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Abstract

Background The role of immune cells in collagen degradation within the tumor micro-

environment (TME) is unclear. Immune cells, particularly tumor-infiltrating lymphocytes

(TILs), are known to alter the extracellular matrix, affecting cancer progression and patient

survival. However, the quantitative evaluation of the immune modulatory impact on collagen

architecture within the TME remains limited.

Methods We introduce CollaTIL, a computational pathology method that quantitatively

characterizes the immune-collagen relationship within the TME of gynecologic cancers,

including high-grade serous ovarian (HGSOC), cervical squamous cell carcinoma (CSCC),

and endometrial carcinomas. CollaTIL aims to investigate immune modulatory impact on

collagen architecture within the TME, aiming to uncover the interplay between the immune

system and tumor progression.

Results We observe that an increased immune infiltrate is associated with chaotic collagen

architecture and higher entropy, while immune sparse TME exhibits ordered collagen and

lower entropy. Importantly, CollaTIL-associated features that stratify disease risk are linked

with gene signatures corresponding to TCA-Cycle in CSCC, and amino acid metabolism, and

macrophages in HGSOC.

Conclusions CollaTIL uncovers a relationship between immune infiltration and collagen

structure in the TME of gynecologic cancers. Integrating CollaTIL with genomic analysis

offers promising opportunities for future therapeutic strategies and enhanced prognostic

assessments in gynecologic oncology.
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Plain Language Summary
The role of cells that are part of our

immune system in altering the

structure of the protein collagen

within cancers is not fully under-

stood, particularly within cancers that

affect women such as ovarian, cervi-

cal and uterine cancers. Here, we

developed a computer-based method

called CollaTIL to explore how

immune cells influence collagen in

these tumors and affect their growth.

We found that a higher presence of

immune cells leads to less organized

collagen in the tumor. Conversely,

when there are fewer immune cells,

the collagen tends to be more struc-

tured. Additionally, CollaTIL identifies

patterns that predict patient out-

comes in these cancers. These find-

ings not only enhance our

understanding of tumor biology but

also may be useful in helping clin-

icians to predict which patients are at

risk of their disease progressing.
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The tumor microenvironment (TME) represents a multi-
faceted ecosystem comprising tumor cells, stromal cells,
immune cells, blood vessels, the extracellular matrix

(ECM), and signaling molecules1. Each constituent of the TME
exerts a profound influence on one another, intricately orches-
trating the dynamics of cancer progression and therapeutic
response2. Collagen, as the predominant protein in the ECM,
assumes a pivotal role in cancer progression and metastasis3,4.
Immune cells, particularly tumor-infiltrating lymphocytes (TILs),
are key participants in the body’s defense against cancer5,6.
Recent investigations have shed light on the role of TILs in
remodeling the ECM through enzymatic activity, inducing
changes in its physical properties7–10. This ECM remodeling
facilitates immune cell infiltration within the tumor, hinders
tumor growth, and ultimately contributes to prolonged patient
survival. Consequently, a pressing question arises: Does the
augmented immune cell response correlate with heightened
enzymatic activity, resulting in an increased breakdown of col-
lagen architecture and the emergence of disordered collagen
fibers?

Machine learning strategies have emerged as powerful tools for
quantifying the immune milieu from Hematoxylin & Eosin
(H&E) Whole Slide Images (WSIs), demonstrating their potential
in prognostic assessment6,11,12. However, limited studies have
explored the quantitative evaluation of the immune modulatory
impact on collagen architecture within the TME. Previous find-
ings suggest that an immune-rich TME exhibits increased enzy-
matic activity, leading to the enhanced breakdown of collagen
architecture and the formation of more disordered collagen
fibers7–10. Conversely, an immune-sparse TME is expected to
have reduced enzymatic activity, resulting in the better pre-
servation of collagen architecture.

Leveraging recent advancements in computational and
machine learning tools, we introduce CollaTIL, a computational
pathology method designed to quantitatively characterize the
architecture and arrangement of immune and collagen compo-
nents within the TME from H&E WSIs. Our primary objective
with CollaTIL is to investigate the immune modulatory impact on
collagen architecture within the TME and uncover the interplay
between the immune system and tumor progression. This study
focuses on gynecologic cancers, which are known to have
immune-rich TME11. With CollaTIL, we aim to investigate the
immune modulatory impact on collagen architecture within the
TME by quantitatively characterizing the anti-tumor impact of
the immune milieu through the disruption of collagen archi-
tecture. Specifically, our study employs CollaTIL to accomplish
two key objectives. Firstly, we aim to quantitatively characterize
and subsequently investigate the relationship between immune
and collagen architecture within the TME of gynecologic cancers,
including high-grade serous ovarian carcinoma (HGSOC), cer-
vical squamous cell carcinoma (CSCC), and endometrial carci-
noma (EC), along with evaluating the association of CollaTIL
features with survival outcomes. Then, we endeavor to assess
whether the morphological relationship between immune and
collagen architecture, as assessed by CollaTIL, extends to the
molecular level. By integrating genomic analysis, our aim is to
identify relevant biological pathways, gene signatures, and unra-
vel the distinct molecular dynamics associated with both favor-
able and unfavorable clinical outcomes in patients with HGSOC
and CSCC.

