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Branched chain amino acids harbor distinct and
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Abstract

Background The branched chain amino acids (BCAA) leucine, isoleucine, and valine are

essential nutrients that have been associated with diabetes, cancers, and cardiovascular

diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects,

but these findings are inconsistent with results from experimental human and animal studies.

Methods Hypothesizing that inconsistencies between observational and experimental BCAA

studies reflect bias from shared lifestyle and genetic factors in observational studies, we used

data from the UK Biobank and applied multivariable Mendelian randomization causal infer-

ence methods designed to address these biases.

Results In n= 97,469 participants of European ancestry (mean age= 56.7 years; 54.1%

female), we estimate distinct and often opposing total causal effects for each BCAA. For

example, of the 117 phenotypes with evidence of a statistically significant total causal effect

for at least one BCAA, almost half (44%, n= 52) are associated with only one BCAA. These

52 associations include total causal effects of valine on diabetic eye disease [odds ratio=
1.51, 95% confidence interval (CI)= 1.31, 1.76], valine on albuminuria (odds ratio= 1.14, 95%

CI= 1.08, 1.20), and isoleucine on angina (odds ratio= 1.17, 95% CI= 1.31, 1.76).

Conclusions Our results suggest that the observational literature provides a flawed picture

of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead

efforts developing novel therapeutics. More broadly, these findings motivate the development

and application of causal inference approaches that enable ‘omics studies conducted in

observational settings to account for the biasing effects of shared genetic and lifestyle

factors.
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Plain language summary
The three branched chain amino

acids (BCAAs) leucine, isoleucine,

and valine are important building

blocks of muscle proteins that are

obtained from the diet. Many studies

in human populations have examined

whether BCAAs affect health and

disease. These human studies report

results that are inconsistent with

results from highly controlled animal

studies. Because interest in the ther-

apeutic targeting of BCAAs is grow-

ing, we wanted to better understand

these discrepancies. Briefly, we used

data from a large database that cap-

tured many diseases (e.g., cardio-

vascular disease, cancers, and

respiratory disease) and new statis-

tical methods. Our results showed

that discrepancies between human

studies and animal studies may

reflect errors in the ways human

studies were designed and con-

ducted. As a result, these human

studies may provide a flawed picture

of BCAA effects that could mislead

efforts developing novel therapeutics.
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The three branched chain amino acids (BCAA) leucine,
isoleucine, and valine are abundant essential nutrients that
account for ~20% of total amino acids in muscle protein1.

Accurately quantifying individual BCAA effects on metabolism
and, more broadly, health and disease, has been challenging
because circulating leucine, isoleucine, and valine concentrations
are highly correlated. This correlation reflects shared enzymes
governing synthesis and degradation as well as dietary patterns in
which BCAAs are typically consumed together2,3. Despite these
high correlations, BCAA intermediates and final metabolites
differ, motivating studies examining whether individual BCAAs
harbor distinct metabolic effects.

To quantify individual BCAA phenotypic effects, observa-
tional studies have examined BCAAs separately. These studies,
performed across a wide spectrum of phenotypes, have reported
that BCAAs exert homogeneous phenotypic effects4–13. How-
ever, the observational BCAA literature is inconsistent with
experimental animal and human dietary restriction studies,
which instead suggest that individual BCAAs exert hetero-
geneous phenotypic effects14–16. Because observational studies
cannot isolate the effects of individual BCAAs through dietary
manipulation, as is possible in experimental studies, observa-
tional studies may be subject to bias from shared genetic and
lifestyle factors that govern BCAA intake, synthesis, and degra-
dation. Yet, few BCAA observational studies have examined
whether these shared factors bias BCAA phenotypic effects.
Observational study designs that can accurately estimate BCAA
phenotypic effects are needed because it is infeasible to conduct
experimental studies for the potentially large number of phe-
notypes potentially affected by BCAAs.

