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Abstract

Background Outside a screening program, early-stage lung cancer is generally diagnosed

after the detection of incidental nodules in clinically ordered chest CT scans. Despite the

advances in artificial intelligence (AI) systems for lung cancer detection, clinical validation of

these systems is lacking in a non-screening setting.

Method We developed a deep learning-based AI system and assessed its performance for

the detection of actionable benign nodules (requiring follow-up), small lung cancers, and

pulmonary metastases in CT scans acquired in two Dutch hospitals (internal and external

validation). A panel of five thoracic radiologists labeled all nodules, and two additional

radiologists verified the nodule malignancy status and searched for any missed cancers using

data from the national Netherlands Cancer Registry. The detection performance was eval-

uated by measuring the sensitivity at predefined false positive rates on a free receiver

operating characteristic curve and was compared with the panel of radiologists.

Results On the external test set (100 scans from 100 patients), the sensitivity of the AI

system for detecting benign nodules, primary lung cancers, and metastases is respectively

94.3% (82/87, 95% CI: 88.1–98.8%), 96.9% (31/32, 95% CI: 91.7–100%), and 92.0% (104/

113, 95% CI: 88.5–95.5%) at a clinically acceptable operating point of 1 false positive per scan

(FP/s). These sensitivities are comparable to or higher than the radiologists, albeit with a

slightly higher FP/s (average difference of 0.6).

Conclusions The AI system reliably detects benign and malignant pulmonary nodules in

clinically indicated CT scans and can potentially assist radiologists in this setting.
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Plain language summary
Early-stage lung cancer can be diag-

nosed after identifying an abnormal

spot on a chest CT scan ordered for

other medical reasons. These spots

or lung nodules can be overlooked by

radiologists, as they are not neces-

sarily the focus of an examination and

can be as small as a few millimeters.

Software using Artificial Intelligence

(AI) technology has proven to be

successful for aiding radiologists in

this task, but its performance is

understudied outside a lung cancer

screening setting. We therefore

developed and validated AI software

for the detection of cancerous

nodules or non-cancerous nodules

that would need attention. We show

that the software can reliably detect

these nodules in a non-screening

setting and could potentially aid

radiologists in daily clinical practice.

COMMUNICATIONS MEDICINE |           (2023) 3:156 | https://doi.org/10.1038/s43856-023-00388-5 | www.nature.com/commsmed 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00388-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00388-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00388-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00388-5&domain=pdf
http://orcid.org/0000-0002-3357-2959
http://orcid.org/0000-0002-3357-2959
http://orcid.org/0000-0002-3357-2959
http://orcid.org/0000-0002-3357-2959
http://orcid.org/0000-0002-3357-2959
http://orcid.org/0009-0001-0796-8554
http://orcid.org/0009-0001-0796-8554
http://orcid.org/0009-0001-0796-8554
http://orcid.org/0009-0001-0796-8554
http://orcid.org/0009-0001-0796-8554
http://orcid.org/0000-0001-8651-6646
http://orcid.org/0000-0001-8651-6646
http://orcid.org/0000-0001-8651-6646
http://orcid.org/0000-0001-8651-6646
http://orcid.org/0000-0001-8651-6646
http://orcid.org/0000-0003-1180-3805
http://orcid.org/0000-0003-1180-3805
http://orcid.org/0000-0003-1180-3805
http://orcid.org/0000-0003-1180-3805
http://orcid.org/0000-0003-1180-3805
mailto:colin.jacobs@radboudumc.nl
www.nature.com/commsmed
www.nature.com/commsmed


Lung cancer is one of the most frequent cancers and is
worldwide the leading cause of cancer death1. It has been
estimated that 2.2 million global new lung cancer cases were

diagnosed in 2020 and that 1.8 million cancer deaths were caused
by lung cancer, almost one fifth of all cancer deaths. Lung cancer
is often diagnosed at an advanced stage, because symptoms
usually occur when the disease has progressed to a higher stage2.

The survival rate substantially improves if lung cancer is
diagnosed at an early stage2. For this reason, lung cancer
screening programs aim to detect lung cancer as early as possible
with low-dose computed tomography (CT), when the cancer
presents as a small pulmonary nodule. Although trials have
provided evidence that CT screening can substantially reduce
lung cancer related mortality in a high-risk population3,4, their
implementation into clinical practice has been slow5,6. Hence,
early-stage lung cancer is generally diagnosed after the detection
of incidental nodules in non-screening chest CT scans that were
ordered for other medical reasons7. Similarly, pulmonary
metastases from extra-thoracic malignancies can be detected as
incidental nodules as well and should be diagnosed and treated as
early as possible given their large potential for further tumor
spread8.

However, the detection of pulmonary nodules in CT scans is a
challenging task in a routine clinical setting. First, nodules can be
as small as three millimeters and are therefore hard to detect by
radiologists9. This is especially true when the diagnosis of lung
and airway diseases is not the focus of the examination and the
chosen imaging parameters are suboptimal for this task. Second,
radiologists may only focus on the main clinical question and
discontinue their search for additional findings such as
nodules10,11. Finally, the workload of radiologists has dramati-
cally increased in the past 15 years, mainly caused by the
increasing number of CT studies12. This underlines the impor-
tance of efficient nodule detection and management.

Artificial intelligence (AI) is a potential solution to support
radiologists with this task. Many AI studies have reported a high
performance of deep learning-based computer-aided detection
(DL-CAD) systems for nodule detection: the sensitivities range
from 86% to 98% with an average of 1–2 false positives per scan
(FP/s) on public CT datasets13, such as the LIDC-IDRI dataset14.
When using a DL-CAD system as a concurrent reader, radi-
ologists can obtain a higher detection sensitivity, improve the
uniformity of their management recommendations, and reduce
their reading time15–18.

Nonetheless, validation studies of DL-CAD systems on modern
clinical datasets remain sparse6,19. Even when such a dataset is
available, AI studies are often limited to a reference standard set by
one or two radiologists while substantial interobserver variability
exists for the task of nodule identification20,21. More importantly,
most reference standards lack histopathological proof or follow-up
imaging for at least 2 years to determine which individual nodules
were malignant. Although multiple AI studies have already
demonstrated the potential clinical value of DL-CAD systems for
scan-level lung cancer detection22–24, they do not assess their per-
formance for detecting all clinically relevant nodules that require
follow-up regardless of their malignancy status.

Therefore, the aim of this study is to bridge the gap between
lung cancer and nodule detection AI studies. In a retrospective
multi-center setting, we developed and validated a deep learning-
based algorithm for the detection of pulmonary nodules in rou-
tine clinical CT scans with a reliable reference standard based on
nodule identifications of five thoracic radiologists and nodule-
level malignancy status. We demonstrate that a DL-CAD system
can accurately detect benign pulmonary nodules, small lung
cancers, and metastases in heterogenous CT scans that are made
in routine clinical care.

