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Abstract

Background Timely access to healthcare is essential but measuring access is challenging.

Prior research focused on analyzing potential travel times to healthcare under optimal

mobility scenarios that do not incorporate direct observations of human mobility, potentially

underestimating the barriers to receiving care for many populations.

Methods We introduce an approach for measuring accessibility by utilizing travel times to

healthcare facilities from aggregated and anonymized smartphone Location History data. We

measure these revealed travel times to healthcare facilities in over 100 countries and jux-

tapose our findings with potential (optimal) travel times estimated using Google Maps

directions. We then quantify changes in revealed accessibility associated with the COVID-19

pandemic.

Results We find that revealed travel time differs substantially from potential travel time; in

all but 4 countries this difference exceeds 30minutes, and in 49 countries it exceeds

60minutes. Substantial variation in revealed healthcare accessibility is observed and corre-

lates with life expectancy (⍴=−0.70) and infant mortality (⍴=0.59), with this association

remaining significant after adjusting for potential accessibility and wealth. The COVID-19

pandemic altered the patterns of healthcare access, especially for populations dependent on

public transportation.

Conclusions Our metrics based on empirical data indicate that revealed travel times exceed

potential travel times in many regions. During COVID-19, inequitable accessibility was exa-

cerbated. In conjunction with other relevant data, these findings provide a resource to help

public health policymakers identify underserved populations and promote health equity by

formulating policies and directing resources towards areas and populations most in need.
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Plain language summary
Spatial access to healthcare facilities

(i.e., how long people need to travel

to reach care) is important for

understanding public health, but hard

to measure. Most research so far has

focused on theoretical (potential)

travel times. Using anonymized

smartphone location history data, we

measure actual (revealed) travel

times to healthcare facilities in over

100 countries. We find that revealed

travel times exceed theoretical travel

times in many regions of the world,

meaning that in reality people travel

longer to get healthcare. Our data

also show that inequities in travel

time became worse during the

COVID-19 pandemic. When com-

bined with other data, these results

can help policymakers identify areas

and populations at need, and direct

resources to improve public health.
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Healthcare accessibility is a multifaceted concept and a focal
point in the United Nations’ Sustainable Development
Goals1–3. Yet, numerous global and country-specific

analyses have confirmed that equitable access to healthcare
remains aspirational4–7. More recently, the COVID-19 pandemic
has challenged the capacity of healthcare systems across the globe,
and along with travel restrictions, potentially creating new bar-
riers to healthcare. However, few systematic efforts have char-
acterized healthcare accessibility at the global scale and none have
empirically assessed how this key public health metric has been
impacted by the pandemic.

Barriers in access to healthcare increase the likelihood that
needed healthcare will be delayed or foregone, thereby increasing
patients’ risks for chronic and acute conditions. Such barriers are
particularly important for vulnerable populations with lower
incomes or the under-insured and uninsured, and substantial
differences in healthcare access exist between rural and urban
areas8–11. Examples illustrating the relationship between health-
care access and outcomes include studies exploring the prevalence
of diabetes and related adverse outcomes12; low rates of prenatal
care and the associated increased risk of having premature or
low-birth-weight infants13,14; breast cancer screening practices15;
and delayed care-seeking and timely diagnosis of appendicitis
rupture16. Access barriers among patients also affect the quality of
clinical encounters as they lead to decreased physician trust and
disparities in subsequent outcomes17,18.

A key factor associated with healthcare accessibility is how long
people have to travel to reach healthcare providers. While the
concept of spatial access is intuitive, measuring this dimension of
healthcare systems is challenging. However, modern computa-
tional tools and human mobility datasets provide an unparalleled
opportunity for characterizing healthcare accessibility. Approa-
ches for measuring spatial accessibility to healthcare are based on
potential and revealed accessibility indicators4,7,19. Potential
accessibility captures the opportunities available to the population
and is a function of the proximity to the providers, state of the
transportation routes, and access to public or private transpor-
tation. Revealed accessibility, in contrast, measures the actual
efforts to reach a healthcare facility by a given population, as
estimated from patient lists, records of actual travel behavior, or
as reported in surveys1,2. Whereas potential (theoretical) acces-
sibility based on routes and population density is helpful in
planning, it is important to understand if reality (revealed
accessibility) deviates from theory, and by how much. Under-
standing this difference and how it is influenced by crises (such as
the COVID-19 pandemic) can help further refine planning and
catalyze efforts to improve healthcare accessibility.