Our study enables the extraction of features that capture the
complex relationship between immune and collagen architecture
within the TME. We find that heightened immune infiltrate
within the TME correlates with chaotic collagen architecture
and increased entropy, while immune-sparse TME exhibits
ordered collagen with lower entropy. Furthermore,

CollaTIL-derived features associated with disease risk stratifica-
tion correspond to specific gene signatures, highlighting Tri-
carboxylic Acid (TCA) Cycle in CSCC and amino acid
metabolism, and macrophages in HGSOC.

Methods
Patient populations for the study. We analyzed 493 patients
diagnosed with HGSOC (n= 139), CSCC (n= 269), or EC
(n= 85) from various sites, including The Cancer Genome Atlas
(TCGA, n= 357)13, University Hospitals (UH, n= 58), Cleve-
land Clinic (CCF, n= 48), and Memorial Sloan Kettering Cancer
Center (MSKCC, n= 30)14. For the patients from TCGA diag-
nosed with HGSOC (D0, n= 95), tissue samples were obtained
through cytoreductive surgery before the initiation of che-
motherapy. Similarly, for the patients from TCGA diagnosed with
CSCC (D1 and D2, n= 262), tissue samples were obtained
through cytoreductive surgery before the initiation of che-
motherapy or radiotherapy. All patients from UH (D3 and D4,
n= 58) underwent surgery (hysterectomy with bilateral salpingo-
oophorectomy), the standard treatment for EC. The patients in
these cohorts who were considered as intermediate- or high-risk
for recurrence received chemotherapy following surgery (D3,
n= 32). The CCF cohorts (D5, D6, and D7) included 48 patients
treated with immunotherapy agents, including pembrolizumab,
nivolumab and/or ipilimumab, and avelumab, all in the recurrent
setting (D5 for HGSOC, D6 for CSCC, and D7 for EC). All
patients from MSKCC (D8, n= 30) were diagnosed with HGSOC
and underwent primary debulking surgery. The training cohort
(D0) consisted of 95 patients from TCGA diagnosed with
HGSOC, while the validation cohorts (D1-D8) comprised a total
of 398 patients diagnosed with HGSOC, CSCC, or EC from
various sites. The cohorts (D0-D8) comprised 71 patients with
stage IV disease, 153 with stage III, 68 with stage II, 192 with
stage I, and 9 with an unknown stage.

Patients from TCGA13, UH, CCF, and MSKCC14 cohorts
underwent a standardized process for tissue preparation, which
involved formalin fixation and paraffin-embedding, followed by
H&E staining. The resulting tissue sections were digitized as WSIs
at 40x magnification with a resolution of 0.25 microns per pixel.
Prior to analysis, the WSIs underwent rigorous quality control
checks to exclude any images with artifacts or blurriness, utilizing
the HistoQC tool15. We included patients from these sites
(TCGA, UH, CCF, and MSKCC) that had at least one H&E WSI,
and their overall survival (OS) or progression-free survival (PFS)
outcome information was available. The PFS outcome informa-
tion was available for patients from CCF and MSKCC (D5-D8),
while the molecular data, including mutation annotation, and
genes expressions were available for patients from TCGA (D0-
D2). All H&E imaging was carried out before the initiation of
therapy (Fig. 1, Supplementary Table 1, and Supplementary
Methods).

CollaTIL framework. The CollaTIL framework comprises of
multiple image analysis routines for characterizing the immune
and collagen architecture on H&E WSIs (Fig. 2 and Supple-
mentary Tables 2–3). In CollaTIL module a, we implemented
preprocessing steps, such as epithelium/stroma and nuclei seg-
mentation, to the H&E WSIs. Specifically, we extracted a set of
non-overlapping 3000×3000-pixel tiles from each H&E WSI. We
extracted multiple non-overlapping 3000 × 3000-pixel tiles from
the H&E WSI because processing these enormous H&E WSIs in
their entirety would be unrealistic due to computational limita-
tions. An existing pretrained deep learning model was used to
segment the epithelial and stromal regions on these tiles16. The
Hovernet model17, a state-of-the-art method for nuclei
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segmentation and classification, was then applied for the seg-
mentation of nuclei on these tiles. To evaluate the performance of
these models, we conducted a visual assessment with two
pathologists. They independently reviewed one randomly selected
3000 × 3000-pixel tile from 50 different patients randomly chosen
from the training cohort (D0). The two pathologists examined the
tiles and categorized them into one of three categories (good, fair,
or poor). For the nuclei segmentation, both pathologists unan-
imously ranked 100% of the tiles as either good or fair. However,
for the epithelium/stroma segmentation, the first pathologist
ranked 90% of the tiles as good or fair, while the second
pathologist assigned a good or fair ranking to 94% of the tiles
(Fig. 2a, Supplementary Methods, and Supplementary Table 4).