Methods
Study design. At both institutions, the local institutional review
board approved the study and waived the need for informed
consent because of the retrospective design and the use of
anonymized data (Radboud University Medical Center: case
2016-3045, project 19010; Jeroen Bosch Hospital: case
2020.04.22.01). First, we developed and validated a pulmonary
nodule detection system with the publicly available LUNA16
dataset25, a subset of the LIDC-IDRI archive14. The details of this
procedure and results are provided in Supplementary Note, Fig-
ure, and Table 1. Then, a large dataset of CT scans was collected
from the picture archiving and communications systems (PACS)
from a university medical center (hospital A; Radboud University
Medical Center) and a large non-academic teaching hospital
(hospital B; Jeroen Bosch Hospital) in the Netherlands. The CT
scans from hospital A were annotated for the presence of pul-
monary nodules by trained medical students and subsequently
the system was re-trained using both the CT scans from LUNA16
and hospital A (see Supplementary Note 2 for more details).
Finally, the detection system was evaluated on two datasets: a
hold-out set with CT scans from hospital A (internal test set) and
a completely independent set from hospital B (external test set).
Five thoracic radiologists independently located the pulmonary
nodules in the scans and two additional radiologists determined
the malignancy status of each nodule and located any missed
cancers using data from the national Netherlands Cancer
Registry (NCR).

Datasets. For training a lung detection component of the AI
system (see section Nodule detection pipeline), a dataset was
prepared with 500 thorax and thorax-abdomen CT scans (500
patients) from hospital A from 2017. For training the nodule
detection system, another dataset was prepared including all 888
thorax CT scans (887 patients) from the LUNA16 challenge25 and
602 thorax CT scans (602 patients) from hospital A from 2017.
For testing the complete nodule detection system, two datasets
were prepared: one dataset with 100 thorax and thorax-abdomen
CT scans (100 patients) from hospital A from 2018-2020 (internal
test set) and another dataset including 100 thorax and
thorax–abdomen CT scans from hospital B from the same period
(external test set). At both hospitals, the scans were evenly
sampled from four categories to obtain balanced datasets: (1)
patients with stage I lung cancer; (2) patients with pulmonary
metastases; (3) patients with benign pulmonary nodules larger
than 5 mm for which imaging follow-up would be
recommended26; and (4) patients with benign pulmonary nodules
smaller than 5 mm or no nodules (which were considered as
normal). There was no patient overlap between the training and
test datasets.

Flowcharts of the study selection for the test and training
datasets are shown in Fig. 1 and Supplementary Fig. 2,
respectively. During the study selection procedure, an experi-
enced radiologist (E.T.S) assessed the validity of the scans using
the eligibility criteria as defined in the next section. In case of
doubt, another radiologist was consulted (M.R.). The sample sizes
of the training data obtained at hospital A were based on the size
of the LUNA16 dataset. For the test set, we aimed to collect
100 scans per hospital, which was mainly determined by the
maximum number of scans that could be annotated by the panel.
One CT scan per patient was sampled to maximize the diversity
of the datasets.

An overview of the main characteristics of each dataset is
included Table 1 and additional imaging parameters are included
in Supplementary Table 2. The annotation protocols for the
training data are described in detail in Supplementary Note 3.
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Characteristics of all pulmonary nodules in the training and test
datasets are described in Table 2 and additional information
about the training labels is included in Supplementary Table 3.
The characteristics of the subset of malignant nodules in the test
datasets are provided in Supplementary Table 4.

Eligibility criteria. In accordance with the British Thoracic
Society (BTS) nodule management guidelines, only adult patients
(≥18 years old) were included26. For the selection primary lung
cancer cases, we included patients with stage I cancer as they
include nodules instead of masses (>30 mm)27. For the selection

Fig. 1 Flowchart for creating the test dataset for the evaluation of the pulmonary nodule detection system. aCT scans with thick slices (>3mm), missing
slices, or very low volume (<50 slices) were excluded. bThe most recent CT scan prior to the cancer diagnosis was selected to ensure retrospective
localization. cOnly selected primary lung cancers that were histologically examined. dBased on a natural language processing analysis of the radiology
reports51. eOne CT scan per patient was selected. Non-nodular lung cancers were cancers that did not appear as nodules (i.e., masses, thick-walled cysts).
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of pulmonary metastases cases, both patients with metastasized
lung cancer and extra-thoracic cancer were included.

Considering the routine clinical setting of our study, it is
important to note that not all patients can be reliably screened for
malignant pulmonary nodules. Patients with extensive fibrosis or
consolidations (e.g., due to severe interstitial diseases, hemor-
rhage, or pneumonia) were excluded, as their lungs contain high
attenuation areas that prevent correct location and delineation of
relevant nodules. Furthermore, patients were excluded if CT scans
were made with a slice thickness >3 mm, or were limited by
severe breathing artifacts or incomplete coverage of the lungs.
Finally, patients with more than 15 pulmonary metastases
(according to the initial visual assessment) were excluded to
reduce annotation efforts and prevent data imbalance.

Reference standard. A panel of five thoracic radiologists (J.T.-d.J.,
S.S., M.M., M.v.L., M.K. with 2, 4, 6, 16, 21 years of experience,
respectively) independently annotated and measured all intra-
pulmonary nodules in the test datasets with in-house software
(version 19.9.2 of CIRRUS Lung Screening, DIAG, Radboudumc,
Nijmegen, The Netherlands). Nodules were manually identified
and then volumetrically measured using a semi-automatic nodule
segmentation algorithm28. Radiologists were able to manually
correct nodule segmentations during this process. Furthermore,
they indicated the lobe location and type of the nodules (solid, part-
solid, non-solid, perifissural, and calcified). The radiologists were
instructed to annotate all intrapulmonary nodules, defined as any
round or irregular density inside the lung parenchyma with an
equivalent diameter ≥3 and ≤30mm29. We matched the nodule
annotations of the different radiologists and used a majority vote
reference standard that only included the nodules that were
detected by at least three radiologists. The remaining annotations
(i.e., lesions found to be <3mm or >30mm or nodules annotated
by the minority of radiologists) were considered as indeterminate
findings and were moved to an exclusion list, which is consistent
with the reference standard from the LUNA16 challenge (more
details in section Analysis).

Two radiologists (E.T.S. and M.R., not part of the panel) linked
the annotated nodules to the cancer diagnoses and checked for
any missed cancers. They were provided with all available CT
scans (period 2000–2020) of a patient; the corresponding
radiology reports; and the lobe location, nodule diameter, and
histological type of the primary and metastasized cancers as
recorded in the NCR. All cancer diagnoses were either confirmed
by histological examination, cytology testing, or clinical diag-
nostic testing (e.g., medical imaging, exploratory surgery). The
basis of all cancer diagnoses and cancer morphology are provided
in Supplementary Tables 5 and 6. A lesion was considered benign

if it was stable and not followed by a cancer diagnosis within two
years, although this does not completely rule out the possibility of
an indolent malignancy in a stable subsolid nodule30.

Nodule detection pipeline. An overview of the nodule detection
pipeline is displayed in Fig. 2. The pulmonary nodule detection
system consists of three components that each use deep learning
architectures for the following tasks: (1) lung detection, (2)
nodule candidate detection, and (3) false positive reduction. A
detailed description of the design of these components and the
training procedure is provided in Supplementary Note 2.

