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Generative deep learning furthers the
understanding of local distributions of fat and
muscle on body shape and health using 3D
surface scans
Lambert T. Leong 1,2, Michael C. Wong2, Yong E. Liu2, Yannik Glaser 3, Brandon K. Quon2, Nisa N. Kelly2,

Devon Cataldi2, Peter Sadowski 3, Steven B. Heymsfield 4 & John A. Shepherd 1,2✉

Abstract

Background Body shape, an intuitive health indicator, is deterministically driven by body

composition. We developed and validated a deep learning model that generates accurate

dual-energy X-ray absorptiometry (DXA) scans from three-dimensional optical body scans

(3DO), enabling compositional analysis of the whole body and specified subregions. Previous

works on generative medical imaging models lack quantitative validation and only report

quality metrics.

Methods Our model was self-supervised pretrained on two large clinical DXA datasets and

fine-tuned using the Shape Up! Adults study dataset. Model-predicted scans from a holdout

test set were evaluated using clinical commercial DXA software for compositional accuracy.

Results Predicted DXA scans achieve R2 of 0.73, 0.89, and 0.99 and RMSEs of 5.32, 6.56,

and 4.15 kg for total fat mass (FM), fat-free mass (FFM), and total mass, respectively.

Custom subregion analysis results in R2s of 0.70–0.89 for left and right thigh composition.

We demonstrate the ability of models to produce quantitatively accurate visualizations of soft

tissue and bone, confirming a strong relationship between body shape and composition.

Conclusions This work highlights the potential of generative models in medical imaging and

reinforces the importance of quantitative validation for assessing their clinical utility.
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Plain language summary
Body composition, measured quan-

tities of muscle, fat, and bone, is

typically assessed through dual

energy X-ray absorptiometry (DXA)

scans, which requires specialized

equipment, trained technicians and

involves exposure to radiation.

Exterior body shape is dependent on

body composition and recent tech-

nological advances have made three-

dimensional (3D) scanning for body

shape accessible and virtually ubi-

quitous. We developed a model

which uses 3D body surface scan

inputs to generate DXA scans. When

analyzed with commercial software

that is used clinically, our model

generated images yielded accurate

quantities of fat, lean, and bone. Our

work highlights the strong relation-

ship between exterior body shape

and interior composition. Moreover,

it suggests that with enhanced accu-

racy, such medical imaging models

could be more widely adopted in

clinical care, making the analysis of

body composition more accessible

and easier to obtain.
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Body composition is indicative of many disease states and
adverse health outcomes1. For example, obesity and sar-
copenic obesity (high adiposity) are associated with cardi-

ovascular disease and diabetes2, and sarcopenia and frailty (loss of
lean mass and muscle)3 are associated with increased mortality4,5.
In addition to total or whole-body (WB) composition, specific
subregional composition has also been shown to have strong and
unique associations to specific health outcomes6. For instance,
every kilogram increase in appendicular lean mass (ALM) was
shown to be associated with about a 10% reduction in mortality
in elderly individuals7. However, with limited exceptions, only
body composition assessments derived from advanced imaging
methods can effectively segment the body to quantify appendi-
cular regions. Commonly used anatomical cut points or sub-
regions from dual-photon absorptiometry8,9 and then dual-
energy X-ray absorptiometry [DXA10,11] whole body images were
adopted in the 1980s and they have since been incorporated into
standard clinical practice with little to no modification to original
subregion definitions. Some relevant examples of standard DXA
subregion for body composition include ALM’s association to
frailty12, visceral adipose tissue (VAT) and subcutaneous adipose
tissue of the trunk region being associated to cardiometabolic
outcomes13, leg fat and lean mass in diabetes patients14, leg fat
mass (FM) and fat-free mass (FFM) being associated to frailty
and injury recovery15. Besides these historical subregions, DXA
offers the capability to explore body composition within user-
defined subregions and some examples include user-defined
abdominal subregions to monitor liver iron concentration16 and
leg subregions to monitor injury recovery17.