Advances in genetics, large-scale biobanks, and causal infer-
ence statistical methods offer novel avenues to characterize BCAA
effects more accurately. Thus, we leveraged dense phenotypic and
genotypic data from the UK Biobank and multivariable Mende-
lian randomization (MVMR) causal inference methods17 to
simultaneously estimate causal effects of leucine, isoleucine, and
valine on 441 phenotypes spanning 17 categories. In contrast to
the observational literature demonstrating homogeneity of effect,
our results suggested that BCAAs harbored distinct and often
opposing causal effects on diverse phenotypes. These findings are
consistent with experimental BCAA studies and suggest that the
observational literature has provided a highly flawed picture of
BCAA phenotypic effects. More broadly, our results motivate the
development and application of causal inference methods that
enable metabolomics studies, and ‘omics studies more generally,
to validly estimate phenotypic effects of features with shared
lifestyle and genetic factors.

Methods
Study participants. The United Kingdom Biobank (UK Biobank)
is a publicly available, longitudinal study of Great Britain
residents18. Briefly, 9.2 million individuals aged 40–69 years who
were registered with the National Health Service and who lived
within 25 miles (40 km) of one of 22 assessment centers located in
England, Scotland, and Wales were invited. Of these eligible
participants, 502,464 participants (5.5%) enrolled in the study. At
study baseline (2006–2010), extensive lifestyle, sociodemographic,
biologic, and health-related data were collected. This study was
approved by the institutional review board (number 19–2281) of
the University of North Carolina at Chapel Hill. Informed con-
sent was obtained from all participants. Informed consent was
obtained from all participants at study baseline for the lifetime of
UK Biobank unless the participant withdraws. Additional consent
was not required because consent was sought for research in
general rather than for specific research questions.

BCAA measurement. Leucine, isoleucine, and valine were mea-
sured as part of the simultaneous quantification of 249 metabolite
biomarkers. Briefly, a random subset of non-fasting EDTA
baseline plasma samples from 118,466 participants were selected.
Metabolite biomarker measurement was performed using high-
throughput NMR spectroscopy (Nightingale Health Plc; bio-
marker quantification version 2020)19,20.

Phenotypic data. Prior BCAA observational studies examined
associations with cancer6, cardiovascular5, metabolic4,21,
cognition22, and respiratory23 phenotyps, among others. To enable
comparison with this body of literature, we also examined broad
phenotypic categories using two data sources: data measured by UK
Biobank investigators (investigator-defined phenotypes, n= 249)
and phenotypes constructed from inpatient episode records (phe-
codes, n= 192) (Table 1). For the investigator-defined phenotypes,
each of the 257 UK Biobank investigator-defined origin categories
was manually reviewed by two authors (CLA and RY or SHK) and
flagged if the category included phenotypic data (e.g., blood pres-
sure phenotypes were included, but procedure duration times were
excluded). Nutrition/dietary data, blob/bulk data, and data elements
measured in fewer than ~5000 participants (as of 01/2021 for data
currently being collected) were excluded from further review. Each
phenotype was manually reviewed, renamed, cleaned, and classified
into a composite phenotype, when appropriate (e.g., angina was
classified using Rose’s Angina Questionnaire) (Supplementary
data 7). Categorical phenotypes with fewer than 200 cases were
excluded, as were continuous phenotypes with fewer than 200
observations24. For continuous phenotypes we applied an inverse
rank normalization when skewness was >|0.75| and excluded out-
liers outside four standard deviations from the mean. We included
prevalent cases rather than incident cases for several diseases (e.g.,
investigator defined type 2 diabetes and chronic kidney disease)
measured at baseline.

For the inpatient episode records, we used International
Classification of Diseases, Tenth Revision (ICD-10) codes reported
for inpatient episodes from 1997 to 03/2021. ICD-10 codes in the
primary position, which represented the condition that was chiefly
responsible for the admission, were aggregated into clinically

Table 1 Overview of 17 phenotype categories examined in an
observational study of BCAA phenotypic effects in
n= 97,469 European ancestry UK Biobank participants.