The lung and nodule candidate detection models are one-stage
2D object detectors with the YOLOv5 architecture (version 5.0,
2021)31. The slice-by-slice 2D lung bounding boxes are combined
into a 3D volume of interest. This preprocessing step enables a
fast and accurate localization of the lungs, and thereby reduces
the computational load for the subsequent components, especially
for the analysis of larger CT scans that contain both the thorax
and abdomen. The nodule candidate detection component is
designed to detect potential nodule locations with the highest
possible sensitivity. As in previous work32–34, this component
uses consecutive axial CT slices as input channels, thereby adding
additional spatial information to the single 2D input images. This
procedure helps to discriminate nodules from pulmonary vessels
and other linear structures.

The false positive reduction component reduces the number of
false positives while retaining a high sensitivity. The false positive
reduction model is adapted from the work of Venkadesh et al.35,
which is a multi-view ResNet50 classification model that takes
nine different slices from a 3D patch around a nodule candidate.
The nodule detection pipeline returns the center coordinates of
the detected nodules and their nodule likelihood scores.

Analysis. The nodule detection system was evaluated on the
internal and external test set by measuring the sensitivity and
corresponding false positive rate per scan on different operating
points on the Free Receiver Operating Characteristic (FROC)
curve. We assessed the sensitivity at 7 predefined false positive
rates, namely 0.125, 0.25, 0.5, 1, 2, 4, and 8 false positives per
scan. We also assessed the average sensitivity at all false positive
rates, referred to as the Competition Performance Metric (CPM)
in the LUNA16 challenge25. For each threshold, the 95% con-
fidence interval was calculated by using bootstrapping (1,000
bootstraps using scan-level sampling with replacement). These
evaluation metrics were calculated with the Python scripts that
were provided for the LUNA16 challenge25. We evaluated the
nodule detection system for multiple subsets of nodules with a
minimum diameter threshold of 3, 4, and 5 mm. Additional

Fig. 2 Components of the pulmonary nodule detection system. First, the system takes a CT scan and detects the lungs slice-by-slice to obtain a region of
interest. Second, nodule candidates are generated by analyzing overlapping CT volumes of five slices each. Finally, nine different 2D views are sampled
from each nodule candidate and analyzed by a multi-view ResNet-50 network.
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analyses were conducted for primary lung cancers, pulmonary
metastases, and actionable benign nodules (≥5 mm, neither cal-
cified nor perifissural), which would require follow-up according
to the BTS guidelines26.

Our hit criterion was that the center of a predicted nodule
should be within the radius of the ground truth nodule, otherwise
a detection was regarded as a false positive. If a nodule prediction
matched with a nodule regarded as indetermined (see section
“Reference standard”), then it was ignored and not counted as a
true or false positive. To characterize failure modes of the AI
system, we asked an experienced thoracic radiologist (E.T.S.) to
perform a visual inspection of all false negative detections and 25
randomly sampled false positive detections of the nodule
detection system for each test set. For this analysis, we selected
a clinically acceptable operating point for the model that
corresponded to an average of 1 FP/s.

To assess the potential clinical value of the proposed AI system,
its sensitivity for detecting primary cancers, pulmonary metas-
tases, and actionable benign nodules was compared to those from
the individual radiologists from the panel. The sensitivity and
false positive rate of each radiologist were estimated by
comparing his or her annotations with a new set defined by the
other four radiologists (for the definition of benign and
indetermined nodules). Since the reference standard slightly
changed for each radiologist, the sensitivity of the AI system at 1
FP/s was recalculated for each comparison. The 95% confidence
intervals for the AI system and radiologists were calculated by
using bootstrapping (1000 bootstraps using scan-level sampling
with replacement). Significance testing was performed with a two-
sided paired permutation test (1000 iterations) on nodule-level
with the MLxtend library (version 0.22.0, 2023)36 for Python. A p
value smaller than 0.05 was considered significant.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Test datasets characteristics. In the period of 2018-2020, 14,943
adult patients underwent 34,689 thorax and thorax–abdomen CT

scans at hospital A (see Fig. 1). In hospital B, 12,739 patients
underwent 22,621 thorax and thorax–abdomen CT scans in the
same period. From these scans, 356 scans (nA= 323, nB= 33)
were excluded due to inadequate technical specifications (e.g.,
thick slices, missing slices, or very low volume). Initial samples of
2852 (hospital A) and 2935 (hospital B) CT scans were drawn
from four nodule categories for the respective internal and
external test set. For each category, scans were randomly sampled
until 25 valid scans were obtained per hospital. During this
process, 267 scans (nA= 128, nB= 139) were assessed. In total,
67 scans (nA= 28, nB= 39) were excluded as they had too many
pulmonary metastases (nA= 13, nB= 13), extensive consolida-
tions or fibrosis (nA= 7, nB= 13), only non-nodular lung cancers
(e.g., masses) (nA= 8, nB= 6), registered cancers that could not
be retrospectively localized (nB= 3), insufficient lung coverage
(nB= 2), or severe artifacts (nB= 2). This resulted into a final
selection of 100 studies from 100 patients (63 ± 15 years, 52
women) for the internal test set (hospital A) and 100 studies from
100 patients (67 ± 12 years, 53 women) for the external test set
(hospital B) (see Table 1).

For these test sets, 622 (nA= 319, nB= 303) from the 1,617
annotations (nA= 852, nB= 765) in total were included in the
analysis (see Table 2). The remaining findings were considered as
indetermined, as they did not meet the size criteria (nA= 218,
nB= 157) or were non-cancerous and not labeled by the majority
of radiologists (nA= 315, nB= 305).

Pulmonary nodule detection analysis. Table 3 presents the
sensitivity of the AI system at 0.125, 0.25, 0.5, 1, 2, 4, and 8 false
positives per scan (FP/s) on the internal and external test set. The
FROC curves for the detection of actionable benign nodules,
primary lung cancers, and pulmonary metastases per test set are
shown in Fig. 3. Supplementary Note 4 describes additional
analyses of the detection performance of the individual compo-
nents of the AI system. More specifically, data characteristics and
results of the lung detection component are presented in Sup-
plementary Tables 7 and 8. Performance of the nodule candidate
detection and false positive reduction components are provided
in Supplementary Table 9. Nodule detection results on subgroups
of contrast-enhanced and non-contrast CT scans are provided in

Table 1 Characteristics of the training and test datasets.

Dataset Lung detection training
dataset

Nodule detection training
dataset

Internal test dataset External test dataset

Source(s)a Hospital A+ LIDC/IDRI Hospital A+ LIDC/IDRI Hospital A Hospital B
Periodb 2011, 2017 2011, 2017 2018–2020 2018–2020
Patients (n, % of all patients)

All 1387 1489 100 100
Men 273 (19.7) 327 (22.0) 48 (48.0) 47 (47.0)
Women 227 (16.4) 275 (18.5) 52 (52.0) 53 (53.0)
N/Ab 887 (64.0) 887 (59.6)

Age (mean, SD)b

All 59.6 (15.3) 61.7 (14.0) 62.5 (15.0) 66.9 (11.7)
Men 58.8 (15.8) 62.2 (14.3) 61.8 (16.3) 66.0 (13.3)
Women 60.6 (14.6) 61.1 (13.5) 63.1 (13.8) 67.8 (10.2)

CT scans (n, % of all scans)
All 1388 1490 100 100
Contrast-enhanced 605 (43.6) 508 (34.1) 68 (68.0) 67 (67.0)

Slice thickness in mm (mean, range) 1.44 (0.50–3.00) 1.38 (0.25–2.50) 0.67 (0.25–3.00) 2.47 (0.6–3.0)
Axial plane resolution in mm (mean,
range)

0.70 (0.30–1.02) 0.67 (0.29–0.98) 0.64 (0.31–0.93) 0.73 (0.53–0.98)

aWe selected the same subset of CT scans as used in the LUNA16 challenge25. Note that one patient had two CT scans.
bPatient information (i.e., age and sex) and study dates are unavailable for the LIDC-IDRI dataset due to anonymization14. The LIDC-IDRI dataset was released in 2011.
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Supplementary Table 10. The average processing time per scan
was 30 ± 18 s.