While DXA is considered a criterion method for acquiring
body composition, exposure to ionizing radiation limits accessi-
bility and frequent use in individuals. Specially trained and
licensed technicians are often required to operate DXA systems
and mitigation of dose accumulation. Computed tomography
(CT)18 and magnetic resonance imaging (MRI) are alternatives to
DXA and also offer regional body composition measures19.
However, the limitations that hinder DXA accessibility and
broader use are not overcome by either method. Highly skilled
technicians are still needed to operate these systems, they are
expensive for the user and facility to maintain, and CT utilizes
even higher ionizing radiation doses than DXA. Bioelectrical
impedance analysis (BIA) is a common non-image-based and
accessible body composition method that can segment the body
into trunk, arms and legs using selective placement of up to eight
electrodes20. However the division between subregions is only
vaguely definable, dependent on the composition distribution of
the individual. DXA, CT, and MRI have precisely defined ana-
tomical cut points verifiable from the image. Thus, neither DXA,
CT, MRI, or BIA are ideal methodologies for the frequent
monitoring of common or user-defined subregions of body
composition with metabolic significance.

An unlikely candidate, three-dimensional optical surface
scanning (3DO), has demonstrated the ability to accurately and
precisely measure total and regional body composition by way of
detailed modeling of body shape21,22. Body shape is determinis-
tically driven by the internal distributions of fat and muscle soft
tissue. Body shape has been shown to have associations with
blood metabolites, strength23, and metabolic syndrome24

demonstrating the broad health utility of 3DO technology. Recent
advances in depth camera technology has made whole-body
scanning inexpensive and fast. These systems are broadly used for
monitoring body shape and composition in homes, recreational
facilities, and clinical settings25,26. 3DO depth cameras are so
ubiquitous that they can be found in many laptop computers, cell
phones and gaming systems. Advances in image processing and
machine learning techniques have resulted in body shape models

that accurately predict body composition from 3DO scans22,27,28.
A drawback to statistical and machine learning shape models
for composition is that these models typically predict singular
scalar values per each body composition measurement. Explora-
tion into additional hypotheses is not possible with such models
and requires retraining. Like other mentioned image-based
methods, previously published body shape models have not
been flexible enough to allow for ad hoc user-defined subregional
analysis. Adding ad hoc user-based analysis for body composition
to 3DO whole body scans would satisfy the ideal conditions
outlined above.

We present a novel approach, a cross-modality image-to-image
model for quantitative body composition image predictions from
3DO, to the best of our knowledge. We use a generative deep-
learning model that maps 3DO to DXA scans. Our model,
Pseudo-DXA, outputs DXA scans in format usable by a com-
mercially available body composition analysis software so that
this advancement can be readily used by clinicians and
researchers. Further, using this approach allows for direct vali-
dation of user-defined regions using paired DXA and 3DO scans.
We further show that the Pseudo-DXA body composition results
are surrogate measures to DXA by comparing DXA and Pseudo-
DXA to metabolic blood markers. Pseudo-DXA was only
achievable due to 1) the availability of large datasets, over
1000 sets, that included matched 3DO and DXA, 2) advances in
deep learning and self-supervised training methods, and 3)
technological advances which lead to improved 3DO capture and
processing power needed to train our final model.

Methods
The development of our Pseudo-DXA model consisted of two
distinct phases; a self-supervised learning (SSL) pretraining phase
and a cross-modality fine-tuning phase. Pretraining strategies are
commonly used in deep learning to increase robustness and
combat overfitting when dataset sizes are modest. Imaging
models have shown improvements in performance on down-
stream task29,30 as a result of effective pretraining. A SSL31–33

training strategy was employed which enabled the model to uti-
lize large datasets of unlabeled DXA scans to learn the important
and complex imaging features needed for generating accurate
scans. Once the model learned to generate DXA scans during
pretraining, it was then tuned specifically to learn the mapping
between 3DO and DXA scans. The following sections detail the
development in full.

Study populations. The SSL pretraining phase utilized DXA data
from two studies, Health, Aging, and Body Composition (Health
ABC)34,35 and Bone Mineral Density in Childhood Study
(BMDCS)36. The Health ABC study is a prospective cohort study
of 3075 individuals (48.4% male, 51.6% female) aged 70–79 years
at the time of recruitment, 41.6% of whom are Black with the
remaining 58.4% being non-Hispanic White. Participants were
recruited from Medicare-eligible adults in metropolitan areas
surrounding Pittsburgh, Pennsylvania and Memphis, Tennessee
and were monitored yearly for 10 years. The BMDCS is also a
prospective study cohort of 2014 individuals (49.3% male, 50.76%
female) aged 5–20 years. Participants were recruited at five clin-
ical centers in the US and participants were followed for 6 years
which included annual assessments. Although both the Health
ABC and BMDCS studies were longitudinal, we utilized the data
in a cross-sectional manner for the SSL phase.