This paper reports an approach to the development of mea-
sures of both potential and revealed access to care in over 100
countries. The inventory of geolocated hospitals and medical
centers providing urgent and emergency care was extracted from
Google’s Maps and Search datasets (Methods). We estimated
potential accessibility using Google Maps Platform Directions
API, the same API that powers navigation in Google Maps20. To
produce revealed spatial accessibility maps, we leveraged the
spatial patterns of smartphone usage via anonymized Location
History data to estimate actual travel times to healthcare facilities.
We estimated the travel time to medical facilities starting from
populated places by car, public transport, and walking. Finally, we
analyzed how travel time changed during the COVID-19 pan-
demic. By illuminating inequities in access to healthcare and
quantifying how access has changed during COVID-19, the
results of this research provide a resource for policymakers tasked
with optimally allocating healthcare and transportation resources
under both normal and crisis conditions. More broadly, we hope
his study will provide a foundation for further research and

policy-based interventions focused on promoting health equity
for the underserved.

Methods
In this section, we describe methods used to develop our dataset,
compare potential and revealed accessibility, assess how access to
healthcare varies spatially and correlates with clinical outcomes,
and estimate the impact of the COVID-19 pandemic on health-
care accessibility. Our analyses use only aggregated and anon-
ymized data. For the purpose of this study, passenger vehicles are
defined as vehicle travel excluding public transportation (buses,
train, subway, etc), and the distinction in trips is made using
public transportation station information (see below). The Stan-
ford University Institutional Review Board determined that this
project utilizing only non-identifiable data does not meet the
definition of human subject research as defined in federal reg-
ulations 45 CFR 46.102 or 21 CFR 50.3, and waived the need for
informed consent or further review.

Medical facility database. The inventory of geolocated hospitals
and medical centers providing urgent and emergency care was
extracted from Google’s Maps and Search datasets in August
2019; this dataset was used to ensure consistency with anon-
ymized trip location information, described below. Individuals
can see the facilities by searching “healthcare facility” or similar
on Google Maps or Search. We compared this inventory with
publicly available inventories of medical facilities; coverage varies
across countries (Supplementary Table 1). For potential accessi-
bility computation, to identify the location of the nearest medical
facility for all populated areas (with a population of at least 50
people based on Landscan data), we reduced gridded Landscan
worldwide population density data into polygons with an average
area of five square kilometers (roughly 2.23 km by 2.23 km; S2
cells level 12), computed the geographic centroid of each polygon,
calculated the distance to all facilities nearby, and selected the
closest one. Whereas Landscan has one of the highest population
dataset coverage21,22, exploration of other population datasets
and geographical granularities may be helpful. Driving and
walking potential travel time estimates could be computed for 193
regions, whereas public transportation information was not
available for some regions in Google Maps and was estimated for
91 regions.

Revealed accessibility. To produce revealed spatial accessibility
maps, we leveraged the spatial patterns of smartphone usage to
estimate actual travel times to healthcare facilities across over 100
countries. Although smartphone ownership is high globally at
more than 80%, we note that this distribution is not equal across
several factors (see Supplementary Information, Supplementary
Note 1). At a high level, this is similar to research conducted on
anonymized data from internet-connected tools23, and using
passive anonymized data helps avoid issues with alternative
methods such as recall bias with self-report or insufficient gran-
ularity with cell tower data24. Our study period spanned from
January 2019 to September 2021, thereby encapsulating changing
healthcare access patterns before and during the COVID-19
pandemic. All revealed accessibility metrics are aggregated by
mode of transportation, and do not contain any personally
identifiable information. Anonymization techniques to protect
each user’s activity are described in the Anonymization Strategy
section below. Trips are constrained to within-country trips only.

