization to identify the optimal hyper-
parameters for each XGBoost model, implemented with the
BayesianOptimization41 Python library. Bayesian optimization is
a robust hyperparameter optimization algorithm that employs
Bayes’ theorem and Gaussian processes to efficiently search the
hyperparameter space. Given a black-box function, Bayesian
optimization builds a probabilistic surrogate model of the
objective function, which is then searched by an acquisition
function that incrementally selects hyperparameters to optimize
the surrogate model42,43.

For each model, we applied fifty rounds of Bayesian
optimization with five-fold cross-validation, optimizing the
following hyperparameters: “n_estimators”, “max_depth”, “col-
sample_bytree”, “min_child_weight”, “learning_rate”, “subsam-
ple”, and “gamma”. Additionally, to account for class imbalances,
we set the “scale_pos_weight” parameter of each model to the
ratio between the number of samples in the negative class
(survival) and the number of samples in the positive class
(mortality). The full lists of tuned hyperparameters for our two-
feature, multi-factorial, and dementia type-specific models are
available in Supplementary Table 2.

Sub-dementia analysis. In addition to predicting survival in all
dementia patients, we conducted a sub-dementia analysis, ana-
lyzing discrepancies among dementia types. Since the majority of
dementia-related studies are geared toward Alzheimer’s disease,
highlighting the distinctions between dementia types may provide
insight into the mechanisms of the various forms of neurode-
generation, thus guiding clinical practice.

For our sub-dementia analysis, we only used a 5-year survival
threshold, as the pan-dementia analysis demonstrated that 5 years
provides a reasonable timeframe for capturing patient mortality
without a drastic trade-off in predictive performance. To ensure
that each of our dementia type-specific models received sufficient
training data, we limited our analysis to eight dementia types,
which each contained at least 1000 patients from the 5-year
dataset between training and internal test (excluding external

test). Accordingly, we built XGBoost models for each sub-
dementia dataset and applied the same Bayesian optimization
methodology and train/internal-test/external-test framework as
with our pan-dementia analysis. However, in order to conclu-
sively note differences between dementia types, we included all
189 original features and allowed each model to designate the
most important features corresponding to its respective
dementia type.

Feature importance. For both our pan-dementia analysis and
sub-dementia analysis, we used the aforementioned SHapley
Additive exPlanations (SHAP)39 to determine feature importance
within our XGBoost models. We used a variant of SHAP known
as TreeSHAP44, an enhancement to SHAP designed for tree
ensemble methods, such as XGBoost. To distinguish the most
important features in each model, we created 50 bootstrap sam-
ples with randomized train-internal test configurations, fit the
model on each training split, and then calculated SHAP values
within each internal test split. We then aggregated the SHAP
values across all bootstrap samples before ranking the features in
order of decreasing mean absolute SHAP value, based on their
relative contribution to the models.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Cohort characteristics and patient mortality across
dementia types. Data for this study was obtained from the
National Alzheimer’s Coordinating Center (NACC) database13,
which spans 39 past and present Alzheimer’s Disease Centers
(ADCs) across the United States. The NACC collects, audits, and
distributes ADC-derived data across the U.S. The NACC data
release used for this study included 45,275 unique participants
and 163,782 visit records between 2005 and 2021.

Data were extracted for various dementia severity levels
(Table 1 and Supplementary Table 3). The mean age at visit
increased from 73 years for those who had normal cognition
(n= 16,379), to 76 years for those with dementia (n= 19,186).
The percentage of females was 64.9% among normal cognition
patients, compared to 52.0% among demented patients. For
impaired-not-MCI (n= 1840), MCI (n= 7870), and dementia
groups, the proportions of females were 58.3%, 52.4%, and 52.0%,
respectively. Mean education years were 15–16 across all
dementia severity levels in this population. The percent of
participants with at least one AD risk APOE e4 allele was 23.1%
among normal cognition participants, compared to 38.5% among
demented participants. This NACC cohort was utilized for
statistical analyses and machine-learning model training in this
work (Fig. 1A).