CollaTIL module b illustrates the process of extraction of
features from the collagen component within the TME. Each tile
of the H&E WSI was divided into an array of tumor
neighborhoods. Following the segmentation of stromal regions,
a derivative-of-Gaussian based model was utilized to capture the
fiber orientations by detecting linear structures within these
regions. Within each tumor neighborhood, the orientation co-
occurrence matrix was constructed based on the set of fiber
orientations. The quantitative measurement of collagen fiber
orientation disorder in stromal regions (CFOD-S) was calculated
from this matrix based on entropy theory, where entropy

represents the level of uncertainty in the collagen fiber’s
orientation within the tumor neighborhood. To evaluate the
performance of the model used for collagen fiber segmentation,
we conducted a visual assessment with two pathologists, as
previously described. The first pathologist ranked 90% of the tiles
as good or fair, while the second pathologist assigned a good or
fair ranking to 92% of the tiles (Fig. 2b, Supplementary Methods,
and Supplementary Tables 2–4).

CollaTIL module c illustrates the process of extraction of
features from the immune component within the TME. This was
achieved by classifying the segmented nuclei in each tile as either
TIL or non-TIL using a pre-existing machine learning model18.
Based on the previously segmented epithelial and stromal regions,
four different classes of nuclei were defined: epithelial TILs,
epithelial non-TILs, stromal TILs, and stromal non-TILs. The
density of each nuclei class was calculated. Additionally, the
architecture and interplay of each nuclei class were characterized
by constructing clusters based on proximity. To evaluate the
performance of the model used for TIL detection, we conducted a
visual assessment with two pathologists, as previously described.
The first pathologist ranked 90% of the tiles as good or fair, while
the second pathologist assigned a good or fair ranking to 94% of
the tiles (Fig. 2c, Supplementary Methods, and Supplementary
Tables 2–4).

Fig. 1 Patient selection diagram for the cohorts included in this study. a The number of patients available for each cancer type (HGSOC, CSCC, and EC)
from various sites (TCGA, UH, CCF, and MSKCC). b The inclusion and exclusion criteria followed for this study. Only patients with available overall survival
or progression-free survival information and at least one H&E WSI were included. c The number of patients available for each cancer type (HGSOC, CSCC,
and EC) from various sites (TCGA, UH, CCF, and MSKCC) after following the inclusion and exclusion criteria. d The training cohort and validation cohorts
used for the study. The training cohort (D0) consisted of 95 patients with high grade serous ovarian carcinoma from the TCGA site. There were eight
validation cohorts (D1-D8) used for the study. e The inclusion and exclusion criteria followed for performing the histogenomic analysis. This analysis was
performed on two cohorts, one consisting of 59 patients with high grade serous ovarian carcinoma from the TCGA site and the other consisting of 249
patients with cervical squamous cell carcinoma from the TCGA site. TCGA, The Cancer Genome Atlas; UH University Hospitals, CCF Cleveland Clinic,
MSKCC Memorial Sloan Kettering Cancer Center, WSI whole slide image, GC gynecologic cancer, EC Endometrial carcinoma, HGSOC Ovarian high grade
serous carcinoma, CSCC Cervical squamous cell carcinoma, OS overall survival, PFS progression-free survival.
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A Cox proportional hazard model19 (referred to as Cox
regression model) with elastic net penalty20 was trained using the
CollaTIL features on the D0 cohort to predict OS. A coefficient
was assigned to each feature in the final model and a continuous
risk score was obtained by linear combination of top features
weighted by corresponding coefficients for each patient. The
continuous risk score for each patient reflects an estimated risk

for OS or PFS and was converted to a binary high vs low value
using the mean threshold. We validated CollaTIL on the D1-D4
cohorts for predicting OS and the D5-D8 cohorts for predicting
PFS, using the same set of feature coefficients. Kaplan–Meier
survival analysis with the log-rank test was used to examine the
differences of time-to-event data between the two patient groups.
The performance of models was summarized by hazard ratios

Fig. 2 Overall framework of CollaTIL. a H&E WSIs were collected from TCGA, UH, CCF, and MSKCC sites. For each H&E WSI, tiles of dimension
3000 × 3000 were extracted. The preprocessing steps required for feature extraction, epithelium/stroma segmentation and nuclei segmentation were
performed on each extracted tile from the H&EWSI. b First set of features related to quantitative features of Collagen Fiber Orientation Disorder in Stromal
regions were extracted. The collagen fiber orientations in stromal regions were captured using a derivative-of-Gaussian based model. An orientation co-
occurrence matrix was constructed with a brighter co-occurrence value in the on-diagonal cells suggesting higher co-occurrence of collagen fibers of the
same orientation. The feature quantifying the degree of disorder of collagen fiber orientations was then calculated from this matrix. c Another set of
features related to quantitative characterization of architecture of tumor infiltrating lymphocytes (TILs) and their interplay with surrounding cells were
extracted. d Assessing immune modulatory impact on collagen architecture by comparing the TIL density and disorder in collagen fiber orientations in the
high and low-risk patients identified by CollaTIL. e CollaTIL consisted of features obtained from b and c. A Cox Regression Model was constructed on D0
cohort to discover top features by assigning a corresponding coefficient to each of the features, based on which a continuous risk score was generated.
Kaplan–Meier survival analysis was performed on training and validation cohorts. TCGA, The Cancer Genome Atlas, UH University Hospitals, CCF
Cleveland Clinic, MSKCC Memorial Sloan Kettering Cancer Center, TIL Tumor-infiltrating lymphocytes, H&E WSI Hematoxylin and Eosin Whole Slide
Image, OS overall survival, PFS progression-free survival.
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(HRs) along with their 95% confidence intervals (CIs) using Wald
test and Harrell’s concordance index (c-index) on the D1-D8
validation cohorts. Statistical significance was determined using a
two-sided threshold of p < 0.05 (Fig. 2d, e). Univariate and
multivariable analyses were performed to assess the prognostic
significance of clinicopathological variables (Age, Tumor grade,
International federation of gynecology and obstetrics (FIGO)
stage, Molecular subtypes, and Human papillomavirus (HPV)
dependency) and the CollaTIL signature on OS/PFS (Supple-
mentary Methods and Supplementary Table 5).