Briefly, for each geographic region, time period, and mode of
transportation, the computation of potential accessibility involves
first sampling a single trip per user to remove the effect of outliers
with many trips such as employees or repeated visits for multiple
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care episodes (these trips are visible in users’ Google Maps app,
under the “timeline” feature). The processing of raw location data
into segmented trips was explained in greater detail previously25.
Briefly, trips are defined to start at a residence and end at a
healthcare facility, and were extracted using clustering methods
that enable robustness to intermediate stops. More details are

summarized in Supplementary Information, Supplementary
Note 2. Of note, this analysis is based on (sampling) all trips
actually taken by users, and is not based on users searching for
routes to a location. Next, the number of trips are summed for
each of the above combinations (region, time period, transporta-
tion mode). The mode of public transportation is estimated using
information such as whether segments started and ended at
public transit stops (e.g., bus stops or subway stations)26 and the
breakdown is reported in Supplementary Table 2. Public
transportation information was not available for some countries
within Google Maps; the exact list of countries studied for each
mode of transportation is listed in Fig. 1 and Supplementary
Tables 3 and 4. In the following section, we provide further
technical details of the anonymization techniques used to
compute the 10th, 25th, 50th, 75th and 90th percentile of travel
times to healthcare facilities.

Anonymization Strategy. Revealed accessibility is computed
using aggregated, anonymized data from users who have turned
on the Location History setting, which is off by default. People
who have Location History turned on can choose to turn it off at
any time from their Google Account, and can always delete
Location History data directly from their Timeline.

The analysis starts with aggregated data across slices
(geographies, time periods, travel modes). We further anonymize
data across a geographic region (country), time period (calendar-
year quarters, Q1 2019 - Q3 2021), and on a certain mode of
transportation (passenger vehicle, public transit or walking) with
ε ≈ 0.9417-differential privacy (DP)27–31. We do so by processing
the 10th, 25th, 50th, 75th and 90th percentiles of the travel times,
which are subsequently used to compute our accessibility metrics,
according to the following mechanism:

1. We bound the contribution a single user can make to the
distribution of travel times per geographic region, time period,
and mode of transportation, to 1 by sampling a single
contribution uniformly at random. This step serves two purposes.
On the one hand, it limits the effect an individual can have on the
aggregated metrics, and is an essential step for establishing
differential privacy. On the other hand, it avoids potentially
skewed estimates caused by disproportionate numbers of visits to
healthcare facilities by some users. The latter consideration is
intended to improve data quality.

2. We count unique users that contribute to any particular
geographic region, time period, and mode of transportation
(regions, periods and transportation modes without any users are
excluded). We then add Laplace noise to each count using our
open-sourced DP libraries31,32. The privacy budget is split into 6
ways to protect the 5 percentile measures enumerated above, as well
as the aggregation count (the total number of visits to serve as the
denominator), therefore, the resulting counts are (ε / 6)-DP.

3. For each geographic region, time period, and mode of
transportation, whose counts after the addition of DP noise are
above the threshold of k= 1000, we compute the 10th, 25th, 50th,
75th and 90th percentiles using our open-sourced DP
libraries31,33. This threshold of k= 1000 was determined

Fig. 1 Revealed travel time to healthcare facilities using a passenger
vehicle. The inequality ratio is shown in brackets after the country name
and illustrated in colored bars with colors representing income information
based on World Bank classifications (see legend). Blue dots represent the
median travel time in a country and vertical bars represent percentiles:
10th, 25th, 75th, and 90th. Countries are sorted by the 90th percentile.
Data for other modes of transportation are presented in Supplementary
Fig. 1.
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qualitatively for privacy reasons, but ensuring that a sufficient
number of trips are incorporated in each estimate also serves to
improve the certainty in each estimate. For example, using a
normal approximation, for the 90th percentile, with 1000 trips
the 95% confidence interval is small at approximately ± 2
percentiles. Each percentile aggregation is protected with (ε / 6)-
DP. The thresholding is solely used to maintain data quality, and
has no impact on DP.

Combined analysis of steps 2 and 3 via the fundamental
composition theorem of DP implies (6 * ε / 6 = ε)-DP for the
counts and percentiles9. Because all further analysis, including the
computation of our accessibility metrics, is based on the
anonymized percentiles, all user activity is protected with the
specified DP parameters as a result of the post-processing
properties of DP.

Measuring changes during the COVID-19 pandemic. To
quantify changes in revealed accessibility during the COVID-19
pandemic, we analyzed the data covering each calendar quarter
between January 1, 2020 and September 30, 2021. Observations
from these quarters were compared to those of the corresponding
(pre-pandemic) quarters of 2019 to control for normal seasonal
fluctuations.