The whole cohort with 45,275 unique NACC individuals in this
2005–2021 time period was analyzed to compare patient survival
across different dementia types. We estimated survival time using
the Kaplan–Meier method (Fig. 1B, C). Survival probability
differed across primary etiologic diagnoses of dementia types
(Fig. 1B). Patients with prion disease showed less overall median
survival time than other dementia types (p < 0.0001). This is
consistent with the rapid onset and progression feature of prion
disease45. The overall median survival time for Alzheimer’s
disease was not reached, with 5- and 7-year survival rates of
76.05% and 66.63%, respectively. The overall median survival
time in Lewy Body disease was 98.3 months (95% CI 84.2–119.5),
with 5- and 7-year survival rates of 60.0% and 52.0%, respectively.
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To illustrate the relationship between dementia severity and
survival, we performed a survival analysis based on global clinical
dementia rating (CDR) scores (Fig. 1C). The overall median
survival time in global CDR score at 0 was not reached, with 5-
and 7-year survival rates of 93.7% and 90.1%, respectively. The
overall median survival time in global CDR scores at 1, 2, and 3
was 141.8 months (95% CI 128.8–NA), 75.0 months (95% CI
69.0–81.0), 27.3 months (95% CI 25.3–29.3), respectively. With
increasing global CDR score, which represents more severe
cognitive impairment, patients generally showed worse outcomes.
Moreover, to determine whether these trends were reflected in
patients with comorbidities (i.e., other causes of death such as
cancer and cardiovascular disease), we performed additional

survival analysis on global CDR scores stratified by disease type.
The results showed that regardless of whether or not dementia
patients suffered from cancer or heart conditions, global CDR
score remained significantly associated with mortality (Supple-
mentary Fig. 1), suggesting that—even among dementia patients
with comorbidities—dementia-related causes are likely still the
dominating factors of mortality.

Predicting dementia patient mortality using age and standard
global CDR. Since our survival analysis revealed that higher
standard global CDR coincides with a faster decline in survival
probability, we first built simplistic eXtreme Gradient Boosting

Table 1 Characteristics of NACC participants by cognitive status.

Characteristic Dementia severity

Normal cognition Impaired-not-MCI MCI Dementia

Number of participants 16379 1840 7870 19186
Age (years old), mean (SD) 73 (12) 73 (11) 76 (10) 76 (11)
Female, n (%) 10632 (64.9%) 1071 (58.3%) 4124 (52.4%) 9976 (52.0%)
Education (years), mean (SD) 16 (7) 15 (6) 16 (8) 16 (9)
Race, n (%)
White 12869 (78.6%) 1335 (72.6%) 6048 (76.8%) 16169 (84.3%)
Black/African American 2629 (16.1%) 348 (18.9%) 1324 (16.8%) 1918 (10.0%)
American Indian/Alaskan Native 138 (0.8%) 23 (1.3%) 83 (1.1%) 151 (0.8%)
Native Hawaiian/Pacific Islander 14 (0.1%) 5 (0.3%) 5 (0.1%) 25 (0.1%)
Asian 492 (3.0%) 40 (2.2%) 234 (3.0%) 420 (2.2%)
Other/multiracial/unknown 237 (1.4%) 89 (4.8%) 176 (2.2%) 503 (2.6%)
Hispanic ethnicity, n (%) 1115 (6.8%) 234 (12.7%) 766 (9.7%) 1473 (7.7%)
>= 1 APOE e4 allele, n (%) 3781 (23.1%) 400 (21.7%) 2152 (27.3%) 7395 (38.5%)
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Fig. 1 Schematic diagram of the study workflow and survival analyses using the NACC dataset. A Depiction of the study workflow from data pre-
processing, model training, and testing, to analyses of the machine-learning models. The survival analysis results in the NACC datasets are visualized by
the Kaplan–Meier estimator curves separated by B dementia type and C standard global clinical dementia rating (CDR), where the shaded area around
each line represents a 95% pointwise confidence interval.
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(XGBoost) ML models that utilize only two features, age, and
standard global CDR, to predict mortality in dementia patients.
We stratified our data into four datasets separated by survival
endpoints, each with an 80/20 train/internal-test split and a
separate external test cohort of later visits not seen by the model:
1-year survival (train: n= 60,367; internal test: n= 15,092;
external test: n= 10,284 visit records), 3-year survival (train:
n= 53,272; internal test: n= 13,318; external test: n= 11,552),
5-year survival (train: n= 47,196; internal test: n= 11,800;
external test: n= 11,284), and 10-year survival (train: n= 32,569;
internal test: n= 8143; external test: n= 13,266) (Supplementary
Fig. 2). We trained our models accordingly and employed
Bayesian optimization41 to select the optimal hyperparameters for
each model.