Category ICD-10 inpatient
phecodes

Investigator-collected
phenotypes

Circulatory system 24 29
Dermatologic 9 0
Digestive 45 0
Endocrine/metabolic 2 43
Genitourinary 12 11
Hematopoietic 4 31
Infectious diseases 5 0
Medications 0 23
Mental and behavioral
disorders

1 28

Musculoskeletal 18 16
Neoplasms 29 15
Neurological 8 13
Other 7 0
Reproductive 3 9
Respiratory 10 8
Sense organs 13 23
Symptoms 2 0
Total 192 249
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relevant diagnosis phecodes based on the ICD-10 coding structure
and expert opinion25 (Supplementary Data 8). Categorical
phenotypes with fewer than 200 cases were excluded24.

Genotypic data. UK Biobank participants were genotyped using two
very similar arrays: the UK BiLEVE array (n= 49,950 participants)
or the UK Biobank Axiom array (n= 438,427participants)26. The
following individuals were excluded: individuals identified by UK
Biobank investigators as outliers based on genotype missingness or
heterogeneity; individuals whose genotypic sex was discordant with
their self-reported sex; and individuals who did not cluster with 1000
Genomes European ancestry populations using k-means clustering
with 4 PC dimension due to the small number of non-European
ancestry participants with BCAA measurements. Genotypic data
were imputed to the Haplotype Reference Consortium reference
panel. Missing variants were imputed with the UK 10K and 1000G
reference panels26. Imputed variants with an imputation quality
score < 0.4, or effective sample size < 30, calculated as

2 ´MAFð1�MAFÞ ´N ´Q ð1Þ

where MAF is minor allele frequency, Q is imputation quality, and N
is study size, were excluded.

Multivariable Mendelian Randomization (MVMR). We esti-
mated total causal effects of each BCAA on 441 phenotypes (143
continuous and 298 binary) in a maximum of n= 97,469 unre-
lated participants by applying MVMR methods to a causal
structure in which the correlation between BCAAs was driven by
shared confounders and genetic variants (Fig. 1)17. In scenarios
such as those specified in Fig. 1, MVMR can be used to estimate
the total causal effects of each BCAA. The two-stage least squares
(2SLS) and not two-sample MVMR approach was selected
because 2SLS enabled smaller variances of the causal parameters
of interest, employed test statistics (e.g., the Sanderson-
Windmeijer F-statistic) that did not require the knowledge of
the covariance between the effect of the instrumental variables on
each exposure, and avoided assumptions of source population
similarity in two sample calculations17.

In the first stage, each Xj= 1,..,3 BCAA was regressed on the
BCAA specific PRS27,28, Gj, using linear regression29 and restricting
to unrelated individuals j= 1,…,N. Consistent with the 2SLS MVMR
framework, BCAA specific PRS included overlapping variants17.
In the below equation U, π, and v represented the confounders
(e.g., ancestral principal components, study center, age, and sex),

parameter vectors, and error terms, respectively. The confounders
were identical for all three BCAAs, although confounder parameters
were allowed to vary.

Xij ¼ π0j þ π1jG1jþπ2jG2j þ π3jG3j þ π4iUj þ v
ij ð2Þ

Given acceptable instrument strength (e.g., F > 10)17, the
predicted values X̂ij were used in the second-stage regression
model to estimate total causal effects of X on Y. In the second
stage, each phenotype Y was regressed linearly on the fitted values
βjX̂ij estimated in the first stage using either linear regression for
continuous traits or probit regression for categorical traits. For
simplicity, we provide the two-stage equation predicting the
continuous trait, Yj,

Yj ¼ β0 þ β1jX̂1j þ β2jX̂2j þ β3jX̂3jþβ4Uj þ v
y ð3Þ

The 2SLS approach was implemented in Stata (StataCorp LP,
College Station, Texas) using the ivreg2 and ivprobit commands.
Given the goal of this paper was proof of concept rather than
hypothesis driven, statistical significance of BCAA total causal
effects was determined using a conservative Bonferroni correction
accounting for 441 phenotypes and three BCAAs (i.e., 0.05/
[441 * 3]= 3.78 × 10−5).