For the internal test set, the sensitivity for detecting all nodules
at an average of 1 FP/s (detection threshold = 0.647) was 90.9%
(290/319, 95% CI: 88.0–93.6%) and the CPM was 85.4%. For

detecting actionable benign nodules, the sensitivity at 1 FP/s was
92.1% (58/63, 95% CI: 84.3–98.4%) and the CPM was 90.9%. For
detecting primary lung cancers, the sensitivity at 1 FP/s was
92.6% (25/27, 95% CI: 82.1–100%) and the CPM was 91.5%. For
detecting pulmonary metastases, the sensitivity at 1 FP/s was
90.3% (149/165, 95% CI: 85.6–94.5%) and the CPM was 83.9%.

For the external test set, the sensitivity for detecting all nodules at
an average of 1 FP/s (detection threshold= 0.573) was 92.4% (280/
303, 95% CI: 89.8–95.1%) and the CPM was 87.6%. For detecting
actionable benign nodules, the sensitivity at 1 FP/s was 94.3% (82/
87, 95% CI: 88.1–98.8%) and the CPM was 90.5%. For detecting
primary lung cancers, the sensitivity at 1 FP/s was 96.9% (31/32,
95% CI: 91.7–100%) and the CPM was 94.2%. For detecting
pulmonary metastases, the sensitivity at 1 FP/s was 92.0% (104/113,
95% CI: 88.5–95.5%) and the CPM was 89.0%. The sensitivity of
the nodule detection system for the nodules with a minimum
diameter threshold of 4 and 5mm are included in Table 3.

Visual assessment of false positives and false negatives. All false
negatives (nA= 29, nB= 23) and a random selection of false
positives (nA= 25, nB= 25) from the AI system at an operating
point of 1 FP/s were visually assessed. The false negatives could be
divided into seven categories and the false positives into fourteen
categories, as outlined in Fig. 4. For the false negative categories, it
is also shown how many nodules missed by the AI model were
still detected by the radiologists from the panel for reference
purposes. The three most frequent false negatives were juxta-
pleural nodules (nA= 17, nB= 11; defined as solid nodules
located on or within 10 mm of the visceral pleura37), juxtavas-
cular nodules (nA= 5, nB= 2, defined as solid nodules that are
attached to a vessel), and non-solid nodules (nA= 3, nB= 3).
Regarding the false positives, the three most frequent false cate-
gories were fibrosis (nA= 2, nB= 4), duplicate nodule detections
(nA= 2, nB= 3), and consolidations (nA= 2, nB= 1). Potentially
missed solid nodules (nA= 7, nB= 7), perifissural nodules
(nA= 2, nB= 3), and micronodules (nA= 1, nB= 4; defined as
nodules smaller than 3 mm29) were counted as false positives in
accordance with our reference standard.

Comparison of AI performance with the panel of radiologists.
Figure 5 shows examples of malignant nodules that were missed

Table 2 Characteristics of the pulmonary nodules in the
training and test datasets.

Dataset Nodule detection
training dataset

Internal test
set

External test
set

Source(s) Hospital A+ LIDC/
IDRI

Hospital A Hospital B

Total nodules 4770 319 303
Nodules per diameter
threshold (n, % of
total)a

≥4mm 3576 (75.0) 250 (78.4) 262 (86.4)
≥5mm 2453 (51.4) 188 (58.9) 215 (71.0)

Diameter (in mm)a
Median 5.0 5.5 6.6
IQR 4.0–7.0 4.1–8.6 4.7–11.9

Volume (in mm3)a

Median 68 88 161
IQR 33–186 36–332 55–889

Nodules per scan
Median 2 1 2
IQR 1–4 1–4 1–4

Nodules per type (n, %
of total)b

Solid 2739 (57.5) 269 (84.3) 247 (81.5)
Part-solid 449 (9.4) 12 (3.8) 19 (6.3)
Non-solid 469 (9.8) 8 (2.5) 10 (3.3)
Perifissural 684 (14.3) 24 (7.5) 17 (5.6)
Calcified 429 (9.0) 6 (1.9) 10 (3.3)

Benign versus
malignant nodules (n,
% of total)c

Benign N/A 127 (39.8) 158 (52.1)
Primary cancer N/A 27 (8.5) 32 (10.6)
Metastasis N/A 165 (51.7) 113 (37.3)

Actionable benign
nodules (n, % of total)

N/A 63 (19.7) 87 (28.7)

aIn case of multiple annotations, the volume and equivalent diameter labels from the different
readers were averaged per nodule. Interquartile range (IQR) is from the 25th to the 75th
percentile.
bFor the test datasets, the nodule type was based on the majority vote. For the training dataset,
the nodule type was determined by either a majority vote (source: LIDC-IDR; value of 2 out of 5
was considered as non-solid, value of 4 out of 5 as part-solid) or single reader (Hospital A).
Perifissural nodules were not labeled in the LIDC-IDRI dataset.
cMalignancy labels were not available for the training dataset.

Table 3 Pulmonary nodule detection results on the internal and external test set.

Average number of false positives per scan

Count 0.125 0.25 0.5 1 2 4 8 CPM

Internal (hospital A)
All

Nodules ≥3 mm 319 60.8 72.1 82.1 90.9 95.6 97.5 99.1 85.4
Nodules ≥4mm 250 72.4 80.8 89.2 92.8 96.8 98.0 99.2 89.9
Nodules ≥5mm 188 77.1 83.0 89.9 91.5 96.3 97.9 99.5 90.7

Benign
Actionable nodules 63 77.8 82.5 88.9 92.1 96.8 98.4 100.0 90.9

Malignant
Primary cancers 27 77.8 81.5 92.6 92.6 96.3 100.0 100.0 91.5
Metastases 165 60.0 68.5 78.2 90.3 95.2 96.4 98.8 83.9

External (hospital B)
All

Nodules ≥3 mm 303 68.6 77.3 86.5 92.4 94.4 96.7 97.4 87.6
Nodules ≥4mm 262 76.3 83.6 90.1 94.3 96.2 97.3 97.7 90.8
Nodules ≥5mm 215 79.1 85.1 90.7 94.4 96.7 97.7 98.1 91.7

Benign
Actionable nodules 87 72.4 82.8 90.8 94.3 96.6 97.7 98.9 90.5

Malignant
Primary cancers 32 87.5 90.6 93.8 96.9 96.9 96.9 96.9 94.2
Metastases 113 76.1 79.8 88.5 92.0 93.8 96.5 96.5 89.0

Note. The model sensitivity (%) is reported for each false positive rate.
CPM competition performance metric, the average sensitivity at all false positive rates.
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Fig. 3 Free response receiver operating characteristic (FROC) curves of the AI system per test set. The internal test set (hospital A) contained 27
primary lung cancers, 165 pulmonary metastases, and 63 actionable benign nodules. The external test set (hospital B) contained 32 primary lung cancers,
113 pulmonary metastases, and 87 actionable benign nodules. The shaded bands represent the 95% confidence intervals per nodule category.