The two-feature XGBoost models achieved an AUC-ROC of
over 0.76 at all survival thresholds, though the higher thresholds
achieved much higher AUC-PR (area under the precision-recall
curve) scores, likely due to the large class imbalances at the lower
thresholds. The full table of model performance for the two-
feature XGBoost models in the internal and external test sets is
shown in Supplementary Table 4, and the AUC-ROC curves are
shown in Supplementary Fig. 3. Overall, these basic models
confirmed that age and clinical dementia rating alone provide a
reasonable prediction of dementia patient mortality, and their
contributions would be further elucidated with the inclusion of
more clinical features in our subsequent analyses.

Multi-factorial machine-learning models for predicting mor-
tality in dementia patients. We proceeded to build multi-
factorial models that introduced a wider array of clinical features
into the machine-learning models. Initially, we built XGBoost
models encompassing all 189 features of our preprocessed data-
sets. We then used SHapley Additive eXplanations (SHAP)40, a
robust, game-theoretic framework for explaining model output,
to identify the important features within each survival threshold.
These initial results identified numerous recurring features
among the top features, ranked by SHAP values, of each of the
four survival-time thresholds, and much of the explainability of
the predictions could be attributed to these top few features alone
(Supplementary Fig. 4a).

Therefore, we derived a parsimonious and informative feature
subset across all four survival-time thresholds by training default
XGBoost classifiers with five-fold cross-validation on each of the
four training sets and taking the union of the top n features from
each model. Specifically, we selected n= 5 as our cutoff as it
provided considerable overlap among survival thresholds while
still preserving enough features to be clinically informative
(Supplementary Fig. 4b, c). Nonetheless, the selection criteria
constitute a deliberate compromise, striking a balance between
optimizing model performance and ensuring practicality for
clinical applications.

The SHAP bar plots showing all features at each survival
threshold are shown in Supplementary Fig. 4a, where we retain
the top features. Notably, other leading causes of death in the US,

such as stroke and other cardiovascular conditions, were ranked
outside of the top 20 features at all survival thresholds.

After conducting feature selection, our resulting feature subset
consisted of nine parsimonious features: “NACCAGE” (Subject’s
age at visit), “INDEPEND” (Level of independence), “PERS-
CARE” (Personal care), “TRAILB” (Trail Making Test Part B—
Total number of seconds to complete), “STOVE” (In the past four
weeks, did the subject have any difficulty or need help with
Heating water, making a cup of coffee, turning off the stove),
“SEX” (Subject’s sex), “SMOKYRS” (Total years smoked cigar-
ettes), “TRAILBRR” (Trail Making Test Part B—Number of
commission errors), and “EDUC” (Years of education).

Utilizing the same train/internal-test splits and external test
cohorts as in the two-feature models, we employed this subset of
nine features on new, Bayesian-optimized XGBoost models to
predict survival/mortality across all dementia patients at each
survival threshold. All four models achieved an AUC-ROC of
over 0.82, though the lower threshold models (i.e., 1-year and 3-
year) struggled with respect to AUC-PR. At the 10-year survival
threshold, our model achieved the highest AUC-ROC and AUC-
PR of all, with an AUC-ROC of 0.829 (95% CI: 0.814–0.832) and
an AUC-PR of 0.905 (95% CI: 0.896–0.911). Notably, model
AUC-PR was worse in 1/3-year survival but increased dramati-
cally at higher survival-time thresholds, which can likely be
attributed to a higher proportion of mortality in patients and,
thus, smaller class imbalances at these higher thresholds. Whereas
the AUC-ROC metric can be optimistic on imbalanced
classification problems, which is exemplified by the relative
consistency of AUC-ROC scores across all four survival thresh-
olds, AUC-PR is more strongly affected by class imbalance, which
is likely why AUC-PR scores improved so dramatically as the
proportion of mortality patients increased. Moreover, these
performance trends were reflected in the external test sets as
well. The full table of model performance for the multi-factorial
models in the internal and external test sets is shown in Table 2,
and the AUC-ROC curves are shown in Fig. 2A.

Additionally, to determine whether model performance was
consistent across Alzheimer’s disease centers (ADCs), we verified
the performance of each model across all ADCs with at least 200
patients in the internal test set at each survival threshold. To
avoid potential data leakage between sites, we performed leave-
one-(site)-out cross-validation (LOOCV), in which training data
from all but one site was used for training, while the internal test
data from the leftover site was used for testing. This way, each
ADC was tested and evaluated using models that were trained on
data exclusively from other ADCs. Overall, model performance
remained consistent across ADCs, with discrepancies primarily
occurring in the ADCs with the smallest patient populations. The
full AUC-ROC curves stratified by ADC are available in
Supplementary Fig. 5 and demonstrate the broad generalizability
of our model.