Two F tests were used to evaluate instrument strength, a core
MVMR assumption: the first F test evaluated whether G strongly
predicted individual Xj and the second F test—the Sanderson-
Windmeijer F test - evaluated whether G jointly predicted Xj (i.e.,
once X1 is predicted, G also predicted X2 and X3). While the
Sanderson-Windmeijer test is available in ivreg2, it is unavailable in
ivprobit. Therefore, this test was calculated only for the continuous
phenotypes. However, except for minor differences in sample size
differences due to missing phenotypic data, the first stage models
used to generate the Sanderson-Windmeijer F-tests were identical
regardless of the phenotype distribution (continuous or probit),
suggesting that assessments of instrument strength performed for the
continuous phenotypes could inform assessments of instrument
strength for the categorical phenotypes.

To enable comparison of MVMR total causal effect estimates with
estimates that did not account for the correlation between BCAAs,
we used univariable MR to estimate the total casual effects of leucine,
isoleucine, and valine separately. To provide further context and
enable comparison with the published literature, we also estimated
phenotypic effects using measured BCAAs as the exposure. Because
MVMR is the only approach that accounted for the correlation
between BCAAs, we considered MVMR as the least biased approach.

To implement univariate MR, we estimated total casual effects
that did not account for the correlation with the other two
BCAAs in unrelated individuals using linear regression model in
the case of continuous phenotypes and probit regression in the
case of binary phenotypes. These models were estimated using
SAS (Cary, North Carolina).

Genome-wide association study (GWAS). To enable construc-
tion of genetic instrumental variables, we conducted a GWAS on
autosomes for each BCAA. We used generalized linear models
implemented in SAIGE that accounted for relatedness30 and took
the form

M1 : g E Yð Þð Þ ¼ Xαþ Gβ ð4Þ
where Y was a vector of inverse normalized BCAAs, g was an
identity link function, X denoted covariates (age, sex, ancestral
PCs, and study center) and G was variant dosage. Variants with
P-values < 1.7 × 10−9 after genomic control were considered
genome-wide significant. Variants that remained significant
after stepwise conditional analyses using GCTA (the --cojo-slct

Fig. 1 Hypothesized relationship between the genetic variants G,
branched chain amino acids (BCAAs) X1, X2, and X3, and outcome Y in
the presence of unobserved confounder U. The BCAAs (X) are affected by
genetic variants G, with some variants affecting specific BCAAs (e.g., G1)
and other genetic variants affecting multiple BCAAs (e.g., G12). The
unobserved confounder U affects all three BCAAs and outcome Y. Genetic
variants G only affect outcome Y through BCAAs X.
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method) with the UK Biobank samples as the LD reference panel
were considered independent31. Because the PRS were standar-
dized, effects are interpreted per 1 SD increase in PRS.

Polygenic risk scores (PRS). Using the GWAS results, PRS were
constructed for each BCAA. These PRS serve as the genetic
instrumental variables. Because PRS composed of genome-wide
significant independent variants explained limited phenotypic
variation (partial R2 range: 0.008–1.6%), we first selected a subset
of genetic variants by restricting to HapMap3 variants plus all
variants GWAS with P-values < 0.05, resulting in 1,457,694,
1,499,770, 1,538,890 variants for isoleucine, leucine, and valine
include, respectively. Because we did not have independent dis-
covery and target data, we used the Crosspred method to estimate
a isoleucine, leucine, and valine PRS for each participant,
including the variants described above, as this approach enabled
estimation of PRS in single populations using cross-validation to
address overfitting32. Our PRS are publicly available on the
Polygenic Score Catalog (https://www.pgscatalog.org/)33.