The cross-modality training phase utilized 3DO scans and
DXA scans from a third study, Shape Up! Adults (SUA (NIH R01
DK109008))23. This study is a cross-sectional study of healthy
adults. Participants were recruited at Pennington Biomedical
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Research Center (PBRC), University of Hawaii Cancer Center
(UHCC), and University of California, San Francisco (UCSF).
Recruitment was designed to result in a diverse population that is
well stratified by sex, age, ethnicity, and body mass index (BMI).
Patient demographics for all phases are shown in Table 1 and a
flowchart detailing the data sources for each training phase is
shown in Supplementary Fig. 1. For this study, all participants
signed an informed written consent form which was approved by
each respective study institutional review boards (IRB). The
Heath ABC protocol was approved by the IRB at each field center
(University of Pittsburg, PA and University of Tennessee,
Memphis, TN), the BMDCS protocol was approved by the IRB
at each clinical center (The Children’s Hospital of Philadelphia,
Cincinnati Children’s Hospital Medical Center, Creighton Uni-
versity, Children’s Hospital Los Angeles, and Columbia Uni-
versity) and the data coordinating center (Clinical Trials and
Survey Corporation). The Shape Up! Adults protocol, which
covers this study, was approved by the IRBs at PBRC, UCSF, and
the University of Hawaii Office of Research Compliance.

DXA data. All DXA scans were acquired on Hologic (Hologic
Inc., MA, USA) scanners of similar models. The Health ABC
whole-body scans utilized were collected using Hologic QDR
4500 systems and attempts were made to collect DXA scans on
eight occasions throughout the study. Hologic QDR4500, Delphi,
and Discovery models were used to acquire whole-body DXA
scans for the BMDCS and scans were acquired yearly for 6 years.
Participants of the Shape Up! Adults study received whole-body
DXA scans with a Hologic Discovery/A system. Some partici-
pants also received duplicate precision scans within the same
visit. To estimate test–retest precision, Shape Up participants
were scanned twice with repositioning between the scans. Height
and weight measures were available for all participants.
Manufacturer-defined acquisition protocols were used to ensure
reproducibility and standardization of patient positioning37,38.
For each participant, the raw dual-energy attenuation images with
their respective calibration images were represented at a bit depth
of 16-bit.

3DO scan data. The 3DO scans were acquired on Fit3D Pros-
canner (Fit3D Inc., CA, USA). Participants were required to wear
form-fitting tights, a swim cap, and sports bras if female. Parti-
cipants grasped telescoping handles on the scanner platform and
stood upright with arms positioned straight and abducted from
their torso while the scan platform made one revolution. Final
point clouds were converted to a mesh connected by triangles
with ~300,000 vertices and 60,000 faces. Scans were then stan-
dardized to the same T-pose, same coordinates system, and same
110 K vertices using Meshcapade’s (Meshcapade GmbH, Tübin-
gen, Germany) skinned multi-person linear model (SMPL)
service39.

Deep learning modeling. In an attempt to mitigate overfitting,
data sets for both training phases were split into train, validation,
and holdout test sets using 80%, 10%, and 10% split, respectively.
These split ratios applied to both the SSL pretraining phase and
the Pseudo-DXA supervised training phase. The data was split
based on participant subject ID to ensure that all duplicate scans
remained together in the train, validation, or test splits. Splits
were also performed in a stratified fashion to best preserve the
age, height, weight, and BMI distributions within each data
subset.

Pretraining self-supervised learning. Pretraining via SSL allowed
us to leverage the large set of raw DXA data from the BMDCS
and Health ABC studies. A variation auto-encoder (VAE)40

network architecture was chosen for its modular nature. VAEs
consist of two main subnetwork components which include an
encoder and a generator. In brief, the encoder portion of the
network is tasked with learning the important imaging infor-
mation from the DXA scans and encoding them into a reduced
number of features known as a latent space. The generator is
tasked with generating the original image from the reduced fea-
tures or latent space.