We generated the bootstrapped SHAP plots (Fig. 2B) of the
multi-factorial models to reveal key insights about the nine
chosen features in relation to dementia patient mortality. Another
key strength of the SHAP method is its ability to determine not

Table 2 Predictive performance of the nine-feature, multi-factorial models.

Survival-time threshold Internal test set External test set

Accuracy (95% CI) AUC-ROC (95% CI) AUC-PR (95% CI) Accuracy AUC-ROC AUC-PR

One-year 0.780 (0.770–0.788) 0.824 (0.820–0.850) 0.259 (0.257–0.301) 0.817 0.870 0.300
Three-year 0.750 (0.743–0.758) 0.825 (0.817–0.830) 0.566 (0.545–0.588) 0.752 0.837 0.539
Five-year 0.744 (0.735–0.749) 0.823 (0.813–0.826) 0.722 (0.702–0.730) 0.710 0.817 0.667
Ten-year 0.748 (0.733–0.755) 0.829 (0.814–0.832) 0.905 (0.896–0.911) 0.693 0.789 0.741
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only the magnitude of a feature’s effect on model prediction but
also the direction of its effect. Notably, a higher risk of mortality
(positive SHAP value) was predicted by old age (“NACCAGE”),
male sex (“SEX”), higher levels of dependency (“INDEPEND”),
higher levels of personal care required (“PERSCARE”), greater
difficulty in handling a stove or heating water (“STOVE”), more
years of education (“EDUC”), and more seconds required to
complete the Trail Making Test Part B (“TRAILB”) across all four
survival thresholds. More years of smoking (“SMOKYRS”) and
more commission errors on the Trail Making Test Part B
(“TRAILBRR”) were also predictive of higher risk in 1-year and
3-year mortality. However, the inverse relationship was observed
for 5-year and 10-year mortality risk, as fewer years of smoking
and fewer commission errors on the Trail Making Test Part B
became slightly more predictive of mortality than of survival at
these longer survival thresholds. The full SHAP beeswarm plots
for the multi-factorial models are shown in Fig. 2B.

Dementia type-specific models. The multi-factorial machine-
learning models provided a cogent framework for predicting
mortality in an unspecified population of dementia patients.
However, across dementia types, there may have been key simi-
larities and distinctions that could not be captured in the pan-
dementia analysis. Therefore, we stratified the NACC cohort into
smaller cohorts based on dementia types to conduct sub-
dementia analyses. For these analyses, we aimed to predict
dementia patient mortality solely at the 5-year survival threshold,
which exhibits the smallest class imbalance and provides an
extended time window for possible clinical actionability. We
conducted our sub-dementia analysis on these eight dementia
types with sample sizes greater than 1000: no dementia
(n= 42,135 visit records), Alzheimer’s disease (AD, n= 37,990),
unknown (n= 6317), frontotemporal lobar degeneration (FTLD,
n= 4290), Lewy body dementia (LBD, n= 3182), vascular brain
injury or vascular dementia (VaD, n= 2288), cognitive impair-
ment due to other reasons (n= 1362), and depression (n= 1354).
We stratified the training, internal test, and external test sets of
the 5-year dataset by dementia type and then trained, optimized,
tested, and validated an XGBoost model for each of the eight
dementia types.

Performance-wise, the models built on the commonly defined
dementia types (e.g., AD, FTLD, LBD, and VaD) tended to

perform better in the positive class (mortality) and, thus,
generally had higher AUC-PR, whereas the models built on the
non-dementia patients and the more ambiguous dementia types
(e.g., depression, cognitive impairment for other specified
reasons, and missing/unknown) were more robust at predicting
the larger negative class (survival) and, thus, had higher AUC-
ROC overall. All eight models achieved an AUC-ROC of over
0.79, with the no-dementia model attaining the highest AUC-
ROC at 0.873 (95% CI: 0.859–0.879). The most consistent, all-
around performer was the AD model, which is reasonable given
that it was by far the most popular dementia type aside from the
no dementia group. The full table of model performance for the
sub-dementia models in their respective internal and external test
sets is shown in Table 3.