Within-country variation in accessibility. To examine variation
within countries, we quantified inequality using percentile ratios
that are similar to measures of income inequality such as the
GINI index34. To assess the inequality of travel times within each
country, we first computed travel times for the entire population,
and then computed the inequality ratio, defined as the revealed
travel time for the 75th percentile divided by the revealed travel
time for the 25th percentile.

Country-level outcomes data. We correlated our measures of
accessibility and inequality with published metrics reflecting
health outcomes within populations, specifically national infant
mortality rates and life expectancies from the World Bank6.

Potential accessibility. We estimated potential travel time from
every location to the nearest healthcare facility using the Google
Maps Directions API, which is an automated service that returns
travel directions based on input such as a requested origin, des-
tination, and mode of transportation. Travel time was estimated
separately for travel by car, public transport, and walking. Our
main analysis focuses on driving estimates, as we found that
passenger vehicles were the most common mode of reaching a
healthcare facility urgently (see Supplementary Table 2). Travel
time was estimated to represent typical traffic conditions. For
each location, the population-normalized potential accessibility is
computed by weighting the travel time estimates with the cor-
responding population density estimates from Landscan world-
wide population density data35,36. Potential travel times were
estimated in August 2019 for the analyses presented and again in
July 2021 to assess robustness.

Comparisons between potential and revealed accessibility.
Potential accessibility by car assumes car ownership, ability to
borrow a car or receive a ride, or access and means to afford for-
hire car services. As our results below demonstrate, potential
accessibility significantly underestimates access barriers due to
people needing to rely on slower or more indirect modes of
transportation, such as catching a ride with multiple stops,
walking, or taking public transit. We used the revealed travel data
to estimate how much longer people travel de facto using

passenger vehicles, compared to the estimates of potential travel
times by driving. We assessed the differences between the
potential and revealed travel times by subtracting (aggregated)
potential travel time for each country from the revealed travel
time, and normalized it by the population density to produce
population-level statistics for each country.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
We quantify population-weighted potential and revealed travel
times to healthcare in 193 and 120 countries, respectively, based
on the availability of reliable data (Methods).

Inequalities in revealed accessibility across and within coun-
tries. Median revealed travel time (across over 100 countries) to
reach a healthcare facility using a passenger vehicle is under
44 minutes while there is considerable variation between coun-
tries (Fig. 1). Compact countries with good infrastructure, such as
Malta, Singapore, and the Netherlands, generally feature the best-
revealed accessibility (lowest travel times). By contrast, the
longest trips to healthcare occur in countries with poorer infra-
structure and/or fewer locations offering care.

To highlight disparities in healthcare accessibility, we report
the 10th, 25th, 50th, 75th and 90th percentile travel times per
country. For example, the median in passenger vehicle travel time
in Nigeria is 41 minutes, but 10% of users travel more than
3 hours. Notably, in 17 countries, at least 10% of users traveled
more than 2 hours.

We also compute the inequality ratios (defined as the revealed
accessibility’s 75th percentile divided by the 25th percentile; see
“Within-Country Variation in Accessibility” in Methods) for each
country (Fig. 1). For countries with low travel times, such as
Malta, Estonia, and the United Kingdom, the inequality ratio
varies between 2.5 and 3.2, indicating that the upper quartile of
travel times to healthcare are 2-3 times higher than the lower
quartile. Conversely, Zambia has the greatest inequality ratio of
revealed travel times (6.55) in our analysis.

Changes in revealed accessibility during the COVID-19 pan-
demic. The revealed accessibility analysis captures temporal and
mode-of-transport-dependent variations during the COVID-19
pandemic (first quarter of 2020 to third quarter of 2021, with the
respective quarters in 2019 as the baseline). In 2020, the pro-
portion of trips to healthcare facilities in passenger vehicles
increased by 6.68% (from 70.61% to 77.28%) compared to 2019.
This is accompanied by corresponding decreases in trips to
healthcare facilities on public transportation (2.18%) and by
walking (4.50%), see Supplementary Table 2. These trends are
found in most countries, though considerable variations are
observed between countries and quarters of the year.