Our encoder network was made up of Densenet12141 and the
generator consisted of consecutive two-by-two bilinear up
sampling and 2D convolutional units modeled after the Super
resolution networks42 architecture. Inputs were the DXA images

Table 1 Datasets and demographics

Self-Supervised Learning Supervised Learning

Cohort Health ABC BMDCS Shape Up! Adults
N 17541 8065 714

Sex
Male, Female 8419, 9122 (48%, 52%) 3929, 4136 (49%, 51%) 344, 370 (48%, 52)

Age (years)
Mean (SD) 74.1 (2.87) 13.61 (4.17) 43.99 (15.88)
Median [Min, Max] 73 [68, 80] 13.3 [5.00, 23.4] 42.12 [18.00, 89.00]

Ethnicity
American Indian 0 216 (3%) 0
Asian 0 556 (7%) 148 (21%)
Black 7542 (43%) 2101 (26%) 144 (20%)
Hispanic 0 1243 (15%) 89 (13%)
NHOPI 0 22 (0.28%) 46 (6%)
White 9999 (57%) 3927 (49%) 287 (40%)

Height (cm)
Mean (SD) 166.23 (9.37) 154.09 (18.17) 167.48 (17.51)
Median [Min, Max] 165.86 [136.50, 200.70] 157.47 [104.90, 190.03] 166.33 [149,192]

Weight (kg)
Mean (SD) 75.81 (15.05) 50.25 (18.04) 85.31 (15.76)
Median [Min, Max] 75.20 [33.5, 141.00] 50.5 [17, 111.2] 81.05 [60.1, 143]

BMI
Mean (SD) 27.39 (4.82) 20 (4.00) 31.58 (6.8)
Median [Min, Max] 26.87 [14.59, 51.99] 19.85 [13.4, 38.5] 30.5 [19.0, 52]
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and VAE output predictions of the original reconstructed DXA
scan. A VGG-16 perceptual loss43 and a custom DXA content
loss function44 was used to compare the predicted image to the
original DXA input. Image inputs were augmented with a
combination of translation and rotation operations to de-
incentivize the network from memorizing the data. Destructive
augmentations were also used during training. Portions of the
input image were randomly scrambled and noise was added to
force the network to use the surrounding image structure to in
paint45 the destroyed regions. Hyperparameters which include
learning rate, learning rate decay, and batch size were tuned using
an automated Python module entitled Sherpa46. An early
stopping parameter halted training when the validation loss
ceased to decrease significantly. The holdout test set was used to
evaluate the VAE-predicted images. If the VAE was able to
produce images with minimal error, we assumed that it has
effectively learned the DXA image data type. The weights of the
trained VAE were frozen.

Pseudo-DXA modeling. The trained VAE generator subnetwork
provided the starting point for final 3DO to DXA model. A
Pointnet47 model was attached to the VAE generator and was
used to map the 3DO scans into the DXA space, see Supple-
mentary Fig. 2. Due to computational constraints, a preprocessing
step was applied, on the fly, to reduce the 110 K vertices 3DO
scans to 20% of the full resolution. Sherpa was again used during
the construction of the final Pseudo-DXA model to optimize
hyperparameters. Early stopping was used to determine when to
halt training after which final evaluation was performed on the
holdout test set.

Image quality analysis. Normalized means absolute error
(NMAE), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM) are common computer vision image
quality metrics and were computed for each test set
observation48,49. NMAE values range between 0 and 1 where a
lower value indicates less error and zero indicates a perfect
reconstruction. NMAE is not invariant to positioning differences
and thus we also use PSNR and SSIM which are less prone to
error introduced by positioning. Higher PSNR values are ideal
and for the 16-bit DXA images, 20 dB and higher are considered
acceptable. SSIM ranges between 0 and 1 where higher values
indicate better image quality and 1 indicates a perfect
reconstruction.