The clustered feature importance heatmap is shown in Fig. 3A,
and the SHAP beeswarm plots for the dementia type-specific
models are shown in Fig. 3B. Hierarchical clustering produced the
following four clusters of dementia types: (1) VaD and
depression, (2) FTLD and LBD, (3) AD and other dementia,
and (4) no dementia and unknown. Notably, many of the key
features in the pan-dementia cohort reappeared among the top
features within most dementia types, including “NACCAGE”
(Subject’s age at visit), “INDEPEND” (Level of independence),
and “SMOKYRS” (Total years smoked cigarettes). New features
such as ‘NACCADC’ (ADC at which subject was seen), “VEG”
(Vegetables—Total number of vegetables named in 60 s),
“TRAVEL” (In the past four weeks, did the subject have any
difficulty or need help with Traveling out of the neighborhood,
driving, or arranging to take public transportation), and
“TRAILA” (Trail Making Test Part A—Total number of seconds
to complete) also emerged as important features across numerous
dementia types.

Meanwhile, several key differences distinguished individual
dementia types and their clusters from one another. For instance,
in both VaD and depression, alongside general cognitive features,
body measurements and vital signs, such as “HEIGHT” (Subject’s
height (inches)), “WEIGHT” (Subject’s weight (lbs)),
“NACCBMI” (Body mass index (BMI)), “HRATE” (Subject’s
resting heart rate (pulse)), and “BPDIAS” (Subject’s blood
pressure (sitting), diastolic), were more important for predicting
mortality than for any other dementia type. In the vascular
dementia subgroup, “CVCHF” (Congestive heart failure) was also

B

A

Fig. 2 Receiver operating characteristic (ROC) curves and feature importance plots of the multi-factorial models predicting survival of NACC
individuals at different time points. A ROC curves of the 1-year, 3-year, 5-year, and 10-year survival models. B Feature importance as illustrated by the
SHapley Additive exPlanations (SHAP) beeswarm plots of the 1-year, 3-year, 5-year, and 10-year survival models. The SHAP values on the x-axis have log-
odds units and represent the impact of the feature on the model output. For each feature, each individual patient is represented by a single point, and the
x-position of a point represents the impact of that feature on that patient. The color of a point corresponds to the patient’s value for that feature along a
continuous scale from low to high.
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a pivotal feature, second in importance after age and accounting
for over 5% of the mortality prediction among VaD patients.

In the FTLD and LBD cluster, feature importance was
distributed across a substantially wider array of cognitive features,
with less importance attributed to age and smoking years as
compared to the other dementia types. In FTLD, for instance, a
number of new cognitive features emerged: CDR® Plus NACC
FTLD features (e.g., “CDRLANG” (Language) and “COMMUN”
(Community Affairs)), clinician judgment features regarding
motor function (e.g., “NACCMOTF” (Indicate the predominant
symptom that was first recognized as a decline in the subject’s
motor function) and “MOMODE” (Mode of onset of motor
symptoms)), and neuropsychological battery summary scores
(e.g., “NACCMMSE” (Total MMSE score (using D-L-R-O-W))).
Accordingly, difficulty in performing functional and social
activities, in addition to the loss of motor function, were crucial
predictors of mortality in FTLD patients, more so than in any
other dementia type. As for LBD, “CDRSUM” (Standard CDR
sum of boxes) superseded age as the most important feature,
accounting for nearly 10% of the mortality prediction among
LBD patients. However, other new features such as “ANIMALS”
(Animals—Total number of animals named in 60 s), “ORIENT”
(Orientation), and “NACCMMSE“ (Total MMSE score (using D-
L-R-O-W) were also revealed to be relevant to the mortality
prediction within the LBD subgroup.

The top features in the AD subgroup comprised almost entirely
cognitive features, most of which overlapped with those of the
multi-factorial models, with the addition of “CDRSUM” (Stan-
dard CDR sum of boxes), “SHOPPING” (In the past four weeks,
did the subject have any difficulty or need help with Shopping
alone for clothes, household necessities, or groceries), and
“TOBAC100” (Smoked more than 100 cigarettes in life). The
top features in the other subgroup similarly consisted primarily of
cognitive features, with the addition of body measurements and
vital signs, similar to the VaD and depression cluster.

Finally, in the no dementia and unknown subgroups, many of
the features that were typically associated with mental cognition,
such as age and performance on neuropsychological exams,
remained important predictors of mortality, though others were
superseded by more general comorbidities and risk factors. For
instance, the relative importance of “SMOKYRS” (Total years
smoked cigarettes) was higher in the no dementia group than in
any of the dementia groups, accounting for 7.5% of the mortality
prediction among no dementia patients. Other non-cognitive risk
factors such as “HYPERTEN” (hypertension) and “ENERGY”
(Do you feel full of energy?) were also revealed to be relevant for
predicting mortality in non-dementia patients, despite having
little to no contribution to the predictions in the dementia groups.
These results reaffirmed that mortality predictors differ between
non-demented and dementia patients, who show multiple
survival factors related to their neuropsychological ability.

