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Machine learning identifies risk factors associated
with long-term sick leave following COVID-19 in

Danish population

Kim Daniel Jakobsen® "™ Elisabeth O'Regan

Abstract

Background Post COVID-19 condition (PCC) can lead to considerable morbidity, including
prolonged sick-leave. |dentifying risk groups is important for informing interventions. We
investigated heterogeneity in the effect of SARS-CoV-2 infection on long-term sick-leave and
identified subgroups at higher risk.

Methods We conducted a hybrid survey and register-based retrospective cohort study of
Danish residents who tested positive for SARS-CoV-2 between November 2020 and Feb-
ruary 2021 and a control group who tested negative, with no known history of SARS-CoV-2.
We estimated the causal risk difference (RD) of long-term sick-leave due to PCC and used
the causal forest method to identify individual-level heterogeneity in the effect of infection on
sick-leave. Sick-leave was defined as >4 weeks of full-time sick-leave from 4 weeks to
9 months after the test.

Results Here, in a cohort of 88,818 individuals, including 37,482 with a confirmed SARS-
CoV-2 infection, the RD of long-term sick-leave is 3.3% (95% Cl 3.1% to 3.6%). We observe
a high degree of effect heterogeneity, with conditional RDs ranging from —3.4% to 13.7%.
Age, high BMI, depression, and sex are the most important variables explaining hetero-
geneity. Among three-way interactions considered, females with high BMI and depression
and persons aged 36-45 years with high BMI and depression have an absolute increase in
risk of long-term sick-leave above 10%.

Conclusions Our study supports significant individual-level heterogeneity in the effect of
SARS-CoV-2 infection on long-term sick-leave, with age, sex, high BMI, and depression
identified as key factors. Efforts to curb the PCC burden should consider multimorbidity and
individual-level risk.

1 Ingrid Bech Svalgaard' & Anders Hviid® 2

Plain language summary

The burden of post COVID-19 con-
dition varies from one person to
another due to individual character-
istics such as age, sex, and having
single- or multiple pre-existing con-
ditions. Sick leave following initial
SARS-CoV-2 infection is one way to
quantify this burden. However, to
what extent the combinations of
these characteristics impact the risk
of post-acute sick leave is not well
understood. Here, using a machine
learning method, we observe that
persons infected with SARS-CoV-2
have an increased risk of taking long-
term sick leave compared to persons
with no history of infection. Age, high
BMI, sex, and depression explained
substantial effect variation on the risk
of long-term sick leave after infection.
This knowledge may be used to help
inform patient-targeted interventions.
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ost people infected with SARS-CoV-2 recover with no
M post-acute effects. However, an estimated 10-20%

experience post-acute symptoms lasting at least
2 months, termed post COVID-19 condition (PCC) by the World
Health Organization!2, Thus, PCC represents a substantial health
burden for both society and the individual. PCC is a complex
heterogeneous disorder>*, with ongoing research into under-
standing risk groups and potential mechanisms’~8.

Sick leave has been identified as a potential indicator of the
burden of PCC?-!! and represents an objective measure of soci-
etal impact and the impact on daily living for working age indi-
viduals. A significant increase in the burden of full-time post-
acute sick leave was found in the general Danish population
during the index wave in a period 1-9 months after infection with
SARS-CoV-2!2, using the nationwide Danish survey, EFTER-
COVID!3. The study reports an increase in risk of taking a
substantial amount of post-acute sick leave (defined as >1 month
during the 8 months of post-acute follow-up) of 3.3% (95% CI:
3.0% to 3.5%) when infected with SARS-CoV-2. Large increases
in risk were found across several single risk factors, e.g. fibro-
myalgia (RD 10.6%, 95% CI: 7.0% to 14.6%).

Due to the many unknowns of PCG, it is difficult to pre-specify
subgroups for analyses when trying to identify those susceptible
to developing PCC. Meta-analyses have shown that female sex,
older age, obesity, smoking, and several health conditions are
independently associated with an increased risk of developing
PCC!4-16, However, the use of a data-driven approach is neces-
sary to identify novel subgroups and provide patient-centred
estimates of risk that take all patient characteristics into account
at the same time in contrast to conventional interaction analysis.

Patient-centred estimates of risk are particularly useful for
public health strategy planning and policy making. As an
example, several studies support that vaccination offers protec-
tion against PCC!417. As of autumn/winter 2022-23, in Denmark,
booster vaccination has only been recommended for people over
50 years and risk groups at higher risk of severe COVID-19
outcomes!8. Moving forward with such recommendations, it may
also be important to consider PCC risk, necessitating identifica-
tion of those at higher risk of developing PCC.

In this study, we look for possible PCC risk groups using the
EFTER-COVID survey by investigating how the effect of
COVID-19 infection on the risk of taking substantial post-acute
full-time sick leave depends on multiple characteristics and pre-
existing health conditions. This is done using a state-of-the-art
machine learning method for causal inference to estimate con-
ditional risk differences (CRDs). Specifically, we use the causal
forest (CF) method, a special case of the recently developed
generalised random forest (GRF) machine learning method!®. We
find that persons infected with SARS-CoV-2 have an increased
risk of taking substantial post-acute sick leave compared to per-
sons with no history of infection. Age, high body mass index, sex,
and depression show substantial effect variation on the risk of
post-acute sick leave.

Methods

Data sources and study population. This was a retrospective
cohort study, where we merged data from the EFTER-COVID
survey with register data. The EFTER-COVID survey was
designed to monitor PCC in the Danish population!3. The pre-
sent study includes participants who responded to a retrospective
questionnaire sent out 9 months after being tested for SARS-
CoV-2 using the web-based questionnaire service SurveyXact. An
individual was eligible for invitation to the retrospective ques-
tionnaire if they were alive and living in Denmark 9 months after
the test date, had a first positive RT-PCR test or a negative RT-

PCR test taken between November 4, 2020 and February 1, 2021,
didn’t have a positive test result <9 months after the test date, and
was registered with the national mail system, e-Boks, used by 90%
of Danish residents aged =15 years. Invitations were sent out to
all eligible individuals with a positive test result, while test-
negative controls were randomly selected using incidence density
sampling on the test date with a ratio of 2:3 between test-positive
and -negative persons. After receiving an invitation, participants
were excluded if they failed to complete the questionnaire, indi-
cated they believed they had been previously infected with SARS-
CoV-2 due to receiving a seropositive result for SARS-CoV-2, or
were >65 years-old at the time of the test.