Body composition analysis. Quantitative image analysis was
performed in addition to evaluations with standard image quality
metrics. Hologic, Inc. Apex version 5.5 software was used to
derive body composition measures from both the actual and
Pseudo-DXA scans with the NHANES option disabled. An
example of a Pseudo-DXA scan analysis is shown in Supple-
mentary Fig. 3. The red lines indicate predefined regions of
interest (ROI) that are essential to computing body composition.
Although we used the “Auto-Analyze” feature, scans require
manual review to ensure the regions are placed correctly. Also,
this software is intended for clinical use and not designed for high
throughput analysis and, therefore, was a consideration when
determining the size of our final holdout test set.

Special subregional composition analysis. To further demon-
strate the validity and utility of Pseudo-DXA scans, we performed
analysis on user defined or special subregions. The two sub-
regions used for this analysis are shown in Supplementary Fig. 6
where R1 is the right thigh ROI and R2 is the left thigh ROI.
The ROIs for both thigh subregions were defined similar to

lower-body segmental analysis using DXA performed by Hart
et al.17. The tops of each ROI were aligned with the patient’s iliac
crest while the bottom of the ROI was aligned with the space
between the patient’s femur and tibia. Each ROI was also aligned
such that the medial angled edge of the ROI touched the anterior
superior iliac spine and pubic arc, see Supplementary Fig. 6. All
singleton participant actual DXA and pseudo-DXA scans were
analyzed in this fashion to obtain subregion-specific composition.

Statistical analysis. Regression analysis was used to evaluate the
agreement of body composition between Pseudo-DXA images
and actual DXA images. FM, FFM, and bone mass were evaluated
for the entire body as well as subregions which include the trunk,
arms, and legs. The coefficients of determination (R2) and root
mean squared error (RMSE) were reported for all body compo-
sition comparisons. Scale weight was evaluated as a covariate and
the adjusted R2 and RMSE values were computed.

Select participants received duplicate 3DO and DXA scans.
Coefficients of variation (%CV) and root mean squared standard
error (RMSE(CV)) were calculated to quantify test–retest or
short-term precision50 of both the Pseudo-DXA model and DXA
model. Precision is evaluated with respect to fat, lean, and bone
mass for the entire body as well as subregions, which includes the
trunk, arms, and legs.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
The SSL data set consisted of 25,606 (48% male and 52% female)
total scans from both the Health ABC and BMDCS studies, see
Table 1. Eight hundred and eleven DXA scans were excluded
from the Health ABC study because they were not acquired on a
Hologic QDR 4500 or later system, resulting in a different raw
image format. Scans were also excluded based on size and the
height and width were exactly 150 and 109 pixels, respectively.
Forty-eight Health ABC scans and 2812 BMDCS scans were
excluded from SSL.

At the time of this analysis, a total of 714 participants received
both a 3DO and DXA scan on the same day as a part of the Shape
Up! Adult, see Table 1. Select participants received duplicate
scans on both the 3DO and DXA systems for precision mon-
itoring and this resulted in 1169 pairs of scans. The paired data
set has a holdout test set of size 70 unique individuals of which
50 participants received duplicate DXA and 3DO scans. All the
following results are reported on the 70 unique participants that
the Pseudo-DXA model had not seen during training.

Image quality assessment of 3DO to DXA model. The NMAE,
PSNR, and SSIM were computed and the average values from all
predicted images 0.15, 38.15 dB, and 0.97, respectively. Good
quality 16-bit images have low NMAE near zero, PSNR values
greater than 25, and high SSIM values near one48,49. Ideal ranges
and reference values are shown in Table 2 Some predictions
resulted in a high NMAE with the highest value being 0.38.
NMAE is not invariant to position, and positioning differences
can lead to worse NMAE metrics, while PSNR and SSIM may
show little to no change. Figure 1 contains scans from a repre-
sentative female and male example within the holdout test set.
Error maps show the majority of the errors around the skin edges
and feet which suggest that positioning differences are the main
source of pixel differences.
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Pseudo-DXA quantitative analysis for body composition.
Comparing Pseudo-DXA and actual scans (Table 3) resulted in
R2 values for whole-body FM, lean soft tissue or FFM, bone
mineral content (BMC), and total mass of 0.66, 0.82, 0.72, and
0.89, respectively. RMSEs for whole body FM, FFM, BMC, and
mass are 6.89, 7.66, 0.30, and 5.48 kg, respectively. Standard DXA

analysis also reports composition for predefined subregions
which include the trunk, arms, and legs. Comparisons of Trunk
FM and FFM resulted in R2 of 0.71 and 0.81, respectively; arm
FM, FFM, and BMC resulted in R2 of 0.60, 0.84, and 0.71,
respectively, and leg FM, FFM, and BMC resulted in R2 of 0.48,
0.83, and 0.80, respectively.