Narrow-sense heritability. To estimate the proportion of pheno-
typic variation in each BCAA captured by the variants (i.e., narrow
sense heritability) and approximate an upper bound on the pro-
portion of variation that could be explained by PRS, we used GCTA
and restricted to unrelated participants using a King-cutoff in plink
of 0.0634,35. Briefly, a genetic relationship matrix was created for
each chromosome (1–22), including the same variants used to
construct the PRS. After combining the 22 matrices, linear models
were fit using restricted maximum likelihood in GCTA (GREML
method), adjusting for age, sex, ancestral PCs, and study center.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Study population. We included n= 97,469 participants of Eur-
opean ancestry (Supplementary Data 1). At study baseline, par-
ticipants were on average middle age (mean age= 56.7 years) and
female (54.1%). Approximately 67% of participants were classi-
fied as overweight or obese (mean body mass index= 27.4) and
4.6% of participants were classified as having type 2 diabetes.
Measured BCAAs were highly correlated (r range: 0.83–0.91),
with slightly lower correlations for genetically inferred BCAAs (r
range: 0.73–0.80) (Supplementary Data 2).

GWAS. Twelve genome-wide significant loci were identified
(Fig. 2, Supplementary Data 3). Eight loci were identified for all
three BCAAs and valine harbored four additional loci: GLUD1,
ACACB, MLXIP, and PRODH. Lead variants for these 12 loci
showed a wide range in coded allele frequencies (range:
0.002–0.300) and effect per coded allele (absolute value effect size
range: 0.033–0.37). BCAA-specific independent signals were
identified for several shared loci, including DDX19A and ABCG2.
For the DDX19A locus, one independent signal (lead variant
rs370014171) was common to all three BCAAs. The second
independent signal (lead variant rs2287978) was associated with
valine and leucine and the third independent signal (lead variant
rs9930957) was associated with leucine. These results demon-
strate that the genetic architecture of leucine, isoleucine, and
valine has both shared and unique features.

The proportion of phenotypic variance captured by genetic
variants ranged from h2= 65% (isoleucine) to h2= 67% (valine)
(Supplementary Data 4). BCAA polygenic risk scores (PRS), which

Fig. 2 Genome-wide association studies of individual branched chain
amino acids in n= 97,469 European ancestry UK Biobank participants.
Variant-isoleucine (A) variant-leucine (B) and variant-valine (C) p-values
are plotted against genome location. Genome-wide significance (1.7 × 10-9)
and suggestive (1.7 × 10−7) thresholds are shown in red and pink,
respectively.
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served as the genetic instrumental variables (IV) for MVMR,
explained a slightly smaller proportion (57-58%) of the phenotypic
variance in leucine, isoleucine, and valine (P= 2.2 × 10−16).

MVMR, MR, and observational results. We then used MVMR,
an extended form of univariable Mendelian randomization (MR)
developed to estimate causal effects of two or more exposures on
an outcome, to estimate BCAA causal effects. Total causal effects
are interpreted as the effect of varying one BCAA while keeping
the other two BCAAs constant. Because MVMR addresses
potential biasing effects of shared genetic and lifestyle factors, this
approach provides less biased estimates of BCAA phenotypic
effects compared to univariable MR studies or observational
studies that do not account for these shared factors17. Further, by
using genetic IVs, MVMR also is robust to bias from reverse
causation36.

As described in the Methods, MVMR assumes (1) that the
BCAA genetic IVs are strongly associated with the exposure17. To
examine this assumption, individual F-statistics and Sanderson-
Windmeijer F-statistics were used to test whether the genetic IVs
individually and jointly predicted the exposures. There was
sufficient evidence based on the F-statistics (median (range):
36,916 (174, 46762)) and the Sanderson-Windmeijer F-statistics
(median (range): 34,847 (156, 45,000)) to suggest that this
assumption was not violated (Supplementary Data 9).

Given evidence of strong genetic IVs, we evaluated associations
between these IVs with 441 phenotypes across 17 categories
(Table 1, Supplementary Data 5). A total of 117 phenotypes
across 12 categories (26.5% of available phenotypes) had
statistically significant evidence of a total causal effect with at
least one BCAA (Fig. 2 outer ring, Supplementary Data 6).
Significant total causal effects for phenotypes in the dermatologic,
infectious diseases, neoplasms, other, and symptoms categories
were not identified.