Fig. 4 Frequency distribution of the categories of the false negative and false positive detections of the AI system. In the internal test set (hospital A),
29 false negative and 25 false positive detections were inspected. In the external test set (hospital B), 23 false negative and 25 false positive detections
were inspected. The lowest, median, and highest sensitivity of the radiologists have been indicated for the false negative detections of the AI system.
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by either the AI system or majority of radiologists in the panel.
The majority of radiologists detected all primary lung cancers in
the internal and external test set, but the AI system missed 2 out
of 27 cancers in the internal test set and 1 out of 32 cancers in the
external test set. In the internal test set, 55 out of 165 metastases
(33%) were missed by the majority of radiologists (15/25
patients). The AI system detected 41 (75%) of these missed
metastases (14/15 patients). For the external test set, 27 out of 113
metastases (24%) were missed by the majority of radiologists (11/
25 patients). The AI system detected 21 (78%) of these missed
metastases (10/11 patients).

In Table 4, the sensitivity of the AI system for detecting
actionable benign nodules, primary lung cancers, and pulmonary
metastases at 1 FP/s was compared with the sensitivity of each
individual radiologist from the panel. The FROC curve of the AI

system (average of all comparisons) and operating points of the
radiologists are visualized in Fig. 6. The AI system had a
significantly higher sensitivity than 2 out of 5 radiologists for
detecting actionable benign nodules in the internal test set
(radiologist 2, 95% vs. 79%, p = 0.02; radiologist 4, 95% vs. 79%,
p= 0.03) and external test set (radiologist 2, 95% vs. 70%, p < 0.001;
radiologist 4, 95% vs. 66%, p < 0.001), although with a higher false
positive rate than the radiologists (average difference of 0.6 FP/s).
For detecting pulmonary metastases, the AI system had a
significantly higher sensitivity than 4 out of 5 radiologists in the
internal test set (radiologist 1, 86% vs. 77%, p= 0.01; radiologist 2,
90% vs. 32%, p < 0.001; radiologist 3, 88% vs. 70%, p < 0.001;
radiologist 4, 88% vs. 45%, p < 0.001) and external test set
(radiologist 1, 90% vs. 81%, p= 0.048; radiologist 2, 92% vs. 66%,
p < 0.001; radiologist 3, 92% vs. 75%, p < 0.001; radiologist 4, 92%

Fig. 5 Examples of primary cancers and pulmonary metastases missed by the AI system or majority of radiologists from the panel. The bounding boxes
are 60mm. The most frequent false negatives of the AI model were non-solid nodules (a), juxtapleural nodules (b, c), and part-solid nodules (d). In
contrast to the AI model, the most frequent false negatives of the radiologists were nodules in base of the lungs (e), nodules in the right azygoesophageal
recess (f), nodules with the same diameter as neighbouring vessels (g), and juxtapleural nodules (h).
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vs. 61%, p < 0.001). There was no significant difference between the
sensitivity of the AI system and the radiologists for detecting
primary lung cancer. In all other cases, there was no significant
difference in sensitivity between the AI system and radiologists.

Discussion
In recent years, DL-CAD systems have shown a high perfor-
mance for detecting pulmonary nodules in publicly available CT
datasets. However, many nodule detection systems have been

Table 4 Comparison between the nodule detection performance of the AI model and individual readers on the internal and
external test set.

Actionable benign nodules Primary cancers Metastases

FP/scan Sensitivity (%) p Sensitivity (%) p Sensitivity (%) p

Internal
Radiologist 1 0.7 (0.5, 0.9) 98 (94, 100) 100 (100, 100) 77 (66, 88)
Recalibrated AI 1.0 (0.7, 1.5) 92 (84, 99) 0.24 93 (82, 100) 0.50 86 (81, 92) 0.01
Radiologist 2 0.1 (0.0, 0.2) 79 (69, 89) 100 (100, 100) 32 (18, 47)
Recalibrated AI 1.0 (0.7, 1.5) 95 (88, 100) 0.02 93 (82, 100) 0.52 90 (85, 94) <0.001
Radiologist 3 0.2 (0.1, 0.3) 89 (81, 97) 96 (87, 100) 70 (57, 83)
Recalibrated AI 1.0 (0.7, 1.5) 91 (83, 98) >0.99 93 (82, 100) >0.99 88 (84, 93) <0.001
Radiologist 4 0.5 (0.3, 0.7) 79 (70, 88) 100 (100, 100) 45 (37, 54)
Recalibrated AI 1.0 (0.7, 1.5) 95 (88, 100) 0.03 93 (82, 100) 0.52 88 (84, 93) <0.001
Radiologist 5 0.8 (0.5, 1.0) 77 (59, 95) 100 (100, 100) 87 (80, 93)
Recalibrated AI 1.0 (0.7, 1.5) 89 (79, 97) 0.08 93 (82, 100) 0.50 83 (77, 89) 0.23

External
Radiologist 1 0.7 (0.4, 1.0) 90 (81, 96) 97 (90, 100) 81 (74, 91)
Recalibrated AI 1.0 (0.7, 1.5) 97 (91, 100) 0.16 97 (92, 100) >0.99 90 (86, 95) 0.048
Radiologist 2 0.1 (0.1, 0.2) 70 (60, 78) 91 (78, 100) 66 (59, 73)
Recalibrated AI 1.0 (0.7, 1.4) 95 (89, 99) <0.001 97 (92, 100) 0.63 92 (89, 96) <0.001
Radiologist 3 0.3 (0.1, 0.4) 94 (86, 99) 94 (86, 100) 75 (65, 87)
Recalibrated AI 1.0 (0.6, 1.4) 95 (89, 100) >0.99 97 (92, 100) >0.99 92 (89, 96) <0.001
Radiologist 4 0.5 (0.4, 0.7) 66 (53, 78) 97 (90, 100) 61 (50, 74)
Recalibrated AI 1.0 (0.7, 1.4) 95 (89, 99) <0.001 97 (92, 100) >0.99 92 (89, 96) <0.001
Radiologist 5 0.6 (0.4, 0.7) 86 (75, 95) 97 (90, 100) 88 (83, 93)
Recalibrated AI 1.0 (0.6, 1.3) 96 (89, 100) 0.07 97 (92, 100) >0.99 91 (87, 95) 0.64

Note. The AI system was recalibrated for each comparison to match an average FP/s of 1, as the exclusion list and reference standard slightly varied per reader (latter only for benign nodules). The 95%
confidence intervals are enclosed by parentheses.
FP/scan average number of false positives per scan.