We quantify the median percentage changes in travel time and
median distance traveled, relative to a pre-pandemic baseline,
across the three modes of transportation (Table 1, Figs. 2 and 3).
We find that median passenger vehicle times decreased slightly in
most countries, while the opposite is true for public transport and
walking. Unlike travel time, the median distance traveled remains
stable for walking and passenger vehicles in most countries, while
it increased for public transportation.

In 14 countries (India, Mexico, Portugal, Ukraine, Belarus,
Turkey, Hungary, Uruguay, Argentina, Japan, Brazil, Thailand,
Russia, and South Korea), public transport travel times during the
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second quarter of 2020 increased by 5 minutes or more. These
increases are largest in India (+13 min), Mexico (+10 min),
Portugal (+9min), Ukraine (+8 min), and Belarus (+7 min). The
increases are consistent with the closure of healthcare facilities
and changes in public transportation schedules.

Interestingly, trips to healthcare facilities via passenger vehicle
(the most common mode) are faster relative to the pre-pandemic
baseline and despite consistent distances being traveled, which
suggests a decrease in traffic congestion. Conversely, given that
the median distance traveled remained stable during the COVID-
19 pandemic, an increase in median walking travel times suggests
either a walking speed decline or an increased number of pauses
due to illness -- hypotheses that need further testing. Similarly,
the increase in travel times by public transportation may be
attributable to a reduction in the number of operating transport
lines, decreased frequency of operation, reduced capacity on
public transport to maintain social distancing, and detours added
to remaining lines to compensate for the reductions. Other
aspects that may have impacted mode-specific travel times
include reduced provider availability at the peaks of COVID-19
cases, delaying elective procedures, moving non-urgent visits to
telemedicine, or closures due to staff shortages. In summary, our
results suggest that populations relying on public transportation
and walking to reach healthcare are more adversely impacted
than populations that access healthcare services via passenger
vehicle. However, additional work will be needed to better
understand the causal mechanisms behind the changes we
observed.

Juxtaposition of revealed travel times and health outcomes. We
observe a strong country-level correlation between the revealed
travel time to healthcare facilities and quality of health outcomes
(from 2017-2018; see Fig. 4). For example, the 90th percentile of
revealed passenger vehicle travel time is negatively correlated with
life expectancy (Spearman’s rank correlation coefficient ⍴=−0.70,
p= 2.68×10−18 Fig. 4a) and positively correlated with infant
mortality rate (⍴=0.67, p= 1.33×10−16; Fig. 4b). Similar rela-
tionships are observed for the access inequality ratio, which is
inversely correlated with life expectancy (⍴=−0.50;
p= 8.23×10−10; Fig. 4c), as higher life expectancy is observed in
countries with higher levels of access equality. Additionally, we find
a negative correlation between the increases in travel time by public
transportation during the COVID-19 pandemic and life expectancy
(⍴=−0.46, p= 2.71×10−3; Fig. 4d). Multivariable analyses incor-
porating travel times and gross domestic product (GDP) are pre-
sented in Supplementary Table 5, with both revealed travel times
and potential travel times remaining significant after adjusting for
GDP.

Inequalities in potential accessibility. By contrast, when we then
examine potential accessibility, we find the lowest potential travel
times in the countries with highly developed infrastructure, where
trips to healthcare facilities by passenger vehicle typically take
under 30 minutes (Fig. 5). For example, in the United States, 99%
of the population can potentially reach a healthcare facility by car

in less than 30 minutes. Conversely, substantially higher potential
travel times to healthcare facilities by car are observed in sub-
Saharan Africa. For example, in the five most populated sub-
Saharan countries of Nigeria, Ethiopia, Democratic Republic of
Congo, South Africa, and Tanzania, only 54%, 25%, 56%, 71%
and 39% of the population, respectively, can potentially reach a
healthcare facility in less than 30 minutes even when traveling by
car. A direct comparison between potential and revealed acces-
sibility (in the same countries) is described next.