Assessing the immune modulatory impact on collagen archi-
tecture. For the high- and low-risk patients identified by CollaTIL
in the D0-D2 cohorts, we compared the TIL density and entropy
value of the disorder in collagen fiber orientations. TIL density is
defined as the number of TILs divided by the total number of
nuclei in the stromal regions of the invasive tumor front com-
partments on the H&E WSI. The disorder of collagen fiber
orientations was measured using the mean entropy value of
collagen fiber orientation disorder within a 200x200-pixel tumor
neighborhood.

Identification of high confidence somatic mutations in the
TCGA dataset. Somatic single-nucleotide mutation calls (SNVs
and indels), identified in whole-exome sequencing (WES) studies
of the HGSOC, CSCC, and EC tumor types, were obtained from
GDC platform (MC3 V.0.2.8, https://synapse.org/MC3)21. The
MC3 effort provided consensus calls of variants from multiple
genomic platforms including, MuTect, VarScan2, Somatic Sniper,
MuSE, Radia, Indelocator, and Pindel. We extracted the position
and nucleotide change information for all single-nucleotide
somatic mutations, which are integrated into a combined MAF
file. We then categorized aberrations as synonymous (Wt) and
non-synonymous (Mut). Missense, Frame shift deletion, Non-
sense, Inframe deletion, Inframe insertion, Splice site, Frame shift
insertion, Translation start site, Nonstop mutations were marked
as non-synonymous (Mut) mutations, while Silent, 3′UTR, RNA,
Intron, 3′Flank, 5′UTR, 5′Flank were labeled are synonymous
(Wt) group. We additionally annotated a single unique mutation
entry having multiple annotations belonging to different variant
classification as non-synonymous, where at least one of the
multiple entries of the annotations shows in the non-synonymous
category. We performed extensive filtering to minimize sequen-
cing artifacts, mutation calling errors and to exclude likely false-
positive mutations. In fact, mutation calls with tumor depth or
normal depth less than 30 reads, and tumor frequency less than
0.1 or normal frequency greater than 0.05 were filtered out from
our analysis. We also excluded hypermutated samples, as they
likely reflect distinct underlying mutational processes, and they
tend to have an adverse effect on statistical power. We identified
hypermutated samples as having more mutations than 1.5 times
the interquartile range above the third quartile of samples within
the same cancer cohort.

Differential gene expression analysis pipeline. To identify dif-
ferentially expressed genes between two groups of high-risk and
low-risk patients a series of bioinformatics analyses were per-
formed. The analysis pipeline began with raw read counts
downloaded from GDC portal, which were quality checked and
trimmed. The trimmed reads were aligned to the GRCh38 human
reference genome22. The resulting count data were then nor-
malized and compared between the two groups using DESeq2 to
identify differentially expressed genes. This analysis was per-
formed on all patients who had a RNASeq data and H&E WSI.
The results were compared to generate a comprehensive list of

differentially expressed genes across all samples. This approach
enabled the identification of genes that were differentially
expressed between the two groups of high-risk and low-risk
patients.

Ethical statement. This study was performed under the Emory
University Institutional Review Board (IRB) protocol
STUDY00005888, which was approved as a non-human study
and all relevant ethical regulations were followed. De-identified
human samples were obtained from UH and CCF, collected
under the same IRB approved protocol STUDY00005888. UH
and CCF collected specimens with participants’ informed
consent.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Prognostic role of CollaTIL. The Cox regression model trained
on the D0 cohort consisted of 14 CollaTIL features that were
found to be associated with OS, containing features from both
immune and collagen components within the TME (Table 1).
CollaTIL was associated with OS in validation cohorts (D1-D4)
and with PFS in validation cohorts (D5-D8). Specifically, in the
chemotherapy-treated validation cohorts (D1, D3 and D8), it was
associated with OS in D1 (p= 0.0256, HR= 2.54, 95%
CI= 1.21–5.34, c-index= 0.72), D3 (p= 0.0213, HR= 7.36, 95%
CI= 2.73–19.8, c-index= 0.7), and with PFS in D8 (p= 0.0434,
HR= 3.07, 95% CI= 1.01–9.85, c-index= 0.74). In the
radiotherapy-treated validation cohort (D2), it was also associated
with OS (p= 0.006, HR= 2.87, 95% CI= 1.49–5.53, c-index=
0.72). Furthermore, the signature identified high risk patients
who had significantly worse PFS than low-risk patients in the
immunotherapy-treated validation cohorts (D5, D6, and D7,
p= 0.0184, HR= 2.72, 95% CI= 1.36–5.42, c-index= 0.65)
(Fig. 3). The results also indicate that the CollaTIL signature
outperformed other signatures derived from either Collagen or
Immune features alone, highlighting the importance of their
combination (Supplementary Methods).