Fig. 1 Female (top) and male (bottom) test set examples of model inputs and prediction comparisons. Two views of a participant 3D scan standardized
to the T-pose, the actual DXA scan, the Pseudo-DXA model predicted scan, and the error map comparing the actual DXA to the Pseudo-DXA. Error maps
represent percent error where zero and 100 equate to no error and the maximum error, respectively.

Table 2 Pseudo-DXA image quality performance.

N= 70 Ideal reference value [Range] Mean (SD) Minimum Maximum

NMAE ↓ 0 [0,1] 0.15 (0.06) 0.06 0.39
PSNR ↑ >25 dB [0, INF] 38.15 (2.7) 31.70 43.88
SSIM ↑ 1 [0,1] 0.97 (0.03) 0.89 0.99

Normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR), and structure similarity index (SSIM) were computed for all holdout test set predictions. The means, standard deviations
(SD), minimum, and maximum are reported.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-024-00434-w ARTICLE

COMMUNICATIONS MEDICINE |            (2024) 4:13 | https://doi.org/10.1038/s43856-024-00434-w |www.nature.com/commsmed 5

www.nature.com/commsmed
www.nature.com/commsmed


For DXA, attenuation is directly related to the mass of the
object within the X-ray path. Since the Pseudo-DXA model was
not well calibrated specifically to account for this relationship, we
use scale weight to correct the derived body composition. When
correcting with scale weight, R2 values for whole-body FM, FFM,
BMC, and total mass of 0.73, 0.90, 0.74, and 0.99, respectively.
Weight corrections improved RMSEs to 5.32, 6.56, 0.24, and
4.15 kg for FM, FFM, BMC, and total mass, respectively.

Raw and weight-corrected Bland-Altman plots for each
corresponding whole body and predefined subregion composition
are shown in Supplementary Fig. 4 and Supplementary Fig. 5,
respectively. There appears to be no obvious positive or negative
trend, and the scatter is spread evenly.

Special subregional performance. Subregional analysis was
performed on 70 participants from the holdout test set, see
Table 4. If participants received two DXA scans, the first scan was
used for the analysis. The R2s for FM, FFM, and total mass of the
right leg were 0.72, 0.77, and 0.90, respectively and the RMSEs
were 1.34, 1.27, and 0.72 kg, respectively. The R2s of FM, FFM,
and total mass of left leg were 0.70, 0.78, and 0.89, respectively,
and the RMSEs were 1.25, 1.26, and 0.71 kg, respectively.

Bland-Altman plots for each left and right leg FM, FFM, and total
mass are shown in Supplementary Fig. 7. There appears to be no
obvious positive or negative trend, and the scatter is spread evenly.

Test–retest precision analysis. Fifty participants within the
holdout test set received duplicate 3DO and DXA scans. These
duplicates allowed us to evaluate the precision of our model
against the actual DXA system. Test–retest precision for both
DXA and Pseudo-DXA scans was assessed for all whole body and
standard subregional DXA body composition measures, and the
results are presented in Table 5. Precision CV ranged between
0.21–7.04% for DXA and 0.15–6.67 for Pseudo-DXA. Precision
for both DXA and Pseudo-DXA were comparable; p values above
0.05. Pseudo-DXA demonstrated better precision than DXA on
whole body measures of mass, bone mineral density, and VAT
with %CV of 0.15, 0.36, and 6.67, respectively, compared to 0.21,
0.43, and 7.04, respectively for DXA. Pseudo-DXA had better
precision for the subregional measure of trunk FFM with a %CV
of 0.79 compared to 0.80 for DXA.