Comparisons between potential and revealed accessibility.
Figure 6 shows the difference between the potential and revealed
travel times by passenger vehicle for each country for 2019.
Although a significant correlation exists between potential and
revealed travel times (⍴=0.53, p= 1.44×10−9), disparities were
found in most countries and particularly for the longest observed
trips (i.e., trips corresponding to the 90th percentile of revealed
travel times). For example, among the 120 countries with revealed
travel times in this study, the longest ten percent of actual trips
are two, three, and five times longer than potential trips in 100,
77, and 35 countries, respectively. The population-weighted dif-
ferences between potential and revealed travel times are most
striking in Zambia, Rwanda, and Nigeria, suggesting that
potential travel times are least accurate in lower-income
countries.

Discussion
This study is the first to provide estimates of revealed travel times
to healthcare, contrast these results with comparable estimates of
potential travel times, and analyze how revealed travel time to
healthcare facilities changed during the COVID-19 pandemic.
Our key findings demonstrate substantial disparities in healthcare
access within and across over 100 countries. Revealed travel
distances offer additional insights as revealed travel times are
greater than potential travel times, especially for those with the
longest travel times. Compared to revealed measurements,
potential travel times fail to fully capture the consequences of
real-world factors such as vehicle ownership; facility closure; and
utilization of more distant facilities due to specialized care,
insurance considerations, or individual preference. Our findings
are consistent with previous work demonstrating that spatial
healthcare access estimates within a country can vary sub-
stantially depending on the estimation method21,22,37–39.

Revealed travel times for those using passenger vehicles
decreased during the pandemic, while revealed travel times for
those using public transportation or walking increased. We
observed an association between countries with increased travel
times and countries with worse healthcare outcomes, including
higher infant mortality rates and lower life expectancy. Overall,
our study confirmed the utility of aggregated and anonymized
user-generated data to further our understanding of key global
health issues.

Prior research has enabled the mapping of healthcare facilities
and computing potential travel times at fine spatial resolution
globally19,40. Most previous work on geographic accessibility

Table 1 Observed changes in revealed travel times observed in the second quarter of 2020 compared to the second quarter
of 2019.

Mode of travel Percentage Change Absolute Change P value

Passenger vehicle −11.74% Decreased by 2minutes and 54 seconds p < 0.001
Public transport +17.9% Increased by 3 minutes and 53 seconds p < 0.001
Walking +26.89% Increased by 1 minute and 41 seconds p < 0.001

Change values consist of medians and the p value was calculated using two-sided paired t-tests.
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employed measures of potential access, such as straight-line dis-
tance, the volume of services provided relative to the population’s
size, the proximity of services provided relative to the popula-
tion’s location, the estimated travel times, or a combination of
those factors. Notable examples include the Enhanced Two-step
Floating Catchment Area (E2SFCA) method and the Index of

Spatial Accessibility (ISA)19,40. However, the application of
existing methods has been limited to specific countries and spe-
cific healthcare services5,41–43, low-resource settings44,45, or only
capture certain dimensions of potential accessibility worldwide4.
Similarly, geospatial studies aiming to measure healthcare access
during COVID-19 pandemic have largely been limited to specific

Fig. 2 Relative change in median travel time and median distance traveled compared to the pre-pandemic baseline (corresponding quarter in 2019).
The three rows represent data for passenger vehicles (a, b), public transportation (c, d), and walking (e, f), respectively. The panels on the left (a, c, e)
depict change in travel time, and those on the right (b, d, f) depict change in distance traveled. Box-plots summarize the revealed time statistics across
countries. Boxplots edges represent the 50th (center line), 25th, and 75th percentile (box limits), whereas the whiskers extend to the minimum and
maximum values but no further than 1.5 times the interquartile range.
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countries and relying on potential accessibility-based catchment-
area methods46. The current paper is an advance on this literature
as it explores both potential and revealed accessibility. In parti-
cular, potential accessibility fundamentally does not account for
the choice of transportation modality, the choice of healthcare
facility, or the day/time of travel, whereas revealed accessibility
incorporates aggregated and anonymized real-world travels.
Finally, we show that revealed accessibility correlates with
important health outcomes across countries, even after adjusting
for potential accessibility and wealth (GDP), indicating that
accessibility is an important independent factor to track, under-
stand, and improve.