Assessing the immune modulatory impact on collagen archi-
tecture. To assess the immune modulatory impact on collagen
architecture, we examined the D0-D2 cohorts. We conducted a
comparison of the entropy value of collagen fiber orientation
disorder and TIL density between the high- and low-risk patients
identified by CollaTIL. The findings indicate that low-risk
patients exhibit high TIL density and higher disorder in col-
lagen fiber orientations compared to high-risk patients (Fig. 4).

Association of CollaTIL with prognostic gene signatures,
mutated genes, and metabolic pathways. To elucidate the
association and prognostic implications surrounding CollaTIL
and the presence of mutated genes in HGSOC and CSCC patients
(D0-D2), we systematically categorized a subset of patients of the
D0-D2 cohorts. Specifically, we considered patients with available
mutation annotations and H&E WSI. These patients were divided
into two distinct groups, namely those harboring gene mutations
and those exhibiting wild-type gene status. Through our analysis,
we have revealed that nonsynonymous somatic mutations in
PIK3CA were not associated with risk in CSCC patients (D1 and
D2). However, they were linked to a diminished risk of recurrence
or death in european american (EA) patients who were treated
with chemotherapy (Fig. 5a).
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We also aimed to pinpoint genes that could provide insight
into the underlying biological mechanisms associated with
CollaTIL in CSCC patients (D1-D2). To achieve this, we initially
identified genes whose expressions exhibited significant correla-
tions with estimated risk scores, as predicted by the pathomic-
based model of TME (Pearson correlation P < 0.05). Subse-
quently, we performed an analysis of differentially expressed
genes to identify the most significant candidates among patients
predicted to be at high and low risk according to the model,
selected using a false discovery rate (FDR)23 threshold of <0.05
and a log2-fold change threshold of >1. Intriguingly, our
investigation unveiled two distinct sets of genes which exhibited
significant correlations with risk and differential expression
patterns within the high- and low-risk groups of CSCC patients
in D1 and D2 cohorts, respectively.

We then employed single-sample gene set enrichment
(ssGSEA) methodology to estimate the activity index (Supple-
mentary Methods) of the identified gene signatures24. The results
revealed that a gene signature including COX6A1, COX7B,
ATP5H, COQ10A, NDUFA1, NDUFA5, NDUFA6, NDUFA8,
NDUFA12, and NDUFC1 belonging to the TCA-cycle was
significantly down-regulated in high-risk CSCC patients, as
determined by Wilcoxon p-value comparison between high-
and low-risk groups predicted by the model (P= 0.0026)
(Supplementary Methods, Fig. 5b).

In a similar way, among the genes identified in HGSOC
patients (D0) (Supplementary Data 1), gene sets of CARNMT1,
DUOX1, HIBADH, OAT, PSMA7, PSMC2, PSMC4, PSMD11,
PSMD8, RPL28, RPS16, RPS19, SERINC4, SLC6A11, AASS, and
AIMP2, belonging to amino-acid, and gene sets of ADORA3,
ATP8B4, C1QB, C3AR1, C5AR1, CD163, CD300A, FCGR2A,
LIPA, LY96, MSR1, SLCO2B signatures, were identified. Using
ssGSEA, we compared these gene signatures and found that the
up-regulation of genes belonging to amino-acid and macrophage
gene signatures are significantly associated with a higher risk
score predicted by the pathomic-based model of TME (PAmino-
acid= 0.0023, PMacrophage= 0.001) (Supplementary Data 1
and Fig. 5c, d).

Furthermore, we conducted an in-depth exploration of the
association between the top identified genes in CSCC and
HGSOC and patient overall survival. Remarkably, among the top
genes, in addition to some important well-known genes for each
of the cancer types, we also identified three genes APOBEC3H,
KIRREL1, and FAM166B, that are significantly correlated with OS
for CSCC and HGSOC patients, respectively. These intriguing
findings suggest that the expression of these genes may serve as a
prognostic factor for cancer patient survival (Fig. 5e–g).

Protein expression modulation and genetic potential analysis
associated with CollaTIL. In HGSOC patients (D0), we found
that while gene expression of identified gene sets belonging to
macrophages (VSIG4, ATP9A, CD163, C3AR1, C1QB) and
amino-acids (PSMC2, PSMC4, PSMA7, PSMD8, PSMD11) did
not show significant differences at the transcript levels compared
to the normal tissue, however, the protein expression of VSIG4,
ATP9A, CD163, C3AR1, and C1QB, was significantly down-
regulated in primary tumors as compared to normal tissue
(Fig. 6a–e). Moreover, the protein expression of a subset of the
genes belonging to amino acid (PSMC2, PSMC4, PSMA7,
PSMD8, and PSMD11) were significantly upregulated in primary
tumors as compared to normal tissue (Fig. 6f–i).