Discussion
We present the Pseudo-DXA model which has successfully learned
to predict interior body composition from exterior body shape.
From a 3DO scans, Pseudo-DXA generates a DXA scan of high
image quality that can be quantitatively analyzed using standard
body composition software. Our experiments confirm that soft
tissue distribution and boney structure play an important role in
determining a unique exterior body shape. While previous work
has shown that body shape is predictive of aggregate body com-
position values21,23, this work extracts a much richer feature set
from 3DO body scans than previous studies. In fact, body com-
position values reported in previous works can be derived from
images output from our Pseudo-DXA model.

Pseudo-DXA demonstrated similar if not indistinguishable
test–retest precision for DXA measurements when compared to
the original DXA images. With similar precision and no ionizing
radiation, 3DO may be used more frequently than DXA to obtain
a higher fidelity to change in body composition than DXA. As
outlined in Gluer et al50., four measures at baseline and follow-up
visits reduces the precision error by 2 times and thus shorten the
monitoring time interval by half51.

Table 4 Composition of special subregional analysis.

N= 70 Left Leg Right Leg

Measurement Units R2 RMSE R2 RMSE
FM kg 0.70 1.25 0.72 1.34
FFM kg 0.78 1.26 0.77 1.27
Total Mass kg 0.89 0.71 0.90 0.72

Fat mass (FM), fat-free mass (FFM), and total mass are evaluated for left and right leg special
subregions. Coefficients of determination(R2) and root mean squared errors (RMSE) are
reported.

Table 5 DXA vs pseudo-DXA Test–retest precision.

N= 50 DXA Pseudo-DXA

Measurement Units CV RMSE
(CV)

CV RMSE
(CV)

Whole
Body

Total Mass kg 0.21 0.16 0.15 0.11
FM kg 0.57 0.12 0.59 0.17
FFM kg 0.34 0.18 0.40 0.18
BMC kg 0.49 0.01 0.59 0.01
BMD g/cm3 0.43 0.47 0.36 0.36
VAT kg 7.04 0.04 6.67 0.03

Predefined
Subregions

Trunk FM kg 1.26 0.13 1.44 0.20
Trunk FFM kg 0.80 0.21 0.79 0.17
Arm FM kg 2.75 0.04 5.05 0.09
Arm FFM kg 1.32 0.04 3.89 0.10
Arm BMC kg 1.14 0.00 2.81 0.00
Arm BMD g/cm3 0.81 0.60 1.08 0.83
Leg FM kg 1.54 0.06 3.96 0.21
Leg FFM kg 1.14 0.10 2.70 0.20
Leg BMC kg 0.84 0.00 1.51 0.01
Leg BMD g/cm3 0.72 0.82 0.74 0.79

Fitfty participants in the holdout test set received duplicate DXA and 3D scans. The test and
retest scan values for each participant were used to compute the percent coefficient of variation
(%CV) and root mean square error (RMSE) precision metrics. Precision metrics were computed
for mass, fat (FM), lean or fat free mass (FFM), visceral adipose tissue (VAT), bone mineral
density (BMD) and bone mineral content (BMC) from the whole body and subregions on actual
and Pseudo-DXA scans.

Table 3 Evaluation of pseudo-DXA images for quantitative
accuracy.

Raw Weight
Corrected

N= 70 Measurement Units R2 RMSE R2 RMSE

Whole Body Total Mass kg 0.89 5.48 0.99 4.15
FM kg 0.66 6.89 0.73 5.32
FFM kg 0.82 7.66 0.90 6.56
BMC kg 0.72 0.30 0.74 0.24
BMD g/cm3 0.50 0.12 0.53 0.12
VAT kg 0.52 0.22 0.56 0.13

Predefined
Subregions

Trunk FM kg 0.71 3.25 0.80 2.39
Trunk FFM kg 0.81 4.35 0.89 3.09
Arm FM kg 0.60 0.56 0.67 0.34
Arm FFM kg 0.84 0.52 0.85 0.54
Arm BMC kg 0.71 0.03 0.74 0.03
Arm BMD g/cm3 0.70 0.07 0.74 0.12
Leg FM kg 0.48 1.62 0.56 0.83
Leg FFM kg 0.83 1.38 0.87 1.19
Leg BMC kg 0.80 0.05 0.84 0.05
Leg BMD g/cm3 0.66 0.11 0.72 0.14