Of the 117 phenotypes with evidence of a statistically significant
total causal effect with at least one BCAA, almost half (44%,
n= 52) were associated with a single BCAA (Table 2). These 52
phenotypes included total causal effects of valine on diabetic eye
disease [odds ratio= 1.51, 95% confidence interval (CI)= 1.31,
1.76], valine on albuminuria (odds ratio= 1.14, 95% CI= 1.08,
1.20), and isoleucine on angina (odds ratio= 1.17, 95% CI= 1.31,
1.76). Only two of these 52 phenotypes (beta blocking agents and
drugs affecting bone structure and mineralization) showed
evidence of a total causal effect with leucine only. Results from

univariable MR or the analysis of measured BCAAs were largely
inconsistent with estimated total causal effects for these 52
phenotypes (Fig. 3, inner ring, Table 2, Supplementary Data 6).
For example, there were only five phenotypes for which results
estimated using univariable MR were concordant in significance
and effect direction with total causal effects estimated using
MVMR: chronic bronchitis, use of calcium channel blocker
medications, current vs. never smoking, monocyte percentage,
and neutrophil percentage. Instead, the univariable MR approach
estimated statistically significant and directionally consistent
BCAA effects for 37 of the 52 phenotypes (71%), including
estimated glomerular filtration rate and inguinal hernia. A similarly
high proportion of biased estimates and false positive findings for
individual BCAA effects was observed when examining phenotypes
with significant total causal effects for two BCAAs.

There were 25 phenotypes for which MVMR estimated
significant total causal effects for all three BCAAs. For 20 of the
25 phenotypes, statistically significant effects for all three BCAAs
also were estimated using univariate MR. However, discordance
in effect direction was observed between the two approaches.
Total causal effects estimated by MVMR were directionally
consistent for only 1 of the 20 phenotypes. In contrast, the
univariate MR approach estimated directionally consistent BCAA
effects for 19 of the 20 phenotypes.

Finally, discordant findings were observed, whereby the
univariate MR approach identified statistically significant findings
for 49 phenotypes, but none of the total causal effects estimated
by MVMR were significant. These findings may represent
scenarios where statistical power to estimate total causal effects
via MVMR was reduced. Nonetheless, by accounting for the
correlation between BCAAs, the MVMR total causal effects
provide a more accurate assessment, even if the P-values were not
statistically significant. For example, osteoporosis was uncommon
in study participants (n= 1,142 cases) and P-values estimated
using univariate MR suggested significant and directionally
consistent inverse effects for leucine, isoleucine, and valine (P-
values < 1.1 x 10−6). In contrast, although not statistically sig-
nificant, MVMR results suggested that isoleucine was positively
associated with osteoporosis (P-value= 9.0 × 10−5), whereas
valine was negatively associated (P-value= 9.7 × 10−5).

Discussion
In this study, we addressed a major limitation in observational
studies of BCAAs: the inability to estimate individual effects of
leucine, isoleucine, and valine while accounting for shared life-
style and genetic factors. To address this gap, we used dense
phenotypic data from a well characterized biobank and MVMR
causal inference methods. We demonstrated distinct and often
opposing BCAA phenotypic effects, findings that conflicted with
observational studies that did not account for shared lifestyle and
genetic factors. These findings suggest that the observational lit-
erature examining BCAA phenotypic effects is biased. BCAA
observational studies are not only biased regarding direction of
effect; any conclusions about the presence (or absence) of a sta-
tistically significant association also is prone to substantial error.
Such threats to validity are not limited to BCAA studies. All
‘omics studies conducted in observational settings should con-
sider the potential for bias when ‘omics features are governed by
shared factors, although such effects remain largely unrealized.