To further investigate the functional potentials of genes or
proteins exhibiting significant changes in expression compared to
other low-risk group in HGSOC, we utilized the databases of
Broad’s Achilles and Sanger’s SCORE projects25,26. These projects
assess gene effects through CRISPR knockout experiments
conducted across diverse HGSOC cell lines27. Our findings
showed that knocking out extremely significant genes belonging
to macrophages (C3AR1 and C1QB) had a low negative gene
score, indicating less impact on cellular growth (Supplementary
Fig. 1a, b). On the other hand, knocking out Amino acid
associated genes such as PSMC4 and PSMA7 showed more
negative gene value, suggesting strong impact on cell growth or
cell death (Supplementary Fig. 1c, d). These concurrent findings
suggest the presence of a prognostic and therapeutic significance

Table 1 Top features contributing to CollaTIL signature.

Feature index Feature description HR (per unit increase)

1 Ratio of non-TILs density to the surrounding (20 microns proximity) TILs in the epithelium compartment 1.17
2 Number of epithelial TIL clusters surrounding (20 microns proximity) a non-TIL cluster in the epithelium

compartment
0.95

3 Presence percentage (ratio of present clusters to total number of clusters) of stromal non-TIL clusters being
around another non-TIL cluster in the stromal compartment

1.26

4 Intersected area of clusters of epithelial TILs and non-TILs in invasive tumor front compartment 0.51
5 Minimum area of stromal TIL clusters in invasive tumor front compartment 1.78
6 Range of area of epithelial non-TIL clusters in invasive tumor front compartment 2.26
7 Mean entropy value of the collagen fiber orientation disorder feature map using 200x200-pixel

neighborhood
0.75

8 Minimum entropy value of the collagen fiber orientation disorder feature map using 200x200-pixel
neighborhood

0.5

9 Maximum entropy value of the collagen fiber orientation disorder feature map using 250x250-pixel
neighborhood

0.94

10 Minimum entropy value of the collagen fiber orientation disorder feature map using 350x350-pixel
neighborhood

0.84

11 Minimum entropy value of the collagen fiber orientation disorder feature map using 400x400-pixel
neighborhood

0.64

12 Minimum entropy value of the collagen fiber orientation disorder feature map using 450x450-pixel
neighborhood

1.64

13 Maximum entropy value of the collagen fiber orientation disorder feature map using 550x550-pixel
neighborhood

1.38

14 Maximum entropy value of the collagen fiber orientation disorder feature map using 600x600-pixel
neighborhood

0.36

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00428-0

6 COMMUNICATIONS MEDICINE |             (2024) 4:2 | https://doi.org/10.1038/s43856-023-00428-0 | www.nature.com/commsmed

www.nature.com/commsmed


of gene sets belonging to the macrophages and amino acids in
HGSOC.

Discussion
Immune cells occupy a pivotal position in the body’s defense
against cancer, with TILs emerging as key players in the anti-
tumor immune response5,6. Notably, TILs secrete cytokines that
stimulate immune activity and recruit additional immune cells
to the tumor site, strengthening the anti-tumor response5.
Moreover, TILs possess the unique ability to recognize and
target cancer cells by identifying specific antigens displayed on
the surface of malignant cells28. The presence of TILs within
tumors is consistently linked to improved prognosis and
enhanced responses to immunotherapy, highlighting their

crucial role in combating cancer29. Consequently, unraveling
the intricate mechanisms of TIL function and developing strate-
gies to potentiate their anti-tumor activity are of utmost impor-
tance, holding potential to revolutionize cancer treatment
paradigms29,30.

A pivotal aspect of TIL function lies in their ability to modulate
the ECM, a complex network of proteins and carbohydrates that
provide structural integrity to tissues7,9,10. TILs exert their
influence on the ECM by secreting matrix metalloproteinases, a
family of enzymes capable of breaking down various ECM
components, including collagen, gelatin, and other matrix
proteins8. This leads to the question of whether the heightened
immune cell response correlates with elevated enzymatic activity,
leading to more degradation of collagen architecture and the

Fig. 3 Kaplan–Meier curves on validation cohorts (D1-D8) using CollaTIL model. Shown are Kaplan–Meier estimates of OS and PFS for high-risk patients
as compared to their low-risk counterparts in a cohort of CSCC patients treated with chemotherapy (D1, n= 134). b cohort of CSCC patients treated with
radiotherapy (D2, n= 128). c cohort of EC patients treated with chemotherapy (D3, n= 32). d cohort of EC patients not treated with chemotherapy (D4,
n= 26). e cohorts of HGSOC, CSCC, and EC patients treated with immunotherapy in the recurrent setting (D5, D6, D7, n= 48). f cohort of HGSOC
patients treated with chemotherapy (D8, n= 30). The statistical significance of differences in survival rates between high-risk and low-risk groups was
determined using the log-rank test (P). EC endometrial carcinoma, HGSOC high grade serous ovarian carcinoma, CSCC cervical squamous cell carcinoma,
OS overall survival, PFS progression-free survival.
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subsequent formation of more disordered collagen fibers. More-
over, this prompts further speculation on whether immune cells
assume an alternative anti-tumor protective role by disrupting
collagen fibers, a potential conduit for tumor progression and
metastasis3,4. The primary objective of this study was to employ
advanced computational analysis and machine learning tools to
quantitatively (1) ascertain whether on H&E images, the presence
of an increased immune infiltrate is associated with a more dis-
rupted and chaotic collagen architecture and conversely whether
a subdued immune response is associated with a more coherent
collagen organization and (2) whether features relating to the
immune-collagen spatial relationship are associated with clini-
cally relevant outcomes.