The survey data was merged with Danish register data using
the unique identifier (the CPR-number) in the Danish Civil
Registration System assigned to all Danish residents.

The present study builds upon previous work by colleagues
which explored the association between COVID-19 post-acute
full-time sick leave and the possible impact of single risk factors!2.
Both of these studies examine the same cohort but with different
analytical approaches.

Exposure ascertainment. SARS-CoV-2 infection was ascertained
using reverse transcription polymerase chain reaction (RT-PCR)
tests, recorded in the Danish microbiology database (MiBa). RT-
PCR tests were available and accessible for all adults free of charge
and independent of the indication for acquiring a test?0. Addi-
tionally, persons admitted to hospitals were tested for SARS-CoV-2.

Outcome ascertainment. Participants were asked if they took
sick leave around the time of their test date (indicated in the
questionnaire) or any time since then. Participants could indicate
sick leave up to 4 weeks, or >4 weeks, after the test. If sick leave
was indicated >4 weeks after the test, further questions were asked
about the type of sick leave (part-time or full-time), and the
duration of each type of sick leave. This study considers sub-
stantial post-acute full-time sick leave, defined as taking >4 weeks
of full-time sick leave in the period from 4 weeks after the test to
9 months after the test.

Other covariates. Information on age and sex was obtained from
the CPR-registry. Education and BMI were obtained from the
questionnaire. Participants were asked about their highest com-
pleted education. The possible answers were Primary/elementary
school (9th-10th grade), general secondary education or voca-
tional education, vocational training, shorter term higher educa-
tion (1-2years), medium term higher education (2-4 years),
longer term higher education (>5 years), and don’t know/none of
the above/do not wish to answer. We define high BMI as a body
mass index (BMI) above 30 for persons aged 18 years or above,
and for persons aged 15-17 years international cut-off points for
obesity by age and sex were used?!. BMI was calculated as
response on weight in kilograms divided by response on height in
meters squared. Response to questions on height and weight were
not required, and in case of either missing, high BMI was
reported as unknown. Information on health conditions were
obtained from the questionnaire, in which participants were
asked about existing health conditions diagnosed by a doctor
before the RT-PCR test date. From the Danish National Patient
Register (DNPR), information was obtained on in- and outpatient
diagnoses coded using the 10t revision of the International
Statistical Classification of Diseases and Related Problems (ICD-
10), which enabled the calculation of the Charlson
Comorbidity Index.
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Statistical analysis. We used the causal forest (CF) method to
estimate conditional risk differences (CRD). Specifically, we
estimated the increase in risk of taking substantial full-time sick
leave in the post-acute phase, conditioned on individual char-
acteristics and pre-existing comorbidities, when infected with
SARS-CoV-2, compared with not being infected. The causal
forest was grown with splits allowed on the following covariates:
age, sex, Charlson Comorbidity Index, education level, chronic
asthma, diabetes, high blood pressure, COPD or other chronic
lung disease, chronic or frequent headaches/migraines, fibro-
myalgia, chronic fatigue syndrome, anxiety, depression, post-
traumatic stress disorder (PTSD), and high BMI. Age was
included as a continuous covariate while the remaining covariates
were included using one-hot encoding. The model used 2000
causal trees. Parts of a causal tree used by the model can be found
in Supplementary Fig. 1. To reduce bias in tree predictions, we
employed a subsample splitting technique called honesty. In this
approach, the random subsample used for each tree is further
split into two subsamples. One is used to construct the tree
structure, and the other is used to populate the end nodes (leaves)
of the tree. Empty leaves are pruned after repopulating with the
second subsample. Default values from the grf R-package were
used for most of the algorithm’s tuning parameters, including the
fraction of each tree sample assigned to the two honesty sub-
samples (0.5), and the number of covariates to try for each split
(/P + 20). The maximum split imbalance was set to 0.01 to allow
splits on rare health conditions, while the maximum node size
was set to 10 to limit the computational requirements.

The CF CRD estimates were summarised using risk differences
on the full population and on select subpopulations. These were
estimated using augmented inverse propensity weighting
(AIPW). AIPW is an asymptotically optimal way of estimating
the RDs. Two-sided 95% Cls were estimated using asymptotic
normality of the AIPW estimator.

CF was used to identify risk groups by considering interactions
between important covariates. Important covariates were con-
sidered to be those with most splits in the CF. This was done
because splits in causal trees are chosen to maximise the
difference in CRD, so the number of splits can be used to
uncover which covariates influence RDs. We then considered
each three-way interaction between the four most important
covariates. Three-way interactions were chosen to avoid sub-
groups with insufficient data to summarise the CRDs using
ATPW. The frequency of splits along each covariate was recorded
at each depth of the trees, and the final measure was a weighted
average of these frequencies. The weight function used was the
reciprocal squared of the tree depth.

Identifying assumptions behind CF were checked by assessing
the overlap of exposure groups using a propensity score density
plot, and by assessing the balance of covariates across exposure
groups using the absolute standardised mean difference <0.1 to
indicate balance. Model calibration was evaluated by computing the
best linear fit of the target estimate using the mean forest prediction
as well as the differential forest prediction as regressors. The c-for-
benefit was calculated to evaluate the discrimination performance of
the model?2. Treatment effect heterogeneity was evaluated using
Rank-Weighted Average Treatment Effect (RATE) metrics. A
RATE metric takes a treatment prioritisation rule and assesses the
rules ability to prioritise individuals with the largest treatment effect.
Specifically, we used the area under the targeting operator
characteristic curve (AUTOC). AUTOC allows an asymptotically
valid test for the hypothesis of treatment effect heterogeneity along
the prioritisation rule to be constructed using the bootstrap. P-
values for the test of RD heterogeneity along risk factors were
estimated using the AUTOC metric with standard error estimated

from 500 bootstrap replicates. Overall heterogeneity was assessed by
splitting the study data into two random subsamples, predicting
CATEs based on CF models trained on the opposite subsample, and
using these as the prioritisation rule for the RATE metric.