Overall, in the context of VaD and depression, mortality
prediction was predominantly determined by age, body measure-
ments, and vital signs, which is not surprising given that patients
with VaD and/or depression often present strong physical
deficiencies, in addition to cognitive ones. Meanwhile, given that
FTLD and LBD are both associated with alterations in
personality, behavioral changes, and motor symptoms, it is
plausible that the model would group these conditions together.
As for patients with AD or other forms of dementia, mortality
prediction was determined almost entirely based on age and
cognitive features (e.g., performance on cognitive screening tests).
We postulate that the grouping of AD with other forms of
dementia may be attributed to the National Institute on Aging
and Alzheimer’s Association’s (NIA-AA) diagnostic criteria for
Alzheimer’s disease, which relies on a process of exclusion.T
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Finally, the mortality prediction of individuals without dementia
or with unknown dementia status was moderately influenced by
age, biological sex, cognitive features, lifestyle factors (e.g.,
cigarette smoking), and geographical location. These findings
align with previous research conducted on the general population.

Discussion
In this study, we developed machine-learning models for predicting
mortality through training, internal test, and external test sets using
163,782 visit records of 45,275 unique NACC individuals in the
United States from 2005 to 2021. We have demonstrated that
machine-learning models, which have thus far primarily been
explored as screening or diagnosis tools in the context of dementia,
have substantial utility in the prediction of mortality among
dementia patients. First, we conducted multiple survival analyses,
which confirmed that increasing global CDR scores coincided with
decreased survival and showed that there was considerable varia-
bility in survival across dementia subtypes. Subsequently, we
developed two-feature models (using only age and standard global
CDR) and multi-factorial models (using nine features determined
through feature selection) to predict dementia patient mortality at
four distinct survival-time thresholds, all of which achieved high

predictive performance. We additionally built machine-learning
models for eight different dementia subtypes and revealed key
feature differences among them, though age and cognitive features
derived from neuropsychological tests remained important pre-
dictors of mortality across all dementia types. These mortality
predictors reveal similarities and differences in the etiology and
clinical representation among individuals affected by different
types of dementia.

The results of our global CDR survival analysis were consistent
with those of past survival analyses in dementia patients46,47,
confirming that higher CDR scores correlate with reduced sur-
vival probability. With respect to dementia type, there have been
very few studies investigating the association between dementia
type and survival probability. In the studies that we identified, key
distinctions were noted in the cohort composition and mortality
risk of Lewy body dementia vs. Alzheimer’s disease27, vascular
dementia vs. Alzheimer’s disease in the context of depression26,
and among eight different dementia subtypes48. Our dementia-
type survival analysis confirmed this heterogeneity, as survival
probability differed drastically across groups of patients with
different primary etiologic diagnoses. However, whereas prior
studies identified comorbidities such as cardiovascular disease49

to be associated with reduced survival probability, we found that

B

A

Fig. 3 Comparison of features predictive of patient mortality across individual dementia type-specific models. A Clustered heatmap of the top features
across dementia types. Only features with a normalized SHapley Additive exPlanations (SHAP) value greater than 2.5 (explaining at least 2.5% of the
prediction) in any given dementia type-specific model were included. The maximum normalized SHAP value for the clustered heatmap was set to 10 so
that color contrasts were more discernable. The “No Dementia” category corresponds to patients receiving a primary etiologic diagnosis of “Not applicable,
not cognitively impaired.” The “Unknown” category corresponds to patients receiving a primary etiologic diagnosis of “Missing/unknown.” “The “Other”
category corresponds to patients receiving a primary etiologic diagnosis of “Cognitive impairment for other specified reasons (i.e., written-in values).”
B SHAP beeswarm plots of six of the eight dementia type-specific models, excluding “Unknown” and “Other”. Features in the beeswarm plots are ranked by
mean absolute SHAP value. The SHAP value distribution of the top ten most important features in each dementia type-specific model is displayed.
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regardless of heart conditions, the survival curves separated
decisively across patients with varied global CDR scores within
the NACC cohort.