Mass, fat (FM), lean or fat-free mass (FFM), visceral adipose tissue (VAT), bone mineral
density (BMD), and bone mineral content (BMC) from the whole body and subregions were
measured on actual and Pseudo-DXA scans. Univariate regression analysis was used to
compare predicted and actual values. Coefficients of determination (R2) and root mean squared
errors (RMSE) are reported. In addtion to the raw values, we report results when using scale
weight to correct body composition values.
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To our knowledge, this work is the first instance in which deep
learning reconstructed images were shown to be compatible with a
clinical medical imaging algorithm and achieve quantitatively
accurate results. Other noteworthy medical image reconstruction
models, such as RegGAN for MRI52,53 or Shan’s for low-dose CT54,
only report aggregate image quality metrics55 which has limited
clinical utility. Achieving quantitatively accurate image recon-
structions is more difficult since errors in the magnitude or relative
pixel values, not discernable by eye, can render the images useless
for quantitative measures. Attempts at quantitative accuracy were
made by Wang et al. using body shape to create CT abdominal
images to quantify visceral adipose tissue56 and liver steatosis57.
However, Wang used the CT scans themselves as the shape which
is perfectly registered with the target CT scans. Although this shows
feasibility of their approach, much effort is still needed to show that
3DO body shape would accurately predict the same measures. In
our work, we used 3DO scans of standing patients to predict the
supine dual-energy X-ray images. Unlike their work, our work
could not benefit by the spatial registration of the body.

This work is not without limitations. While our model per-
formed well when predicting whole body and subregional bone
measurements, predictions were derived from the external body
shape which is dominated by fat and muscle distribution. It is
reasonable to think that body shape would be highly correlated to
bone density especially for cortical bone since it makes up 80% of
bone mass and has a very slow annual turnover58. Thus, Pseudo-
dxa models may be good estimates of what the bone mass should
be for given the muscle fat distribution but not a good indicator
of higher turnover diseases that impact trabecular bone. Further,
the model may be impacted by pathologies related to tumors and
artifacts related to arthroplasty since it is unclear how various
pathologies manifest as 3DO body shape signals, if at all. Pseudo-
DXA images underperformed on some of the DXA compositional
values, mainly associated to measure of fat. The data set size of
our paired 3DO and DXA was a limitation. However, we utilized
self-supervised learning on DXA images to address a portion of
this issue. Pretraining the 3DO portion of the Pseudo-DXA
model would likely benefit overall performance and can be per-
formed with large unpaired 3DO datasets59,60. Lastly, under-
performance of our model could be attributed to differences in
demographic distributions within the datasets. The self-
supervised learning dataset consisted of two cohorts of which
one was young and the other older with median ages of 13.3 and
73, respectively. The median age of the supervised learning cohort
was 42.1. Although the age distribution of the supervised learning
cohort overlapped with the other cohorts, it is a potential source
of unavoidable bias that we acknowledge as a limitation.

We conclude that 3DO scanning can provide access to an
abundance of information beyond current clinical tools being used
in obesity reduction. Our Pseudo-DXA model is end-to-end
meaning it can take a 3DO scan and produce an image that can be
analyzed for clinical measures of composition. The relationship
between body composition and shape learned by our model
demonstrates clinical relevance and warrants further research into
3DO body shape as an indicator of health. It is important to note
that this work is not meant to demonstrate a replacement for DXA
body composition but rather demonstrate translational health and
medical applications of the information afford from accessible 3DO
scans. Lastly, when possible, future medical image reconstruction
deep learning work should be held to the standard of performing
quantitative analysis as it will improve clinical translation61.

Data availability
The Health ABC data are available from the National Institute on Aging, but restrictions
apply to the availability of these data, which were used under license for the current

study, and so are not freely available. Data, however can be requested through the study’s
website at healthabc.nia.nih.gov. The BMDCS data can be accessed through the NICHD
DASH website (https://dash.nichd.nih.gov/). The Shape Up! Adults data are available
from the corresponding author upon reasonable request or at https://shapeup.
shepherdresearchlab.org/for-researchers/.

Code availability
Code for building and training our final 3D to analyzable DXA model can be found at
https://github.com/LambertLeong/Pseudo-DXA62, https://doi.org/10.5281/zenodo.
10183202.
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