Technical details on the causal forest method as well as RATE
metrics can be found in Supplementary methods 1 and
elsewhere 19-23-26,

All statistical analyses were carried out in R version 4.2.227. The
R-package grf version 2.2.1 was used for modelling and ggplot2
version 3.4.2 for data visualisation 28:29,

Sensitivity analyses. We conducted two sensitivity analyses. First,
we evaluated the impact of false RT-PCR test results. Second, we
evaluated the impact of our choice of hyperparameters in the
causal forest algorithm. Details are in Supplementary methods 2.

Ethical approval. This study was performed as a surveillance
study as part of the governmental institution Statens Serum
Institut’s (SSI) advisory tasks for the Danish Ministry of Health.
SST’s purpose is to monitor and fight the spread of disease in
accordance with section 222 of the Danish Health Act. According
to Danish law, national surveillance activities carried out by SSI
do not require approval from an ethics committee.

This study used data from the EFTER-COVID survey.
Participation in the survey was voluntary. The invitation letter
to participants contained information about their rights under the
Danish General Data Protection Regulation (rights to access data,
rectification, deletion, restriction of processing and objection).
After reading this information, it was considered informed
consent if participants agreed and clicked on the link to fill in the
questionnaires.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results

Cohort characteristics. 294,035 persons were invited to the
survey in the study period. 106,917 (36.4%) persons fully com-
pleted the questionnaire sent out 9 months after the test date. The
respondents were more often female (61.9% vs. 51.7%), older
(=50 years: 54.5% vs. 23.4%) and had more comorbidities
(Charlson score > 0: 13.8% vs. 9.2%). The distribution of persons
invited to the survey stratified by respondent status (respondents,
non-respondents) can be found in Table 1. After applying the
remaining exclusion criteria, the cohort consisted of 88,818
individuals, of which 37,482 had had a confirmed SARS-CoV-2
infection. A flowchart showing persons excluded after receiving
the questionnaire can be found in Fig. 1. The mean age in the
study cohort was 45 years with standard error 14 years and 64.3%
were female. 62.1% had some form of higher education, while
16.0% had vocational training. The most prevalent existing health
conditions before test were high BMI (16.6%), depression
(12.1%), high blood pressure (11.1%), and anxiety (8.4%).
Overall, the test-positive and test-negative cohorts are similar
across the participant characteristics (see Model performance).
The test-positive cohort has a higher proportion of males (38.6%
vs. 33.6%) and is on average 2.2years younger (43.6 vs.
45.8 years). In terms of pre-existing health conditions, the test-
positive cohort has a smaller proportion of chronic fatigue syn-
drome (1.3% vs. 1.7%) and chronic obstructive pulmonary disease
(1.1% vs. 1.5%), a larger proportion of chronic asthma (7.6% vs.
6.8%), and similar proportions of fibromyalgia (0.9% vs. 0.9%)
and post-traumatic stress disorder (2.0% vs. 1.9%). All participant
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characteristics by exposure group can be found in Supplementary
Table 1.

Distribution of sick leave. From the study cohort, 7955 (9.0%)
reported taking some amount of full-time sick leave >4 weeks
after their test date. Of these, 2412 (30.3%) took substantial sick
leave of >4 weeks. Shorter durations of sick leaves were reported
more often than long durations. 346 people reported being on
full-time sick leave for >9 months or since their test date. Test-
positives reported more substantial full-time sick leave than test-
negatives (4.5% of test-positives vs. 1.4% of test-negatives). Stra-
tifying by sex, females reported full-time sick leave of any dura-
tion more often than males (9.7% of females vs. 7.6% of males).
Similarly, individuals 50 years or older at the time of their test
reported taking more full-time sick leave of any duration than

Table 1 Characteristics of non-responders.

Characteristics  Complete Partially Incomplete
complete
(n=106,917) (n=10,928) (n=176,190)
Sex
Female 66,161 (61.9%) 7004 (64.1%) 91,057 (51.7%)
Male 40,755 (38.1%) 3924 (359%) 85,131 (48.3%)

Age (10-year categories)

15-19 years 4071 (3.8 %) 1261 (11.5%) 22,922 (13.0%)

20-29 years 13,000 (12.2%) 2073 (19.0%) 46,545 (26.4%)

30-39 years 12,647 (11.8%) 1781 (16.3%) 33,914 (19.2%)

40-49 years 18,969 (17.7%) 1861 (17.0%) 31,569 (17.9%)

50-59 years 27,014 (25.3%) 1917 (17.5%) 23,935 (13.6%)

60-69 years 19,551 (18.3%) 1134 (10.4%) 10,364 (5.9%)

70+ years 11,664 (10.9%) 901 (8.2%) 6939 (3.9%)

Charlson Comorbidity Scores

0 92,179 (86.2%) 9431 (86.3%) 159,920
(90.8%)

1 7243 (6.8%) 760 (7.0%) 9163 (5.2%)

2 5293 (5.0%) 460 (4.2%) 4750 (2.7%)

3 or more 2201 (2.1%) 277 (2.5%) 2355 (1.3%)

Characteristics of n= 294,035 individuals who were sent a questionnaire 9 months after their
test date and either completed, partially completed, or didn't complete the questionnaire.
Information was missing for six individuals.

RECIEVED QUESTIONNAIRE
n = 294,035

individuals below 50 years at the time of their test (9.7% of
>50 years vs 8.3% of <50 years). The distribution of the duration
of self-reported full-time sick leave taken >4 weeks after the test
date can be found in Table 2.