Fig. 6 Operating points of the individual radiologists of the panel compared to the free response receiver operating characteristic (FROC) curves of
the AI system per test set. The FROC curves are averaged over all comparisons per nodule category.
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neither externally validated in a clinical setting nor specifically
validated for the detection of cancer. For these reasons, we
developed and evaluated a DL-CAD system for the detection of
pulmonary nodules in routine clinical CT scans with a known
malignancy status. At a clinically acceptable threshold of 1 FP/s,
the system obtained a sensitivity of 92% for detecting nodules
with a minimum diameter of 3 mm on the external test set. For
actionable benign nodules, primary lung cancers and pulmonary
metastases, the sensitivity was 94%, 97%, and 92%, respectively.
The detection performance for hospitals A and B was compar-
able, indicating a good generalization performance. A comparison
between the nodule detection performance of the DL-CAD sys-
tem and radiologists showed that the system could provide a
higher sensitivity (average difference of 14, 2, and 17 percentage
points for actionable benign nodules, primary lung cancers and
pulmonary metastases, respectively) at the cost of a slightly higher
false positive rate (average difference of 0.6 FP/s), and that it
could locate most pulmonary metastases (78%) that were missed
by the majority of the five radiologists.

The sensitivity of our system for detecting pulmonary nodules is
comparable to the sensitivities reported in previous evaluation stu-
dies of DL-CAD systems in a non-screening setting. Studies have
reported sensitivities in the range of 65–88% at 1 FP/s for pulmonary
nodules of any diameter38–41. For nodules with aminimum diameter
of 3, 4, and 5mm, detection sensitivities are reported of 74%33,
88%42, and 82–91%15,43 at 1 FP/s, respectively. In future research,
DL-CAD systems should be benchmarked on a modern dataset with
routine clinical CT scans to determine the most optimal detection
method for analyzing these highly heterogenous scans.

To the best of our knowledge, there have been no studies in
recent years that evaluated a DL-CAD system for the detection of
both small lung cancers and pulmonary metastases in routine
clinical CT scans. For case-level lung cancer detection however,
Zhang et al.24 have shown that their DL-CAD system can obtain a
sensitivity of 96% and specificity of 88% on a dataset of 50 pre-
operative CT scans, from which half contained pathologically
confirmed malignant nodules. This sensitivity is in agreement
with our findings, although the specificity cannot be directly
compared as our system does not distinguish between benign and
malignant nodules.

The assessment of the false negatives and false positives of the
DL-CAD system shows that juxtapleural nodules are most chal-
lenging to detect, but also that the system can potentially identify
nodules that are even missed by a panel of experienced radi-
ologists. Juxtapleural nodules might be hard to detect by the
DL-CAD system due to their highly variable shape and similar
density to the pleural wall. Besides juxtapleural nodules, the DL-
CAD system may miss non-solid nodules, most likely due to their
low contrast resolution and the small proportion in the training
data as compared to solid nodules (Table 2). The missed primary
lung cancers were either non-solid (n= 2) or juxtapleural (n= 1).
Regarding the false positives, most could be considered as pos-
sibly overlooked or misinterpreted as non-nodular (13/25 for the
internal test set and 14/25 for the external test set). They were
often small (<4 mm), had typically benign features (i.e., triangular
shape), or were attached to the pleura or vasculature. Previous
studies have shown that CAD systems can indeed detect nodules
that are missed by multiple readers39,44. Other false positive
detections were duplicate detections (e.g., nodular components of
a larger lesion), non-nodular lesions (e.g., bandlike), fibrosis, and
consolidations. Similar causes for false positive findings have been
reported by Martins Jarnalo et al.42.

The comparison between the DL-CAD system and radiologists
showed that the system had a significantly higher sensitivity for
pulmonary metastases than most radiologist (4 out of 5) and a
significantly higher sensitivity for actionable benign nodules than

some radiologists (2 out of 5). No significant differences were
found for the detection of primary lung cancer, although the
operating points of the radiologists were located above the FROC
curve of the DL-CAD system (see Fig. 6). None of the primary
lung cancers were missed by the majority of radiologists, probably
due to their relatively large size (median diameter of 18 mm in the
external test set). The detection of pulmonary metastases was a
more challenging task for the radiologists, as these lesions were
much smaller (median diameter of 7 mm in the external test set)
and appeared in greater numbers (median of four lesions per scan
versus one). The difficulty of this task has been demonstrated
before in a study of Chen et al., who showed that one or more
pulmonary metastases were missed in 37% of all cases45. In our
datasets, missed pulmonary metastases were usually located in the
base of the lower lobes, right azygoesophageal recess, or nearby
blood vessels with a similar diameter. These locations are known
to be blind spots for radiologists45,46 and our results suggest that
these could be overcome with the help of a DL-CAD system.

Although it has not been demonstrated in this study that a DL-
CAD system could improve the radiologists’ performance for
lung cancer detection, it is likely that the system could aid in the
detection of small lung cancers given its high sensitivity for
pulmonary metastases and actionable benign nodules. Further-
more, it is important to emphasize that the panel of radiologists
were instructed to detect any pulmonary nodule, while this task is
not necessarily the focus of a CT examination in daily clinical
practice. As a result, certain cognitive biases were less likely to
occur in our setting, such as satisfaction of search11, and the
performance of the radiologists might be overestimated.

The strengths of our study are the use of data from routine
clinical CT scans from multiple hospitals and a reference stan-
dard set by a panel of thoracic radiologists with nodule-level
malignancy labels. However, this study also has a few limitations.
First of all, we did not conduct a second reading round where the
radiologists could review each other’s marks, such as the anno-
tation process of the LIDC-IDRI database14. More hard-to-detect
nodules could have been added to the test datasets by imple-
menting such an annotation process. Secondly, we selected an
operating point for the DL-CAD system that matched 1 FP/s to
compare its sensitivity with those of the radiologists. This oper-
ating point may not necessarily be the optimal trade-off between
the sensitivity and false positive rate in terms of costs and benefits
and the radiologists’ preferences. The selection of optimal oper-
ating points should be further investigated. Finally, the CT scans
from hospital B were reconstructed with a relatively high slice
thickness of 3 mm. This study could have benefited from another
external validation set with CT scans with thinner slices.

In conclusion, this study demonstrates that a DL-CAD system
obtained a high sensitivity with an acceptable false positive rate
for the detection of benign actionable nodules, primary lung
cancers, and pulmonary metastases in CT scans from a retro-
spective cohort of a routine clinical population. The system
thereby shows potential for aiding radiologists in detecting small
lung cancers and pulmonary metastases for obtaining a timely
diagnosis or monitoring disease progression. Future research
should focus on the evaluation and implementation of this system
in a prospective clinical setting.

Data availability
Data from the LUNA16 challenge is available via the Cancer Imaging Archive (source
data: https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX47; standardized annotations:
https://doi.org/10.7937/TCIA.2018.h7umfurq48) and Zenodo (part 1: https://doi.org/10.
5281/zenodo.372329549; part 2: https://doi.org/10.5281/zenodo.412192650). Clinical data
collected at the Radboud University Medical Center and Jeroen Bosch Hospital are not
released publicly, but can be requested from the investigators. Reasonable requests for de-
identified data for research purposes will be considered by the corresponding author and
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requires approval from the institutional review boards before access. Numerical results
underlying the graphs in Figs. 3 and 6 are available in Supplementary Data 1 and
Supplementary Data 2, respectively.