Subsequently, we built machine-learning models tasked with
predicting dementia patient mortality at 1-, 3-, 5-, and 10-year
survival thresholds. Our two-feature models, which utilized age
and global CDR scores, achieved an AUC-ROC of over 0.76 at all
four survival thresholds in the internal test set. Thus, age and
global CDR provided a solid basis for predicting dementia patient
mortality and, in the absence of additional clinical features, may
alone be used to guide clinical judgment. Our multi-factorial
models, for which we utilized SHAP to select a subset of nine
features, achieved an AUC-ROC of over 0.82 at all four survival
thresholds in the internal test set and comparable performance in
the external test set. The crucial features used by the multi-
factorial models confirm the known clinical indicators of
dementia from a machine-learning standpoint. The multi-
factorial models revealed that a higher risk of mortality was
predicted by older age50–53, male sex46,51–53, higher levels of
dependency and personal care required53, more years of
education54, more years of smoking55, and poorer performance
on neuropsychological exams like the Trail Making Test56,57.
Interestingly, at the longer survival thresholds, more years of
smoking and more commission errors on the Trail Making Test
Part B became more associated with survival than with mortality.
Some possible explanations for these trends are that any protec-
tive effects of smoking cessation (which was not captured by the
“SMOKYRS“ variable) against dementia risk and mortality might
only be realized in long-term outcomes58 and that the amount of
time required to complete the Trail Making Test Part B (captured
by “TRAILB”) might be a more consistent performance metric for
predicting long-term mortality than the number of commission
errors made (captured by “TRAILBRR”). However, it is also
important to note that the data for the longer survival thresholds
included a slightly different subset of patients (i.e., a higher
proportion of patients from the early 2010s) due to the more
years of follow-up data required, so future studies might seek to
further investigate these hypotheses.

To our knowledge, our study is one of just a few studies to apply
a machine-learning-based approach to predicting mortality in
dementia patients23–25 (as opposed to statistical approaches), and
the first study to do so within population subsets stratified by
dementia type. In predicting dementia patient mortality at the
5-year survival threshold, our dementia type-specific models all
achieved an AUC-ROC of over 0.79 in the internal test set and
similar performance in the external test set. Hierarchical clustering
of survival predictors grouped the following dementia types toge-
ther: (1) vascular dementia (VaD) with depression, (2) Lewy body
dementia (LBD) with frontotemporal lobar dementia (FTLD), (3)
Alzheimer’s disease (AD) with other dementia, and (4) no
dementia with unknown. Since many dementia types present
similar symptoms and disease progressions8, differentiating and
targeting dementia type-specific symptoms and mortality pre-
dictors can be beneficial for patient populations59. Across all four
clusters (even in the no dementia and unknown cluster), many
features from the multi-factorial models remained key predictors of
mortality, such as age, level of independence, smoking, and per-
formance on neuropsychological exams like the Trail Making Test.

First, within the VaD and depression cluster, body measure-
ments and vital signs (e.g., height, weight, BMI, heart rate, and
diastolic blood pressure) contributed to the mortality prediction
more than for any other dementia type. For VaD, congestive
heart failure was the second most important feature after age,
consistent with VaD’s common risk factors8. Moreover, the
grouping of VaD with depression confirms previous literature
that has highlighted the synergistic effects of VaD and depression

on patient mortality26, as VaD patients tend to exhibit a higher
baseline risk for psychiatric symptoms like depression59,60. Sec-
ond, within the FTLD and LBD cluster, features corresponding to
MMSE score, standard CDR sum of boxes, and involvement in
community affairs contributed more heavily to the mortality
prediction. For FTLD in particular, features measuring difficulty
in performing social and functional activities were the pivotal
predictors of mortality, consistent with the pathological effects of
FTLD8. Our findings regarding FTLD and LBD align with prior
studies that have similarly grouped the two subtypes together and
determined that executive dysfunction and activity disturbances
are the key indicators of cognitive impairment for both59,61.
Third, within the AD and other dementia cluster, general cog-
nitive features, namely those from the multi-factorial models,
remained the most important predictors of mortality. Standard
CDR sum of boxes was also an important predictor of mortality
in AD patients, as were body measurements and vital signs for
other dementia patients. The grouping of AD with other
dementia may be attributed to the difficulty in differentiating AD
from certain other types of dementia62, and given that AD was by
far the most prevalent dementia type in the NACC cohort, it is
likely that the other dementia patients were generally similar to
AD patients. Finally, within the no dementia and unknown
cluster, general cognitive features such as performance on the
Trail Making Test, surprisingly, remained important predictors of
mortality. However, general comorbidities and mortality risk
factors, such as smoking, hypertension, and lack of energy,
demonstrated high relative importance as well, more so than for
any of the dementias. Notably, as in the survival analysis, cardi-
ovascular diseases did not appear in the top features in either the
multi-factorial models or the dementia type-specific models, with
the exception of congestive heart failure for VaD. The absence of
these comorbidities from the top features in our machine-
learning models may suggest that cognitive decline is a stronger
predictor of mortality in dementia patients than stroke or other
comorbid cardiovascular conditions, though further studies could
better interrogate this hypothesis.