Risk differences. CRD estimates from the CF model ranged from
—3.4% to 13.7%. The RD by deciles of CRD increases from 1.3%
(95% CI 0.8% to 1.8%) in the lowest decile to 5.4% (95% CI 4.2%
to 6.6%) in the highest decile. The RD by deciles of CRD and the
density of CRDs are shown in Fig. 2. 66.3% of CRDs were
between 0% and 5%. Of the remaining CRDs, a majority (26.0%)
were above 5%, while the remaining 7.7% were below 0%. Sum-
marising the CRDs over the study population using AIPW
showed persons infected with SARS-CoV-2 had a higher risk (RD
3.3%, 95% CI 3.1% to 3.6%) of taking substantial full-time sick
leave after their acute infection compared to test-negatives with
no known history of SARS-CoV-2 infection. This agrees with a
previous analysis of the data, where the RD was estimated with
parametric g-computation using a logistic regression model to
predict outcomes on the two exposure groups!2. ATPW was used
to summarise the CRDs from the CF model in subpopulations
defined by single risk factors. This yielded RDs within a few
tenths of a percentage point of the g-computation estimates. The
RD estimates are shown in Table 3.

Risk groups. According to the CF variable importance measure,
the most important risk factors, in terms of maximising hetero-
geneity, were age (0.570), high BMI (0.212), depression (0.053),
sex (0.037), education level (0.035), and chronic asthma (0.020)
(Supplementary Fig. 2).

Results for each three-way interaction between age, high BMI,
depression, and sex are shown in Figs. 3, 4, Supplementary Fig. 3,
and Supplementary Fig. 4. Subgroup counts for combinations of
age, high BMI, and depression are shown in Supplementary
Table 2, while counts for combinations of sex, depression, and
high BMI are shown in Supplementary table 3. Overall, the CRD
increased with age, high BMI, and depression. CRDs were higher
and varied more for females than males.

The interaction between age, high BMI, and depression show
an increase in CRDs with each of these covariates (Fig. 3). The
effect of SARS-CoV-2 infection on post-acute full-time sick leave

A 4

FULLY RESPONDED TO

PERSONS WHO DID NOT FULLY COMPLETE QUESTIONNAIRE

PERSONS WHO DID NOT RESPOND TO QUESTIONNAIRE

EXCLUDED
n=10,928

n =176,190

QUESTIONNAIRE
n=106,917

A 4

FINAL STUDY POPULATION
n=288,818

PERSONS WHO WHERE SEROPOSITIVE FOR COVID-19

PERSONS WHO RECIEVED A QUESTIONNAIRE WITH AN ERROR

EXCLUDED
n =370
n =209

PERSONS OLDER THAN 65 YEARS
n=17,520

Fig. 1 Diagram illustrating the flow of persons from receiving their questionnaire to inclusion in the final study population. The flow of persons from
receiving their questionnaire (n =294,035) to inclusion in the final study populations (n = 88,818). Persons were exluded if they did not respond fully to
their questionnaire. Of those that filled out the questionnaire (n =106,117), persons above 65 years of age, persons with a seropositive result for COVID-19,

and persons who received a questionnaire with an error were excluded.
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Table 2 Distribution of full-time sick leave.

Full-time sick leave Full cohort Female Male <50 years >50 years
n (%) n (%) n (%) n (%) n (%)
No sick leave 80,863 (91.0) 51,542 (90.3) 29,321 (92.4) 44,356 (91.7) 36,507 (90.3)
<2 weeks 4216 (4.8) 2875 (5.0) 1341 (4.2) 2248 (4.7) 1968 (4.9)
2-4 weeks 1327 (1.5) 918 (1.6) 409 (1.3) 619 (1.3) 708 (1.8)
1-2 months 1070 (1.2) 788 (1.4) 282 (0.9) 525 (1.1) 545 (1.4)
2-4 months 567 (0.6) 413 (0.7) 154 (0.5) 263 (0.5) 304 (0.8)
4-6 months 260 (0.3) 184 (0.3) 76 (0.2) 126 (0.3) 134 (0.3)
6-9 months 169 (0.2) 123 (0.2) 46 (0.1 88 (0.2) 81(0.2)
>9 months 120 (0.1 81 (0.1 39 (0.1 46 (0.1) 74 (0.2)
Since test date 226 (0.3) 163 (0.3) 63 (0.2) 108 (0.2) 118 (0.3)

Test negative

Test positive

n (%) n (%)
No sick leave 47285 (92.1) 33578 (89.6)
<2 weeks 2972 (5.8) 1244 (3.3)
2-4 weeks 347 (0.7) 980 (2.6)
1-2 months 241 (0.5) 829 (2.2)
2-4 months 192 (0.4) 375 (1.0)
4-6 months 94 (0.2) 166 (0.4)
6-9 months 72 (0.1 97 (0.3)
>9 months 64 (0.1) 56 (0.1
Since test date 69 (0.1 157 (0.4)

Distribution of the amount of full-time sick leave reported by the study cohort >4 weeks after their test date.

a b
Predicted Predicted CRD ::;a:f:a\:t;mpa::\is CoV-2 0187
h;nwliI:cile inrteer\llcale negativeo pt:vsitiveo Risk Difference, % (95% Cl)
1 -1.000t0 0.002 4704 4178 1.3(0.8t0 1.8) | o
2 0.002 to 0.009 4750 4132 1.1(0.6t01.7) im
3 0.009 to 0.016 4655 4227 1.9 (1.2t0 2.6) : e 0.10
4 0.016 to 0.023 4905 3977 2.7 (1.9 to 3.5) : o >
5 0.023100.030 5277 3605 2.6 (1.810 3.5) e 2
6 0.030 to 0.037 5041 3841 2.7 (1.9 t0 3.6) : ] s
7 0.037 to 0.046 5454 3428 4.5 (3.5t05.5) i ot 0.05
8 0.046 to 0.056 5408 3474 5.4 (4.3 10 6.5) : et
9 0.056 to 0.069 5633 3248 5.4 (4.3 to 6.6) : i
10 0.069 to 1.000 5509 3372 5.4 (4.2 t0 6.6) : —e—i
3 0 3 6 9
0.00 -
Protective  Harmful I5

risk difference (percentage points)