The COVID-19 pandemic caused a global crisis and created
unprecedented disruptions in various spheres of people’s
lives47–49. While travel time to healthcare is just one aspect of
multifaceted healthcare delivery systems, our analysis is unique in
providing a directly measured assessment of pandemic-related
disruptions in over 100 countries. We found substantial variation
in travel times during the COVID-19 crisis, compared to corre-
sponding pre-pandemic conditions. The increases in travel time
during the pandemic are likely to disproportionately impact more
vulnerable populations, in particular those with low car owner-
ship rates or ready access to car travel. In this sense, our analyses
showed that inequalities in access may have been exacerbated
during the COVID-19 crisis.

These results have implications for public health policies.
Individuals are less likely to seek healthcare when long journeys
are required to obtain the services50. By enumerating disparities
between countries, this research highlights areas that could ben-
efit most from improving access to healthcare, which is achievable
by adding more public transportation lines, subsidizing trans-
portation, adding healthcare services closer to where populations
live, and introducing mobile clinics. This study also quantifies, for
the first time, the travel times to healthcare facilities for a number

of transportation modes. This information better contextualizes
the costs of travel and thereby strengthens the evidence available
to policymakers responsible for directing healthcare infra-
structure investment. Our results echo previously identified
knowledge gaps and calls for more fine-grained and temporally-
aware accessibility metrics, more sophisticated geocomputational
tools to operationalize such metrics, and improved measurement
of inequalities51.

Global-scale and spatially representative datasets that quantify
metrics relevant to healthcare accessibility are relatively scarce,
despite being necessary for quantifying disease burden and
healthcare demand. The results of this research help bridge this
gap by introducing a set of metrics based on empirical data. As
such, this research and subsequent analyses that build upon our
methodology have the potential to inform public health makers
tasked with formulating policy and directing resources towards
areas or public health needs most in need. Future work is needed
to apply these methods at regional and metropolitan level, in
order to make the resulting insights actionable to local stake-
holders. For example, health planners could consider revealed
travel times in planning for healthcare service provision, opti-
mizing public transit routes, or spatially targeting health pro-
motion campaigns. Finally, as demonstrated with the COVID-19
analysis, the dynamic nature of revealed travel times allows them
to serve as sentinel datasets for monitoring changing patterns of
spatial access to healthcare.

This study has a few limitations. First, our inventory of healthcare
facilities (based on Google Maps) may be incomplete or inaccurate,
with the quality and completeness of the dataset likely to vary between
countries (Supplementary Table 1). Second, to preserve user privacy,
we used a radius of 500m around each facility, which potentially
included some non-healthcare-seeking trips in the analysis (the ana-
lysis may also include trips by people who visit hospital patients but do
not receive healthcare themselves). This data may skew the
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Fig. 3 Pre-pandemic median revealed travel times to healthcare and absolute changes therein during the COVID-19 pandemic. Panels a, c and e, depict
median revealed travel times pre-pandemic (2019), whereas panels b, d, and f depict absolute changes during the COVID-19 pandemic (2020–2021, see
Methods). Gray color indicates countries or regions not included in the study; see Fig. 1 and Supplementary Table 3 for the list of studied countries.
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distribution of modes of transportation people use to get care if, for
example, someone in need of care travels faster than normal out of
urgency or more slowly if encumbered by illness or injury. Third, we
excluded from the analysis countries with a low number of trips to
healthcare facilities, so additional countries will need to be covered in
future work as smartphone ownership and the coverage of healthcare
facilities increases. Fourth, this analysis was a general examination of
healthcare access across many facilities, and because information on
facility-level service offerings were not available, this analysis does not
provide granular insights about travel times to specific services such as
primary care or specialty services. Furthermore, patients may choose
to receive healthcare not in the nearest facility, if a different facility is
covered by insurance or was recommended by the referring physician
or a family member, if the nearest facility is closed at that time, or if
care is delivered in the home or in a community setting. Similarly,
exogenous factors such as the COVID-19 pandemic also influenced
the type and mode of care (e.g., preventative vs. urgent, in-person visit
vs. telemedicine, lockdowns and ability to travel to the care facility),
and this anonymized analysis measures the net effect on in-person
travel without the ability to break down the data based on these
factors. And fifth, travel time is only one of the numerous barriers to

healthcare access. For example, lack of health insurance, financial
constraints, or stigma could prevent people from receiving care.