Code availability
The proposed system is freely available for research purposes at the platform Grand-
Challenge (https://grand-challenge.org/algorithms/lung-nodule-detector-for-ct/). The
lung and nodule candidate detection models are based on the YOLOv5 architecture
(version 5.0, https://doi.org/10.5281/zenodo.467965331, available on Github: https://
github.com/ultralytics/yolov5). The nodule false positive reduction model was adapted
from the previous work from our group (https://doi.org/10.1148/radiol.202120443335).
The model implementation details are described in Supplementary Material. Code for the
Free Receiver Operating Characteristic (FROC) analysis is available at the LUNA16
challenge website (https://luna16.grand-challenge.org/Evaluation/). Significance testing
was performed with the MLxtend library for Python (version 0.22.0, https://doi.org/10.
21105/joss.0063836).

Received: 31 May 2023; Accepted: 12 October 2023;

References
1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer
J. Clin. 71, 209–249 (2021).

2. Birring, S. S. & Peake, M. D. Symptoms and the early diagnosis of lung cancer.
Thorax 60, 268–269 (2005).

3. The National Lung Screening Trial Research Team. Reduced lung-cancer
mortality with low-dose computed tomographic screening. N. Engl. J. Med.
365, 395–409 (2011).

4. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT
screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

5. Schmid-Bindert, G. et al. Incidental pulmonary nodules – what do we know in
2022. Respiration 101, 1024–1034 (2022).

6. Liu, J. A., Yang, I. Y. & Tsai, E. B. Artificial intelligence (AI) for lung nodules,
from the AJR special series on AI applications. AJR Am. J. Roentgenol. 219,
703–712 (2022).

7. Gould, M. K. et al. Recent trends in the identification of incidental pulmonary
nodules. Am. J. Respir. Crit. Care Med. 192, 1208–1214 (2015).

8. MacMahon, H. et al. Guidelines for management of incidental pulmonary
nodules detected on CT images: From the Fleischner Society 2017. Radiology
284, 228–243 (2017).

9. Rubin, G. D. Lung nodule and cancer detection in CT screening. J. Thorac.
Imaging 30, 130 (2015).

10. Ko, J. P., Bagga, B., Gozansky, E. & Moore, W. H. Solitary pulmonary nodule
evaluation: pearls and pitfalls. Semin. Ultrasound CT MRI 43, 230–245 (2022).

11. Busby, L. P., Courtier, J. L. & Glastonbury, C. M. Bias in radiology: the how
and why of misses and misinterpretations. Radiographics 38, 236–247 (2018).

12. Bruls, R. J. M. & Kwee, R. M. Workload for radiologists during on-call hours:
dramatic increase in the past 15 years. Insights Imaging 11, 1–7 (2020).

13. Gu, Y. et al. A survey of computer-aided diagnosis of lung nodules from CT
scans using deep learning. Comput. Biol. Med. 137, 104806 (2021).

14. Armato, S. G. et al. The Lung Image Database Consortium (LIDC) and Image
Database Resource Initiative (IDRI): a completed reference database of lung
nodules on CT scans. Med. Phys. 38, 915–931 (2011).

15. Murchison, J. T. et al. Validation of a deep learning computer aided system for
CT based lung nodule detection, classification, and growth rate estimation in a
routine clinical population. PLoS ONE 17, e0266799 (2022).

16. Jacobs, C. et al. Assisted versus manual interpretation of low-dose CT scans
for lung cancer screening: impact on Lung-RADS Agreement. Radiol. Imaging
Cancer 3, e200160 (2021).

17. Hempel, H. L., Engbersen, M. P., Wakkie, J., van Kelckhoven, B. J. & de
Monyé, W. Higher agreement between readers with deep learning CAD
software for reporting pulmonary nodules on CT. Eur. J. Radiol. Open 9,
100435 (2022).

18. Kozuka, T. et al. Efficiency of a computer-aided diagnosis (CAD) system with
deep learning in detection of pulmonary nodules on 1-mm-thick images of
computed tomography. Jpn. J. Radiol. 38, 1052–1061 (2020).

19. Schreuder, A., Scholten, E. T., van Ginneken, B. & Jacobs, C. Artificial
intelligence for detection and characterization of pulmonary nodules in lung
cancer CT screening: ready for practice? Transl. Lung Cancer Res. 10, 2378
(2021).

20. Armato, S. G. et al. Assessment of radiologist performance in the detection of
lung nodules. Dependence on the definition of ‘truth’. Acad. Radiol. 16, 28–38
(2009).

21. Pinsky, P. F., Gierada, D. S., Nath, P. H., Kazerooni, E. & Amorosa, J. National
Lung Screening Trial: variability in nodule detection rates in chest CT studies.
Radiology 268, 865–873 (2013).

22. Ardila, D. et al. End-to-end lung cancer screening with three-dimensional
deep learning on low-dose chest computed tomography. Nat. Med. 25,
954–961 (2019).

23. Jacobs, C. et al. Deep learning for lung cancer detection on screening CT
scans: results of a large-scale public competition and an observer study with 11
radiologists. Radiol. Artif. Intell. 3, e210027 (2021).

24. Zhang, C. et al. Toward an expert level of lung cancer detection and
classification using a deep convolutional neural network. Oncologist 24,
1159–1165 (2019).

25. Setio, A. A. A. et al. Validation, comparison, and combination of algorithms
for automatic detection of pulmonary nodules in computed tomography
images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2016).

26. Callister, M. E. J. et al. British thoracic society guidelines for the investigation
and management of pulmonary nodules. Thorax 70, ii1–ii54 (2015).

27. Brierley, J. D., Gospodarowicz, M. K. & Wittekind, C. TNM Classification of
Malignant Tumours (Wiley, 2016).

28. Kuhnigk, J.-M. et al. Morphological segmentation and partial volume analysis
for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans.
Med. Imaging 25, 417–434 (2006).

29. Hansell, D. M. et al. Fleischner Society: glossary of terms for thoracic imaging.
Radiology 246, 697–722 (2008).

30. Mets, O. M. et al. Subsolid pulmonary nodule morphology and associated
patient characteristics in a routine clinical population. Eur. Radiol. 27,
689–696 (2017).

31. Jocher, G. et al. ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS,
Supervise.ly and YouTube integrations. zenodo https://doi.org/10.5281/
zenodo.4679653 (2021).

32. Meng, Y. et al. Detection for pulmonary nodules using RGB channel
superposition method in deep learning framework. In 2018 3rd International
Conference on Security of Smart Cities, Industrial Control System and
Communications, SSIC 2018 - Proceedings 1–8 (Institute of Electrical and
Electronics Engineers Inc., 2018).

33. Liu, K. et al. Evaluating a fully automated pulmonary nodule detection
approach and its impact on radiologist performance. Radiol. Artif. Intell. 1,
e180084 (2019).

34. Farhangi, M. M., Sahiner, B., Petrick, N. & Pezeshk, A. Automatic lung nodule
detection in thoracic CT scans using dilated slice-wise convolutions. Med.
Phys. 48, 3741–3751 (2021).