Fig. 2 Heterogeneity of exposure effect estimated using out-of-bag prediction. a Heterogeneity in the effect of COVID-19 exposure on substantial post-
acute full-time sick leave by deciles of estimated conditional risk difference (CRD). Observations are ranked in ten separate folds, using a causal forest
model with observations clustered by folds. Risk differences (RD) are estimated using augmented inverse propensity weighting (AIPW). Error bars show
two-sided 95% confidence intervals. b Distribution of conditional risk differences from n = 88,818 individuals, estimated using out-of-bag prediction from
the causal forest model. The dashed vertical line shows the average risk difference.

is smallest for persons below 50 years with no depression and no
high BMI (mean 1.7%, SE 2.0%). 44.7% in the subgroup had
CRDs significantly below the average RD for the full population
(z-test with two-sided alternative and 5% significance level). The
variance was smallest for persons above 50 years with depression
and high BMI. This group also had the largest CRDs (mean 7.5%,
SE 1.7%). 99.7% of persons in the subgroup had CRDs above the
average RD for the full population, while 49.6% were significantly
above. The effect of SARS-CoV-2 infection on substantial post-
acute full-time sick leave was similar for persons with either
depression or high BMI and increased compared to having

neither depression nor high BMI. For persons below 50 years, the
CRD distribution for persons with depression had mean 3.4% and
SE 2.2%, while for persons with high BMI, the mean was 4.4%
and SE was 2.1%. For persons above 50years, the CRD
distribution for persons with depression had mean 5.6% and SE
1.8%, while for persons with high BMI, the mean was 5.5% and
SE was 2.1%. The RD estimate was smallest for persons aged
15-25 years with neither depression nor high BMI (0.4%, 95% CI
0.1% to 0.8%), while the RD was largest for persons aged
36-45 years with both depression and high BMI (10.4%, 95% CI
51% to 15.6%). The RD was mostly constant from age
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Table 3 Causal forest risk differences, RATE, and variable importance.

n RD (95% CI) RATE (SE) RATE P-value variable importance
Full population 88,818 3.3 (3.1t0 3.6) 9.4 (1.4) 6.6-10714
Female 57,087 3.9 (3.6 to 4.3) —6.5(0.9) 1610122 0.0372
Male 31,731 2.2 (1.8 to 2.5)
Older than 50 years 40,439 43 (3.8t04.7) 10.5 (1.3) 1.2-10-14b 0.570b
Fibromyalgia 803 10.3 (6.4 to 14.1) 3.0 (0.9) 21-104 0.007
COPD or other lung disease 197 7.0 (3.9 t0 10.0) 2.2 (0.9) 0.016 0.004
Diabetes 2980 6.4 (4.6 to 8.2) 3.6 (1.D 54-10-4 0.007
Post-traumatic stress disorder 1757 5.8 (3.4 t0 8.2) 2.0 (1.0) 0.036 0.013
High BMI 14,700 5.6 (4.9 to 6.4) 9.2 (1.3) 39-10-12 0.212
Depression 10,715 5.7 (4.8 to 6.6) 7.0 (1.3) 51-10-8 0.053
Chronic asthma 6335 5.4 (4.2 to 6.5) 4.2 (1.2) 1.4-10~4 0.020
High blood pressure 9817 5.0 (4110 5.9) 48 (1.2) 73-10°5 0.004
Chronic or frequent headaches 3593 49 (3.3 to 6.6) 22 (0 0.040 0.012
Chronic fatigue syndrome 1345 3.3 (0.7 to 5.9) —0.03 (0.8) 0.975 0.004
Anxiety 7425 3.4 (2.4 to 4.4) 030 0.809 0.007

Risk differences (RDs) and two-sided 95% confidence intervals (CI) obtained using CF and AIPW for full-time sick leave taken 4 weeks to 9 months after the test date between SARS-CoV-2 test-
positives and test-negatives for the total study population and possible PCC risk groups. The RATE along with P-values for a RATE based test of treatment effect heterogeneity are reported along each
risk factor. A RATE based omnibus test of treatment effect heterogeneity is also provided. All RATEs in the table have been multiplied by 1000.

aThe RATE P-value tests for a difference in RDs between females and males. The variable importance scores split on sex.

bThe RATE P-value tests for heterogeneity along the continuous age. The variable importance scores split on the continuous age variable.
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Fig. 3 Estimated risk differences for combinations of age, high BMI, and depression. a Risk differences (RDs) and two-sided 95% confidence intervals
(Cl) for substantial full-time sick leave taken 4 weeks to 9 months after the test date between SARS-CoV-2 test-positives and test-negatives for subgroups
of a population of n= 88,818 individuals. Subgroups are defined by combinations of age, high BMI, and depression risk factors. Subgroups with unknown
BMI (n = 6823) are not displayed. b Distribution of conditional risk differences (CRDs), estimated using out-of-bag prediction from the causal forest model,
within subgroups of a population of n = 88,818 individuals. Subgroups are defined by combinations of age, high BMI, and depression risk factors. Subgroups
with unknown BMI (n = 6823) are not displayed. The dashed line shows the average RD in the full population. The fraction of CRDs below and above this
RD is printed for each combination of age, high BMI, and depression. Dark red indicates estimated CRDs significantly different from the average RD in the

full population at a 5% significance level using a z-test with two-sided alternative.

36-65 years, with an increasing trend for persons aged 15-35
(Fig. 3). Combining the older age groups from 36-65 years, we
found a RD of 9.3% (95% CI 6.6% to 12.0%).