In this study, we quantitatively characterized the immune and
collagen architecture on 493 H&E WSIs obtained from surgically-
resected neoplasms to predict cancer prognosis in three types of
gynecologic cancers: HGSOC, CSCC, and EC, treated with var-
ious adjuvant and recurrence therapies. CollaTIL quantitatively
captures the architecture of two important components within
the TME: immune milieu and collagen fibers. Unlike previous
approaches that focused on analyzing a single component within
the TME for cancer prognosis11,12,31, CollaTIL offers a more
comprehensive understanding of the TME by integrating infor-
mation from these two components. CollaTIL features comprise
of the characterization of the architecture of TILs and their
interplay with surrounding cells, as well as the assessment of the
degree of disorder in collagen fiber orientations within the stro-
mal regions of H&E WSI. The CollaTIL features showed asso-
ciations with OS in the validation cohorts (D1-D4) and with PFS
in the validation cohorts (D5-D8). We observed that low-risk
patients identified by CollaTIL exhibit high TIL density and
higher disorder in collagen fiber orientations, while high-risk
patients identified by CollaTIL show low TIL density and lower
disorder in collagen fiber orientations.

Beyond assessing the morphologic basis of the immune mod-
ulatory impact on collagen architecture, we also delved into the
molecular basis through genomic analysis. We identified gene
signatures that could provide insight into the biological
mechanisms associated with CollaTIL in HGSOC (D0). Among
the top genes identified in HGSOC patients (D0), a subset of
Amino-acid and Macrophage gene signatures were found to be
significantly associated with a higher risk score predicted by
CollaTIL. Amino acid metabolism is essential for cancer cell
growth and survival. Dysregulation of amino acid metabolism can
lead to changes in the expression of genes involved in cancer
development and progression32. On the other hand, pro-tumoral
macrophages promote tumor growth and progression by sup-
pressing the immune system and promoting angiogenesis, and
the infiltration of pro-tumoral macrophages into HGSOC tumors
is associated with poor prognosis. Therefore, they are known to
play important roles in predicting cancer prognosis of HGSOC
patients33,34.

It’s important to note that amino acid metabolism is not only
vital for cancer cells but also for macrophage generation and their
polarization into M1 or M2 phenotypes35. M1 macrophages
contribute to ECM degradation and bolster an anti-tumor
immune response, whereas M2 macrophages promote ECM
remodeling that facilitates tumor progression36. These results
indicate the possibility of enhanced presence of pro-tumoral
macrophages (M2) in high-risk HGSOC patients, where patients
with identified amino acid signatures may show overall weakened
immune activity and a positive correlation with angiogenesis-
associated genes.

Furthermore, we identified gene signatures associated with
CollaTIL in CSCC (D1-D2). Our findings revealed that in CSCC
patients, the downregulation of TCA-cycle genes such as
COX6A1, COX7B, ATP5H, COQ10A, NDUFA1, NDUFA5,
NDUFA6, NDUFA8, NDUFA12, and NDUFC1 may be related to

Fig. 4 Assessing the immune modulatory impact on collagen architecture in HGSOC (D0) and CSCC (D1-D2) patients. a Shown are the mean entropy
values of the disorder in collagen fiber orientations in the high- and low-risk groups identified by CollaTIL in HGSOC (D0, n= 95) and CSCC (D1 and D2,
n= 262). b Shown are the TIL density values in the high- and low-risk groups identified by CollaTIL in HGSOC (D0, n= 95) and CSCC (D1 and D2,
n= 262). HGSOC high grade serous ovarian carcinoma, CSCC cervical squamous cell carcinoma, TIL Tumor-infiltrating lymphocytes.
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molecular changes in cancer cells, reflecting a shift in metabolic
pathways37. These genes are part of the TCA-cycle gene sig-
nature, which has been previously linked to predicting cancer
prognosis in CSCC patients38. The downregulation of these TCA-
cycle genes can affect cellular metabolism, energy production, and
redox balance, which in turn could influence ECM remodeling
processes. This raises the question for future interrogation on
whether the downregulation of TCA-cycle genes influence the

remodeling of the ECM. Future work will focus on understanding
the potential relationship between TCA-cycle gene expression
and ECM remodeling processes.