Another potential limitation of this research is the repre-
sentativeness of the input data used to estimate revealed travel
times, specifically whether those who own and use GPS-equipped
mobile phones and opt into location sharing24 are a representa-
tive sample of the general population. Evidence suggests that,
particularly in developing countries, phone ownership skews
towards wealthier individuals, younger ages, and males52. In turn,
if phone ownership is more common in urban environments
where travel times are shorter, the inequities observed in this
study may constitute underestimates of the true state. As such, the
results of this work should be interpreted cautiously in cases
where the movement patterns of a population of interest may
differ from those in our study population. Similarly, specific
analyses on the subnational level such as urban vs. rural differ-
ences or local regions or time spans of interest will need to be
explored in future work and in collaboration with local public
offices. We further discuss this issue and data from the literature
in the Supplementary Information, Supplementary Note 1. Lastly,
although we demonstrated the country-level association between

Fig. 4 Spearman’s rank correlation of revealed accessibility metrics with health outcomes. a The correlation between the 90th percentile of the revealed
travel time in a passenger vehicle, with life expectancy in 2017. b The correlation between the median revealed travel time and infant mortality rate in 2018.
c The correlation between the inequality ratio and life expectancy in 2017. d The correlation between average increase in public transport travel time during
the COVID-19 pandemic, and life expectancy in 2017. Note that the red line is the linear line of best fit shown for illustrative purposes; the Spearman
correlation is based on the rank and is not linear with respect to these axes. Quantitative analyses of health outcomes and revealed accessibility while
controlling for potential accessibility and wealth is presented in Supplementary Table 5.
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the level of healthcare access and quality of outcomes, it was
beyond the scope of this analysis to fully address the causal link.
For example, the changes in mode-specific travel times during
2020 were likely multicausal, spatially heterogeneous, and stem-
med from a combination of government policy and individual
decisions. Similarly, individuals’ socioeconomic circumstances
before versus during the pandemic and choices regarding the
mode of transport may have influenced the trends observed.
Future research is needed to better characterize the factors
affecting travel times to healthcare, and such analyses will offer a
great resource for considering healthcare access equity when
responding to current and future public health crises.

Conclusion
Spatial accessibility is an essential dimension of healthcare sys-
tems, and our analysis shows substantial spatial and temporal
disparities in this metric within and across countries. We
demonstrate the utility of user-generated mobility data to pro-
duce privacy-preserving estimates of revealed travel times to
healthcare facilities at global scale. These results capture sub-
stantial changes in healthcare accessibility as the COVID-19
pandemic unfolded, and indicate that these changes were not
distributed equally across populations within countries. Our
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Fig. 5 Estimated potential travel time for different modes of
transportation. Gray indicates countries for which data were not available
due to privacy and data availability/quality (Methods). Comparisons
between potential and revealed travel time are presented in Supplementary
Fig. 2a.

Fig. 6 Population-weighted difference between 90th percentile of the
revealed travel time and potential travel times (in minutes) for the time
period of Jan 2019–Dec 2019. The factors by which revealed travel times
differ from potential are shown in parentheses after the country name.
Corresponding analysis for revealed and potential travel distances is
presented in Supplementary Fig. 2b.
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insights are an important step towards enabling a greater
understanding of barriers to care for the global population.

Data availability
The following aggregated and anonymized data reported throughout this manuscript is
made available as part of Supplementary Data 1: revealed accessibility i.e. distribution of
times (by quantiles) to reach the nearest medical facility, by country and mode of
transportation (as reported in Fig. 1); COVID-19 analysis (by quarter over 2020-2021)
i.e. percentage change in median travel time and median distance traveled, compared to
the pre-pandemic baseline, reported globally (Fig. 2) and pre-pandemic median travel
time and absolute change therein during the pandemic, by country and mode of
transportation (Fig. 3); country-specific inequality measures, and correlation coefficients
between the measures of revealed accessibility and healthcare outcomes (Fig. 4); potential
accessibility i.e. expected time in minutes to get to the nearest medical facility, by country
and mode of transportation (Fig. 5); and population-weighted difference between the
revealed and potential travel time (in minutes), per country (Fig. 6).

Code availability
Code that produces reported results based on aggregated and anonymized data is
provided in Supplementary Data 1.
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