The interaction between sex, depression, and high BMI show
higher and more varied CRDs for females (Fig. 4). Among males
with neither depression nor high BMI, the CRD distribution had
mean 1.8% and SE 1.7%, while for females, the mean was 3.0%
and the SE was 2.3%. Among males, 40.4% had CRDs
significantly below the RD for the full population. Among
females, this number was 22.1%. For females, we observed a

smaller increase in CRDs with depression compared with high
BMI. The average CRD increased from 3.0% to 4.7% and 5.5%
respectively. The RD estimates showed no difference between
depression and high BMI for females. With depression, the RD
was 5.6% (95% CI 4.3% to 6.9%), and with high BMI the RD was
5.5% (95% CI 4.4% to 6.6%). For males, the average CRD also
increased less for persons with depression compared with high
BMI, with an increase in average CRD from 1.8% to 2.9% and
4.4% respectively. However, the RD estimates also show a
significant difference (two sample f-test with two-sided
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Fig. 4 Estimated risk differences for combinations of sex, depression, and high BMI. a Risk differences (RDs) and two-sided 95% confidence intervals
(CI) for substantial full-time sick leave taken 4 weeks to 9 months after the test date between SARS-CoV-2 test-positives and test-negatives for subgroups
of a population of n = 88,818 individuals. Subgroups are defined by combinations of sex, depression, and high BMI risk factors. Subgroups with unknown
BMI (n = 6823) are not displayed. b Distribution of conditional risk differences, estimated using out-of-bag prediction from the causal forest model, within
subgroups of a population of n = 88,818 individuals. Subgroups are defined by combinations of sex, depression, and high BMI risk factors. Subgroups with
unknown BMI (n = 6823) are not displayed. The dashed line shows the average RD in the full population. The fraction of CRDs below and above this RD is
printed for each combination of sex, depression, and high BMI. Dark red indicates estimated CRDs significantly different from the average RD in the full
population at a 5% significance level using a z-test with two-sided alternative.

alternative, t = —2.3, df = 3852, P-value 0.023). The RD for males
with depression and without high BMI was 2.0% (95% CI 0.3% to
3.7%), while for males without depression and with high BMI, the
RD was 4.3% (95% CI 3.2% to 5.5%). Among persons with both
depression and high BMI, the CRDs were again higher and more
varied for females. They also had the highest RD (10.2%, 95% CI
7.4% to 12.9%).

A secondary analysis looking at more three-way interactions
with age, sex, and additional health conditions can be found in
Supplementary Results 1 and Supplementary Fig. 5.

Model performance. The predicted propensity scores used by the
CF showed no evidence of positivity violations. They were con-
centrated away from 0 and 1, with good overlap between the
distributions for test negatives and -positives (Supplementary
Fig. 6). The unadjusted imbalance of the covariates across
exposure groups was low. The only covariate above a 0.1 absolute
standardised mean difference was age. After weighting with the
inverse propensity, the overall imbalance was considerably
reduced, and all covariates achieved good balance (Supplemen-
tary Table 4, Supplementary Figs. 7-10). In the best linear fit
model for the target estimand, the coefficient of the mean forest
prediction was 1.00 (95% CI 0.93 to 1.07), indicating that the
mean forest prediction was well calibrated. The coefficient of the
differential forest prediction was 0.66 (95% CI 0.56 to 0.76),
indicating a potential lack of calibration of the estimated treat-
ment heterogeneity. The c-for-benefit of the causal forest model
was 0.59 (95% CI 0.58 to 0.60), indicating reasonable dis-
crimination performance of the model?2, The AUTOC test of
heterogeneity showed strong evidence for variability in RDs
within the total study population as well as most risk groups
defined by single risk factors, apart from anxiety (P-value 0.8) and
chronic fatigue syndrome (P-value 1.0) (Table 3).

Sensitivity analyses. In a sensitivity analysis evaluating the
impact of false RT-PCR test results, the variable importance
measure consistently ranked the same five risk factors highest as
in the main analysis, see Supplementary Fig. 11. Risk differences
were slightly lower than in the main analysis, but evidence for
heterogeneity remained strong, see Table 4 and Fig. 5.

In a sensitivity analysis evaluating the impact of our choice of
hyperparameters in the causal forest algorithm, calibration of the
heterogeneity estimates depended on the choice of hyperpara-
meters. Results on variable importance were similar to the RT-
PCR sensitivity analysis, see Supplementary Fig. 12. Overall, there
was no evidence that the estimated RDs were sensitive to the
choice of hyperparameters in the causal forest algorithm,
excluding parameters controlling the imbalance between child
leaves in a split, which were kept fixed, see Table 5 and Fig. 5.

Detailed sensitivity analysis results can be found in Supple-
mentary Results 2.

Discussion

The interplay between individual-level risk factors and post
COVID-19 condition is complex and multifaceted and may not
be fully understood by examining single risk factors in isolation.
As such, it is important to model the interactions of various
health characteristics in order to identify core risk factors, to
understand the impact of pre-existing multimorbidity on PCCs,
and to inform appropriate interventions. We built upon previous
work, which observed a higher risk of substantial post-acute sick
leave after infection with SARS-CoV-2 during the index and
alpha waves!2. Here, we identified previously unknown sub-
groups with high increased risk of substantial post-acute full-time
sick leave after COVID-19 infection. Using a state-of-the-art
causal machine learning algorithm and a causal forest variable
importance measure, we identified age, high BMI, depression, and

COMMUNICATIONS MEDICINE | (2023)3:188 | https://doi.org/10.1038/s43856-023-00423-5 | www.nature.com/commsmed 7


www.nature.com/commsmed
www.nature.com/commsmed

ARTICLE

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00423-5

Table 4 RT-PCR test sensitivity analysis—estimated risk differences for single risk factors.