We also identified three genes, APOBEC3H, KIRREL1, and
FAM166B, significantly correlated with OS for CSCC and
HGSOC patients, respectively, which suggest that the expression
of these genes could be a prognostic factor for patient survival.
Additionally, we identified several highly relevant genes in CSCC

Fig. 5 Genomics association and prognostic significance of CollaTIL in CSCC and HGSOC. a Box-violon plot depicting significant difference of the
predicted risk between CSCC patients harboring mutation in PIK3CA as compared to wildtype counterparts. b–d Box-violons plots detailing the signature
activities of TCA-Cycle in CSCC, and Amino acid and Macrophage in HGSOC for high-risk patients compared to the low-risk patients. Statistical
significance of differences in the signature activities was estimated using a Wilcoxen signed rank test. e–g OS estimates of CSCC (e), CSCC (f) and
HGSOC (g) patients. Shown are Kaplan–Meier estimates of OS for patients with high expression of APOBEC3H in CSCC, KIRREL1 in CSCC and FAM166B in
HGSOC as compared to their low expressed counterparts. The statistical significance of differences in survival rates between high expressed and low
expressed categories was determined using the LogRank test (P). The Violin plots represent the probability density of patients at different risk scores or
signature indices. Embedded Boxplots summarize the distribution, indicating the median (center line), quartiles (box edges), and potential outliers (beyond
whiskers). HGSOC high grade serous ovarian carcinoma, CSCC cervical squamous cell carcinoma, OS overall survival, PFS progression-free survival.
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patients (D1 and D2) whose expression is strongly correlated with
the risk scores predicted based on CollaTIL (Supplementary
Fig. 2). This finding supports the notion that the expression of
some of these genes can have a significant impact on the pro-
gression of the disease and can be used as predictive markers for
prognosis. Interestingly, our analysis of TCA-related genes in
CSCC patients revealed that four TCA-related genes, NDUFA1,

NDUFA12, COX7B, and CD8A, were significantly upregulated
and associated with a better prognosis specifically in CSCC
patients (Supplementary Fig. 3).

We acknowledge that our study had certain limitations. One
notable limitation was the absence of specialized staining tech-
niques, such as immunohistochemistry (IHC) or Verhoeff-Van
Gieson (EVG) staining, which would have enabled a quantitative

Fig. 6 Protein expression comparison between tumor and normal ovary tissues of the identified gene sets belonging to macrophage and Amino-acid
on CPTAC dataset. a–e Protein expression of Macrophages associated gene sets VSIG4, ATP9A, CD163, C3AR1, and C1QB, were significantly downregulated
in primary tumors compared to the normal tissue in HGSOC. f–i Protein expression of amino acid associated gene sets PSMA7, PSMC2, PSMC8, and
PSMD4, were significantly upregulated in primary tumors compared to the normal tissue in HGSOC. Log2 Spectral count ratio values from CPTAC were
first normalized within each sample profile, then normalized across samples. Z-values represent standard deviations from the median across samples for
the given cancer type. P indicates the p-value obtained from the statistical t-test used to compare the two groups of patients. The Boxplots summarize the
distribution, indicating the median (center line), quartiles (box edges), and potential outliers (beyond whiskers). HGSOC high grade serous ovarian
carcinoma, CPTAC clinical proteomic tumor analysis consortium.
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analysis of collagen fiber segmentation. This limitation stemmed
from the unavailability of IHC and EVG-stained whole slide
images for the cohorts used in our study. Moreover, the interplay
between immune and collagen components within the TME can
be bi-directional. Previous studies have suggested that collagen
density can influence the activity of TILs in the TME, influencing
their ability to kill cancer cells39,40. Additionally, we did not
consider different types of immune cells in the TME, such as
tumor-associated macrophages, which also play a critical role in
ECM remodeling41. Future work will focus on exploring the roles
of different types of immune cells in the TME and their impact on
collagen architecture.

In conclusion, our study identified prognostic features from the
immune and collagen components within the TME in patients
with CSCC, EC, and HGSOC. These features were associated with
survival outcomes in different gynecologic cancer cohorts treated
with various adjuvant and recurrence therapies. The CollaTIL
framework enables the extraction of features that are able to
capture the complex relationship between immune and collagen
architecture within the TME. These features, in turn, enable
accurate risk stratification of gynecologic cancers. Future work
will involve assessing whether these features could also aid in the
selection of appropriate treatment strategies for gynecologic
cancer patients.

Data availability
All data required to reproduce the results presented here are available at https://github.
com/arp95/collatil_biomarker_gyn42. D0, D1, and D2 cohorts were generated by TCGA
Research Network (http://cancergenome.nih.gov/) and they have made them publicly
available13. D8 cohort was generated by Memorial Sloan Kettering Cancer Center and is
made publicly available at Synapse (Sage Bionetworks) under accession code
syn2594611714. Since the cases from the involved institutions are protected through
institutional compliance, the clinical repository of cases can only be shared per specific
institutional review board (IRB) requirements. Upon reasonable request, a data sharing
agreement can be initiated between the interested parties and the clinical institution
following institution-specific guidelines. This applies to the cohorts known as D3, D4,
D5, D6, and D7. For inquiries or requests regarding data sharing, please contact the
corresponding author. Source data underlying the graphs in Figs. 3–6 is available at
https://github.com/arp95/collatil_biomarker_gyn.

Code availability
All code required to reproduce the results presented here is available at https://github.
com/arp95/collatil_biomarker_gyn, along with relevant documentation42.
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