A large body of observational literature has documented asso-
ciations between individual BCAAs with human diseases, although
few studies have addressed confounding from shared lifestyle and
genetic factors. Meta-analyses of cardiovascular disease37, pre-
diabetes and diabetes21,38, and liver cirrhosis39 exemplify this
practice. For example, a recent meta-analysis reported very precise

Table 2 Comparison of results from approaches that did
(columns) and did not (rows) account for the strong
correlation between BCAAs when estimating effects with
441 phenotypes spanning 17 categories in a maximum of
97,469 UK Biobank European ancestry participants.

No. of phenotypes with significant
total causal effect with 0, 1, 2,
or 3 BCAAsb,c

0 1 2 3 Total

N. of phenotypes with
significant total effect
with 0, 1, 2, or 3
BCAAsa,b

0 275 6 3 1 285
1 13 5 5 1 24
2 9 4 3 3 19
3 27 37 29 20 113
Total 324 52 40 25 441

aUsed univariable Mendelian randomization that did not account for correlation between
BCAAs.
bAll statistical models adjusted for ancestral principal components, study center, age, and sex
cEstimated using MVMR statistical approach that accounted for correlation between BCAAs.
BCAA, branched chain amino acid. MVMR, multivariable Mendelian randomization.
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and highly significant relative risks for one standard deviation
increases in isoleucine, leucine, and valine with type 2 diabetes of
1.54 (95% confidence interval [CI]: 1.36, 1.74), 1.40 (95% CI: 1.29,
1.52), and 1.40 (95% CI: 1.25, 1.57), respectively21. However,
because none of the 19-to-23 included studies accounted for shared
genetic factors, these estimates are biased. This bias constrains
inference on the presence, direction, and magnitude of effect.
Similarly, univariable MR causal inference studies40 could not
identify which of the BCAAs had causal effects on type 2 diabetes41.

In contrast, by estimating BCAA total causal effects, our results
suggested a different picture: that valine significantly increased type
2 diabetes, leucine significantly decreased type 2 diabetes, and
isoleucine had no significant effect. It is biologically plausible that
each BCAA harbors distinct effects on type 2 diabetes. For example,
each BCAA differentially activates the mechanistic target of rapa-
mycin complex 1 (mTORC1), a central regulator of cell growth and
metabolism42. Intermediate and final end-products of BCAA
metabolism also differ, including 3-hydroxyisobutyrate, a valine
metabolite that promotes muscle lipid accumulation and insulin

resistance in mice16. Similarly, leucine is exclusively ketogenic and
prior research has demonstrated that ketone bodies can improve
insulin sensitivity and attenuate insulin resistance43,44. Dis-
crepancies observed for type 2 diabetes parallels our overall finding,
highlighting the potential for biased inference regarding effect
presence vs. absence and effect direction when the correlation
between BCAAs was ignored. At best the assumed homogeneity of
effects may lead to ineffective therapies. At worst, assumed
homogeneity may lead to unintended impacts where combined
BCAA therapies have directionally opposing effects.

Experimental studies also have demonstrated that individual
BCAAs have different catabolites and catabolic intermediates that
likely exert distinct effects on metabolism, providing further
support for our findings. In one example, isoleucine or valine
restriction, but not leucine restriction, restored metabolic health
in diet-induced obese mice, even when the animals consumed
Western diets14. Another study examining metabolic con-
sequences of high fat diets in mice was more consistent with our
findings for type 2 diabetes. Specifically, this study demonstrated

Fig. 3 Causal inference study of branched chain amino acid (BCAA) phenotypic effects in a maximum of n= 97,469 UK Biobank European ancestry
participants identifies 117 significant associations (P < 3.78 x 10−5) across 17 categories. In the outer ring, total causal effects and p-values are
estimated for each BCAA using multivariate Mendelian randomization, restricting to the 117 phenotypes with evidence of at least one significant total
causal effect, and accounting for bias from shared genetic factors. In the inner ring, total causal effects and p-values are estimated for each BCAA using
univariable Mendelian randomization methods that do not account for bias from shared genetic factors. In each ring, isoleucine (ILE) is in the outermost
position, leucine (LEU) is in the middle position, and valine (VAL) is in the internal position. All statistical models adjusted for ancestral principal
components, study center, age, and sex.
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that leucine supplementation had beneficial effects on adiposity
and insulin sensitivity, whereas valine supplementation reduced
glucose tolerance and insulin sensitivity15. It is challenging to
compare these findings with our results, given the UK Biobank’s
observational design. In addition to design differences, the
metabolic processes influencing weight (e.g., body mass index)
and long-term glycemic control (e.g., glycated hemoglobin),
which are available in the UK Biobank, also may differ from the
metabolic processes influencing weight loss and glucose meta-
bolism regulation, which were not measured45.