n E(RD) (min, max) E(RATE) (min, max) largest RATE P-value
Full population 88,818 2.9 (2.8 to 3.0) 9.7 (8.0, 11.0) 5.4.10-10
Female 57,087 3.4 (3.4 to 3.6) —5.5 (-6.5, —5.0) 7.5.10-%
Male 31,731 1.9 (1.8 to 2.0)
Older than 50 years 40,439 3.7 (3.6 t0 3.8) 8.8 (83,9.7) 2.0-10-10b
Fibromyalgia 803 9.1 (8.5 t0 9.8) 2.6 (2.4, 3.0) 0.003
COPD or other lung disease 197 5.8 (5.2 to 6.7) 1.7 (1.4, 2.2) 0.089
Diabetes 2980 5.6 (5.0 to 6.2) 3.2 (26,39 0.010
Post-traumatic stress disorder 1757 5.0 (4.2 t0 5.9) 1.6 (1.0, 2.4) 0.253
High BMI 14,700 5.0 (4.6 to 5.2) 8.3(7.2,89) 2.7-10°
Depression 10,715 5.0 (4.6 to 5.3) 6.0 (4.8, 7.1) 3.6-10°
Chronic asthma 6335 4.7 (4.3 to 5.0) 3.6 (2.9, 4.1) 0.005
High blood pressure 9817 4.5 (4.1 t0 4.9) 43 (3.2,5.4) 0.006
Chronic or frequent headaches 3593 4.4 (3.6 to 5.1) 2.0 (1.0, 2.9) 0.341
Chronic fatigue syndrome 1345 28 (1.7 to 4.1) —-0.1(-0.7,0.7) 0.986
Anxiety 7425 32 (2.6 t0 3.2) —0.1(-0.6, 0.6) 0.996

Results of sensitivity analysis where false negatives and false positives are sampled from test negatives and test positives and moved to the correct exposure group. Results are based on n= 20
simulations assuming a sensitivity of 90% and a specificity of 99%. Results were obtained using CF and AIPW for substantial full-time sick leave taken 4 weeks to 9 months after the test date between
SARS-CoV-2 test-positives and test-negatives for the total study population and possible PCC risk groups. All RATEs in the table have been multiplied by 1000.

2 The RATE P-value tests for a difference in RDs between females and males. The variable importance scores split on sex.

bThe RATE P-value tests for heterogeneity along the continuous age. The variable importance scores split on the continuous age variable.
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Fig. 5 Sensitivity analyses - Estimated risk differences for combinations of age, high BMI, and depression. a Risk differences (RDs) for substantial full-
time sick leave taken 4 weeks to 9 months after the test date between persons labelled as true positive or false negative, and persons labelled as true
negative or false positive. Estimates are across subgroups of a population of n= 88,818 individuals. Subgroups are defined by combinations of age, high
BMI, and depression risk factors. Subgroups with unknown BMI (n = 6823) are not displayed. The solid coloured lines show the RDs from the main

analysis, while the transparent lines show the result from each analysis using a modified exposure. b Risk differences (RDs) for substantial full-time sick
leave taken 4 weeks to 9 months after the test date between SARS-CoV-2 test-positives and test-negatives within subgroups of a population of n = 88,818

individuals. Subgroups are defined by combinations of age, high BMI, and depression risk factors. Subgroups with unknown BMI (n = 6823) are not
displayed. The plot consists of 81 lines for each combination of depression and high BMI, each showing the result for a different combination of the
hyperparameters sample fraction, mtry, minimum node size, and honesty fraction.

sex as the most important variables for explaining observed effect
modification on post-acute sick leave following SARS-CoV-2
infection.

We observed a high amount of effect heterogeneity, with sig-
nificant modification for all considered risk factors except anxiety
and chronic fatigue syndrome. We also identified subgroups
defined by three-way risk factor interactions with high risk dif-
ference estimates. Among the three-way interactions considered,
females with high BMI and depression as well as persons aged
36-45 years with high BMI and depression had a large increase in

their risk of substantial post-acute sick leave above 10%. The
estimated risk difference was also high for older individuals with
high BMI and depression, and we found the combined RD for
those aged older than 35 to be 9.3%. False RT-PCR test results
due to imperfect sensitivity and specificity may have caused a
small overestimation of the increased risk.

These results build on risk factors previously found to increase
sick leave prevalence. A German study by Jacob et al. reported an
overall prevalence of long-term COVID-19 sick leave of 5.8%,
and a significant increase in prevalence for female sex (6.5%),
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Table 5 Hyperparameter sensitivity analysis—estimated risk differences for single risk factors.

n Risk difference

Average Minimum Maximum

Full population 88,818 3.31 3.29 3.32
Female 57,087 3.94 3.93 3.95
Male 31,731 218 215 2.20
Older than 50 years 40,439 4.27 4.24 4.29
Fibromyalgia 803 10.36 10.18 10.54
COPD or other lung disease 197 6.89 6.79 7.04
Diabetes 2980 6.35 6.27 6.49
Post-traumatic stress disorder 1757 5.79 5.69 5.87
High BMI 14,700 5.66 5.60 5.69
Depression 10,715 5.65 5.59 5.71
Chronic asthma 6335 5.40 5.27 5.46
High blood pressure 9817 5.00 498 5.04
Chronic or frequent headaches 3593 4.99 4.86 5.05
Chronic fatigue syndrome 1345 3.24 3.10 3.32
Anxiety 7425 3.40 3.34 3.47
The average, minimum, and maximum risk difference for the full population and different single risk factors obtained from a sensitivity analysis repeating the main analysis with different combinations of
the hyperparameters sample fraction, mtry, minimum node size, and honesty fraction used by the causal_forest function from the grf R package. Three values of each hyperparameter was used, for a total
of 81 configurations tested. Results were obtained using CF and AIPW for substantial full-time sick leave taken 4 weeks to 9 months after the test date between SARS-CoV-2 test-positives and test-
negatives for the total study population and possible PCC risk groups.

older age (56-65 years: 10.7%), obesity (9.1%), and depression
(8.6%), among other factors'l. Colleagues previously reported
significant increases in RDs for these factors using g-computation
on our study cohort!2. In the present study, our results suggest
that having multiple risk factors preceding COVID-19 infection
could further increase the effect of infection on the risk of post-
acute full-time sick leave.

The transportability of our findings to other countries’ popu-
lations may be most relevant when considering how having a
combination of risk factors (specifically older age, high BMI,
depression, and female sex) can collectively impact one’s health,
even after the acute COVID-19 infection. While we were able to
examine the burden with respect to post-acute sick leave, other
countries may be able characterise this burden in other ways, such
as by examining differences in employment termination or dis-
ability payments.