Our study had several key strengths. First, the NACC database
is the largest resource of its kind in the United States, covering a
large, diverse patient population that was current through Sep-
tember 2021. Moreover, we highlight a conscious design choice in
stratifying our data into train, internal test, and external test sets.
By introducing a prospective external test set based on date, we
were able to ascertain the ability of our models to predict mor-
tality within a prospective cohort based on past data. By utilizing
SHAP as our feature importance metric, we were able to gain
valuable insight into the key factors underlying the predictions of
our XGBoost models. This increased transparency also enables
more informed decision-making, by facilitating the communica-
tion of results to clinicians and other non-technical stakeholders.
Overall, the synergistic relationship between SHAP and machine-
learning algorithms like XGBoost enhances the utility and scope
of predictive machine learning. In our pan-dementia analysis, the
use of two-feature and nine-feature (multi-factorial) models
provided a parsimonious, clinically feasible framework for pre-
dicting dementia patient mortality, while in our sub-dementia
analysis, the comparison of important predictors of mortality
across various dementia types may help to guide precision
management and treatment of dementia.

However, our study also had limitations. Due to the high
prevalence of missing values, largely attributed to the difficulty in
acquiring certain data (e.g., neuropathological data) and differ-
ences in clinical procedures across ADCs, many features were
preliminarily eliminated. Moreover, many features within the
NACC data measure similar phenomena, certain variables have
changed over time as updates were made to the UDS form, and
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many variables were derived from clinician diagnosis, precluding
the use of a more granular feature selection method. By first
eliminating variables with over 40% missing values and subse-
quently using MICE to impute the remaining features, we aimed
to reduce some bias in the feature selection process63, though we
acknowledge the limitation of neglecting features that may only
be ascertained by a selection of ADCs. We highlight that the best
performance can be achieved if each ADC or clinic derives its
own predictive model based on its respective available features.
Moreover, our data-splitting method excluded patients who are
lost to follow-up, which biases the deceased group towards a
shorter survival time. This will likely make the predictors over
different survival thresholds more similar to each other and
overestimate the AUC values for the longer survival thresholds.

While XGBoost is known for its predictive power, the
XGBoost-based dementia survival models have limitations that
warrant further investigation. First, the models do not account for
the dynamic nature of dementia progression and the potential for
interventions to alter the course of the disease64. For instance,
considering the impact of potential pharmacological treatments
for dementia could help refine the survival prediction models.
Moreover, current XGBoost models primarily rely on clinical and
demographic data, which may not provide a comprehensive
account of the complex biological mechanisms underlying
dementia. Incorporating genetic and multi-omics data into the
dementia survival models could enhance predictive performance.
Future studies could explore the integration of data from various
sources, such as genomics, transcriptomics, proteomics, and
metabolomics, to create a more holistic understanding of
dementia pathogenesis and identify novel biomarkers for pre-
diction. The application of state-of-the-art deep learning archi-
tectures, such as transformers, may also improve predictive
performance, especially with the incorporation of genetic and
multi-omics data65. Deep-learning methods can capture even
more complex, non-linear relationships and have demonstrated
success in a wide range of biomedical applications, and may also
improve prediction using longitudinal and multi-modal data.

Overall, this study revealed that machine-learning models have
utility in predicting dementia patient mortality at various
survival-time thresholds. Parsimonious models can be developed
when limited clinical features are available, and dementia type-
specific models can be used for distinguishing heterogeneous
patient populations. If cross-validated and carefully implemented
at the primary care level, such predictive models can improve
personalized care of dementia.

Data availability
The data used in this study can be requested from the National Alzheimer’s Coordinating
Center by completing the NACC data request form available at https://nacc.redcap.rit.
uw.edu/surveys/?s=KHNPKLJW8TKAD4DA.

Code availability
The code implemented in this study is available both in a GitHub repository at https://
github.com/Huang-lab/dementia-survival-prediction and in a public repository66 at
https://doi.org/10.5281/zenodo.10392776.
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