Despite several strengths, our study is not without limitations.
One challenge is disentangling intermediate phenotypes directly
affected by individual BCAAs from downstream phenotypes
affected by the intermediate phenotypes (i.e., vertical pleiotropy).
For example, several phenotypic effects may represent downstream
effects of insulin resistance. Although outside the scope of this
effort, mediation analysis methods that build upon the strengths of
MVMR are emerging and may inform future studies27,46. Second,
we used one sample MVMR, thereby limiting our analysis to a
subset of UK Biobank participants with genotypic, phenotypic, and
BCAA data. Although two sample MVMR methods may have
enabled a larger and more powerful study, benefits of one sample
MVMR included smaller variances of causal parameters, applica-
tion of test statistics (e.g., the Sanderson-Windmeijer F-statistic)
that did not require knowledge of the covariance between the effect
of the instrumental variables on each exposures, and avoidance of
assumptions of source population similarity when using non-
overlapping populations17. Given the large sample sizes available in
the UK Biobank, we felt that one sample strengths outweighed the
limitations. Third, we focused on curated phenotypes, which yiel-
ded 441 phenotypes of relatively high accuracy across 17 categories.
Although our approach may have omitted some relevant pheno-
types, especially given our choice of a conservative multiple com-
parisons adjustment, a comprehensive cataloging of BCAA
phenotypic effects was not our main goal. Instead, our goal was to
examine whether discrepancies between experimental and obser-
vational BCAA studies reflected bias from shared genetic and
lifestyle factors. Fourth, challenges were potentially introduced by
the potential for horizontal pleiotropy, whereby the genetic IV
affected the outcome independent of its effect on the BCAAs. This
bias cannot be tested directly, but instead is gauged using sensitivity
analyses that are based on additional assumptions. Few methods
robust to horizontal pleiotropy have been developed for 2SLS
MVMR and even fewer exist when PRS genetic IVs are used47.
Although horizontal pleiotropy may introduce some degree of bias
in the total causal effects, the fact that we are simultaneously
modeling the major source of horizontal pleiotropy (i.e., the three
BCAAs), the magnitude of effects, the very low levels of sig-
nificance, and the consistency of our main finding – that BCAAs
exert unique effects across diverse phenotypes that would be sub-
ject to different levels of horizontal pleiotropy- together suggest
that the potential for horizontal pleiotropy changing our main
conclusions is low.

In conclusion, contrary to the published observational litera-
ture, our findings suggest considerable phenotypic heterogeneity
in BCAA effects. These findings emphasize the need for future
observational studies that systematically examine the causal
architecture of correlated phenotypes, including ‘omics and
other sources of big data. These investigations may be challen-
ging, as while the main pathways of BCAA catabolism are rela-
tively well-characterized, for other questions the exposures may
be unknown, or the main pathways may be poorly characterized.
Surmounting these challenges will undoubtedly require causal
inference innovations applicable to observational settings. These
innovations will help interpret conflicting literature, improve the
quality of available evidence, illuminate disease pathogenesis,

and, ultimately, aid the development of effective treatments,
biomarkers, and prediction algorithms for public health and
clinical action.

Data availability
The UK Biobank phenotypic and genotypic data are publicly available https://www.
ukbiobank.ac.uk/enable-your-research/register. Sharing of the UK Biobank data is
governed by the parent study. Supplementary Data 3 and Supplementary Data 6 contain
source data for Fig. 2 and Fig. 3, respectively. Additional data for the supplementary
figures are available upon request.
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