Naturally, this study has its limitations. First, our cohort con-
sists of individuals who tested positive between November 2020
and February 2021, a period dominated by the index and alpha
variants and before any large-scale vaccine roll-out in Denmark.
Today, vaccine coverage is high3?, and newer (omicron) variants
are dominant. Both factors are associated with a reduction in
PCC prevalence!431:32, raising the issue of how to interpret the
results in the current pandemic context.

Second, there are some limitations with our choice of outcome.
One problem is that sick leave only measures those with a con-
nection to the labour marked. We note that this includes students
and the unemployed. In Denmark, persons who are unemployed
can only receive unemployment benefits if they are actively
looking for a job. If a person is unable to comply with their
obligations due to illness or injury, they can apply for sick leave33.
Similarly, students can apply for sick leave if illness or injury
prevents them from attending their exams. Due to the design of
the EFTER-COVID questionnaire we cannot rule out the pre-
sence of persons ineligible for the outcome in the study cohort,
such as persons on early retirement. We presume these persons
will not report taking sick leave, since they have no incentive for
false reporting, although some could have misinterpreted the
question. Overall, we expect the vast majority of the study
population to be eligible for the outcome.

Third, prior full-time sick leave could be a good predictor of
post-acute full-time sick leave, but due to participants in the
EFTER-COVID survey not being asked about it, we are unable to
adjust for this covariate. If prior full-time sick-leave is associated
with the test result, this will introduce bias in our results. Parti-
cipants on full-time sick leave prior to their test-date may to some
extent be captured by the Charlson comorbidity index.

Furthermore, the most likely association would be that prior
sick leave was associated with a lower probability of testing
positive due to decreased social activities. Since persons already
on sick-leave are more likely to report substantial sick leave after
infection, these assumptions imply that our reported risk differ-
ence estimates are conservative compared to what we would get if
we could adjust for prior sick-leave, since people with high risk of
long-term sick leave end up overrepresented in the test-
negative group.

Fourth, there are limitations from using the EFTER-COVID
questionnaire data. One concern is the self-reporting nature of
the questionnaire, which is vulnerable to reporting errors. In
particular, there is potential for recall bias, where participants
may not remember the amount of sick leave they took over the
9 months following the test. Further, there is potential for selec-
tion bias due to applied exclusion criteria resulting in a non-
representative study population. First, only tested individuals
were eligible for invitation to the EFTER-COVID questionnaire.
However, we believe this to be a minor concern due to the uni-
versal testing strategy for SARS-CoV-2 implemented in Denmark
from May 2020 through the study period, where testing was
encouraged and freely available to all adults?%-34. Second, just over
1 in 3 of the invitees completed the questionnaire. We observed
that respondents were more likely female, older, and with more
comorbidities compared with non-respondents. As these groups
had higher than average risk differences, it is likely that the results
reported in Table 3 are exaggerated compared with the average
risk difference in the general Danish working age population. It is
also possible participants experiencing post-acute symptoms and
taking sick-leave were more motivated to respond to the ques-
tionnaire, leading to exaggerated RD estimates. If this was the
case, we should expect a higher response rate among test posi-
tives, since we observed an increased risk of substantial post-acute
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full-time sick leave after a positive test compared with a negative
test (RD 3.3%).

Finally, from a methodological perspective, concerns have been
cited about inconsistency in variables found to impact hetero-
geneity across different supervised machine learning methods, as
well as across random seeds 3°.

We found the parameter tuning procedure implemented by the
grf package using cross-validation would produce unstable and
sometimes ill-calibrated results. This was at least partly caused by
hyperparameters in the causal forest algorithm that control the
maximum imbalance allowed between two child leaves in a split.
Due to the low prevalence of several of the health conditions
considered, we found it was important to adjust these parameters
to allow splitting along low prevalence health conditions. When
using the parameter tuning procedure, the output forest was quite
restrictive on the maximum imbalance. When splits are not
permitted due to large imbalance, their variable importance will
be 0, and CRDs are constant along the low prevalence health
conditions, irrespective if heterogeneity exists. Controlling the
imbalance is done to align the algorithm with theory?®. However,
not considering the effect of this can lead to potentially important
heterogeneity being ignored. For our cohort, fibromyalgia and
COPD end up without splits unless we adjust the imbalance
parameters.

We ended up using the default values for the tuning para-
meters used by the causal forest algorithm, but with modification
to the parameters controlling split imbalance and maximum node
size. By performing a sensitivity analysis, we found causal forest
produced consistent results regarding variables found to impact
heterogeneity across different combinations of hyperparameters
not controlling split imbalance.

These results do not address the concern about inconsistency
across supervised learning methods. It would be valuable to
repeat our analysis with an alternative method; however, we are
unaware of any alternative accessible methods to replace our
causal forest analysis with the goal of identifying subgroups with
high causal risk differences and providing patient-centred esti-
mates of excess risk that take multimorbidity into account.

Additional limitations are discussed in the Supplementary
discussion.

Altogether, our study employs causal machine learning to
investigate heterogeneity in the effect of COVID-19 on post-acute
sick leave and to demonstrate the value of individual level causal
effect estimates to identify persons particularly susceptible to the
burden of PCC. The results highlight the potential for targeted
public health interventions that account for individual PCC risk,
with age, sex, high BMI, and depression identified as key factors,
and serves as an example of the use of the causal forest approach
in the observational setting.

Data availability

The datasets used in this study comprise sensitive, individual-level information from
completed questionnaires and national register data. According to the Danish data
protection legislation, the authors are not permitted to share these sensitive data directly
upon request, including source data for figures. However, the data are available for
research purposes upon request to the Danish Health Authority (register data, email:
kontakt@sundhedsdata.dk) and Statens Serum Institut (questionnaire data, email:
aii@ssi.dk), as well as within the framework of the Danish data protection legislation and
any required permission from authorities. Data request processing can take an expected
three to 6 months.

Code availability

The analysis code is stored in a GitHub repository at https://github.com/kjakobse/risk-
factors-associated-with-long-term-sick-leave-following-COVID-19-in-Danish-
population3®.
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