35. Venkadesh, K. V. et al. Deep learning for malignancy risk estimation of
pulmonary nodules detected at low-dose screening CT. Radiology 300,
438–447 (2021).

36. Raschka, S. MLxtend: providing machine learning and data science utilities
and extensions to Python’s scientific computing stack. J Open Source Softw. 3,
638 (2018).

37. Schreuder, A. et al. Classification of CT pulmonary opacities as perifissural
nodules: reader variability. Radiology 288, 867–875 (2018).

38. Han, Y. et al. Pulmonary nodules detection assistant platform: an effective
computer aided system for early pulmonary nodules detection in physical
examination. Comput. Methods Programs Biomed. 217, 106680 (2022).

39. Cui, S. et al. Development and clinical application of deep learning model for
lung nodules screening on CT images. Sci. Rep. 10, 1–10 (2020).

40. Mei, J., Cheng, M. M., Xu, G., Wan, L. R. & Zhang, H. SANet: a slice-aware
network for pulmonary nodule detection. IEEE Trans. Pattern Anal. Mach.
Intell. 44, 4374–4387 (2022).

41. Xu, Y. M. et al. Deep learning in CT images: automated pulmonary nodule
detection for subsequent management using convolutional neural network.
Cancer Manag. Res. 12, 2979–2992 (2020).

42. Martins Jarnalo, C. O., Linsen, P. V. M., Blazís, S. P., van der Valk, P. H. M. &
Dickerscheid, D. B. M. Clinical evaluation of a deep-learning-based computer-
aided detection system for the detection of pulmonary nodules in a large
teaching hospital. Clin. Radiol. 76, 838–845 (2021).

43. Suzuki, K. et al. Development and validation of a modified three-dimensional
U-Net deep-learning model for automated detection of lung nodules on chest
CT images from the Lung Image Database Consortium and Japanese Datasets.
Acad. Radiol. 29, S11–S17 (2020).

44. Jacobs, C. et al. Computer-aided detection of pulmonary nodules: a
comparative study using the public LIDC/IDRI database. Eur. Radiol. 26,
2139–2147 (2016).

45. Chen, H. et al. A retrospective study analyzing missed diagnosis of lung
metastases at their early stages on computed tomography. J. Thorac. Dis. 11,
3360–3368 (2019).

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00388-5 ARTICLE

COMMUNICATIONS MEDICINE |           (2023) 3:156 | https://doi.org/10.1038/s43856-023-00388-5 | www.nature.com/commsmed 11

https://grand-challenge.org/algorithms/lung-nodule-detector-for-ct/
https://doi.org/10.5281/zenodo.4679653
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1148/radiol.2021204433
https://luna16.grand-challenge.org/Evaluation/
https://doi.org/10.21105/joss.00638
https://doi.org/10.21105/joss.00638
https://doi.org/10.5281/zenodo.4679653
https://doi.org/10.5281/zenodo.4679653
www.nature.com/commsmed
www.nature.com/commsmed


46. Miki, S. et al. Prospective study of spatial distribution of missed lung nodules
by readers in CT lung screening using computer-assisted detection. Acad.
Radiol. 28, 647–654 (2021).

47. Armato, S. G. III. et al. Data from LIDC-IDRI. https://doi.org/10.7937/K9/
TCIA.2015.LO9QL9SX (2015).

48. Fedorov, A. et al. Standardized representation of the TCIA LIDC-IDRI
annotations using DICOM. https://doi.org/10.7937/TCIA.2018.H7UMFURQ
(2018).

49. van Ginneken, B. & Jacobs, C. LUNA16 Part 1/2. zenodo https://doi.org/10.
5281/zenodo.3723295 (2019).

50. van Ginneken, B. & Jacobs, C. LUNA16 Part 2/2. zenodo https://doi.org/10.
5281/zenodo.4121926 (2019).

51. Hendrix, W. et al. Trends in the incidence of pulmonary nodules in chest
computed tomography: 10-year results from two Dutch hospitals. Eur. Radiol.
https://doi.org/10.1007/s00330-023-09826-3 (2023).

Acknowledgements
This work was supported by the Junior Researcher grant from the Radboud Institute for
Health Sciences, Radboudumc, Nijmegen, the Netherlands, and the Jeroen Bosch Hos-
pital, Den Bosch, the Netherlands. We thank the registration team of the Netherlands
Comprehensive Cancer Organization (IKNL) for the collection of data for the Nether-
lands Cancer Registry as well as IKNL staff for scientific advice. We acknowledge the
National Cancer Institute (NCI) for their publicly available LIDC-IDRI archive. We
thank Karlijn Rutten, Noa Antonissen, and Jan Dammeier for their help in the anno-
tation work. We thank Tijs Samson for his support in the data acquisition from the
hospital information systems. We thank Kiran Vaidhya Venkadesh for his contribution
to the development of the pulmonary nodule detection system.

Author contributions
W.H. designed and conducted the experiments, analyzed the data, and wrote the
manuscript. C.J., M.R., B.v.G., and M.P. supervised the project. C.J. helped with the data
acquisition process. N.H. contributed to discussions about the experimental design and
data analyses. W.H., M.M., J.T.-d.J., S.S., M.K., M.v.L., E.T.S., and M.R. contributed to the
annotation process of the datasets. E.T.S. and M.R. helped with the interpretation of the
results. All authors reviewed the manuscript.

Competing interests
The authors declare the following competing interests: B.v.G. is shareholder and co-
founder of Thirona. He reports no other relationships that are related to the subject

matter of the article. M.P. receives grants from Canon Medical Systems, Siemens
Healthineers; royalties from Mevis Medical Solutions; payment for lectures from Canon
Medical Systems, Siemens Healthineers. The host institution of M.P. is a minority
shareholder in Thirona. He reports no other relationships that are related to the subject
matter of the article. The host institution of C.J. receives research grants and royalties
from MeVis Medical Solutions, Bremen Germany. C.J. is a collaborator in a public-
private research project where Radboudumc collaborates with Philips Medical Systems
(Best, the Netherlands). He reports no other relationships that are related to the subject
matter of the article. The other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43856-023-00388-5.

Correspondence and requests for materials should be addressed to Colin Jacobs.

Peer review information Communications Medicine thanks the anonymous reviewers
for their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00388-5

12 COMMUNICATIONS MEDICINE |           (2023) 3:156 | https://doi.org/10.1038/s43856-023-00388-5 | www.nature.com/commsmed

https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
https://doi.org/10.7937/TCIA.2018.H7UMFURQ
https://doi.org/10.5281/zenodo.3723295
https://doi.org/10.5281/zenodo.3723295
https://doi.org/10.5281/zenodo.4121926
https://doi.org/10.5281/zenodo.4121926
https://doi.org/10.1007/s00330-023-09826-3
https://doi.org/10.1038/s43856-023-00388-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmed

	Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT�scans
	Methods
	Study�design
	Datasets
	Eligibility criteria
	Reference standard
	Nodule detection pipeline
	Analysis
	Reporting summary

	Results
	Test datasets characteristics
	Pulmonary nodule detection analysis
	Visual assessment of false positives and false negatives
	Comparison of AI performance with the panel of radiologists

	Discussion
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




