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Abstract

Background Gestational Diabetes Mellitus (GDM) affects approximately 1 in 7 pregnancies

globally. It is associated with short- and long-term risks for both mother and baby. Therefore,

optimizing treatment to effectively treat the condition has wide-ranging beneficial effects.

However, despite the known heterogeneity in GDM, treatment guidelines and approaches are

generally standardized. We hypothesized that a precision medicine approach could be a tool

for risk-stratification of women to streamline successful GDM management. With the rela-

tively short timeframe available to treat GDM, commencing effective therapy earlier, with

more rapid normalization of hyperglycaemia, could have benefits for both mother and fetus.

Methods We conducted two systematic reviews, to identify precision markers that may

predict effective lifestyle and pharmacological interventions.

Results There was a paucity of studies examining precision lifestyle-based interventions for

GDM highlighting the pressing need for further research in this area. We found a number of

precision markers identified from routine clinical measures that may enable earlier identifi-

cation of those requiring escalation of pharmacological therapy (to metformin, sulphony-

lureas or insulin). This included previous history of GDM, Body Mass Index and blood glucose

concentrations at diagnosis.

Conclusions Clinical measurements at diagnosis could potentially be used as precision

markers in the treatment of GDM. Whether there are other sensitive markers that could be

identified using more complex individual-level data, such as omics, and if these can feasibly

be implemented in clinical practice remains unknown. These will be important to consider in

future studies.
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Plain language summary
Gestational diabetes (GDM) is high

blood sugar first detected during

pregnancy. Normalizing blood sugar

levels quickly is important to avoid

pregnancy complications. Many

women achieve this with lifestyle

changes, such as to diet, but some

need to inject insulin or take tablets.

We did two thorough reviews of

existing research to see if we could

predict which women need medica-

tion. Firstly we looked for ways to

identify the characteristics of women

who benefit most from changing their

lifestyles to treat GDM, but found

very limited research on this topic.

We secondly searched for char-

acteristics that help identify women

who need medication to treat GDM.

We found some useful characteristics

that are obtained during routine

pregnancy care. Further studies are

needed to test if additional informa-

tion could provide even better infor-

mation about how we could make

GDM treatment more tailored for

individuals during pregnancy.
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Gestational diabetes (GDM) is the most common preg-
nancy complication, occurring in 3–25% of pregnancies
globally1. GDM is associated with short- and long-term

risks to both mothers and babies, including adverse perinatal
outcomes, future obesity, type 2 diabetes and cardiovascular
disease1–3. The landmark Australian Carbohydrate Intolerance
Study in Pregnant Women (ACHOIS) demonstrated that effec-
tive treatment of GDM reduces serious perinatal morbidity4.

Current treatment guidelines for management of GDM assume
homogeneous treatment requirements and responses, despite the
known heterogeneity of GDM aetiology5–8. Standard care
includes diet and lifestyle advice at a multi-disciplinary clinic,
home blood glucose monitoring at least four times per day, clinic
reviews every 2 to 4 weeks, and then progression to pharmaco-
logical treatment with metformin, glyburide and/or insulin if
glucose targets are not met. Around a third of women cannot
maintain euglycaemia with lifestyle measures alone and require
treatment escalation to a pharmacological agent3. Yet current
treatment pathways often take 4–8 weeks to achieve glucose
targets. This delay resulting in continued exposure to hypergly-
caemia poses a risk of accelerated foetal growth9,10. Previous
research has suggested that maternal characteristics including
body mass index (BMI) ≥ 30 kg/m2, family history of type 2
diabetes, prior history of GDM and higher glycated haemoglobin
(HbA1c) increase the likelihood of need for insulin treatment in
GDM11, indicating the potential for risk-stratification of women
to streamline successful GDM management. There is emerging
evidence that precision biomarkers predict treatment response in
type 2 diabetes, which has similar heterogeneity to GDM12,13 and
thus gives rationale to investigate whether a similar precision
approach could be successful in optimising outcomes in GDM.

To address this knowledge gap, we conducted two systematic
reviews of the available evidence for precision markers of GDM
treatment. We aimed to determine which patient-level char-
acteristics are precision markers for predicting (i) responses to
personalised diet and lifestyle interventions delivered in addition
to standard of care (ii) requirement for escalation of treatment in
women treated with diet and lifestyle alone, and in women
receiving pharmacological agents for the treatment of GDM. For
both reviews we considered whether the precision markers pre-
dicted achieving glucose targets, as well as maternal and neonatal
outcomes. The Precision Medicine in Diabetes Initiative (PMDI)
was established in 2018 by the American Diabetes Association
(ADA) in partnership with the European Association for the
Study of Diabetes (EASD). The ADA/EASD PMDI includes
global thought leaders in precision diabetes medicine who are
working to address the burgeoning need for better diabetes
prevention and care through precision medicine14. This sys-
tematic review is written on behalf of the ADA/EASD PMDI
as part of a comprehensive evidence evaluation in support of
the 2nd International Consensus Report on Precision Diabetes
Medicine15.

We find a paucity of studies examining precision lifestyle-
based interventions for GDM highlighting the pressing need for
further research in this area. We find a number of precision
markers identified from routine clinical measures that may
enable earlier identification of those requiring escalation of
pharmacological therapy (to metformin, sulphonylureas or
insulin). These findings suggest that clinical measurements at
diagnosis could potentially be used as precision markers in the
treatment of GDM. Whether there are other sensitive markers
that could be identified using more complex individual-level
data, such as omics, and if these can feasibly be implemented in
clinical practice remains unknown and will be important to
consider in future studies.

Methods
The systematic reviews and meta-analyses were performed as
outlined a priori in the registered protocols (PROSPERO regis-
tration IDs CRD42022299288 and CRD42022299402). The Pre-
ferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines16 were followed. Ethical approval was not
required as these were secondary studies using published data.

Literature searches, search strategies and eligibility criteria.
Search strategies for both reviews were developed based on
relevant keywords in partnership with scientific librarians (see
Supplementary Note 1 for full search strategies). We searched two
databases (MEDLINE and EMBASE) for studies published from
inception until January 1st, 2022. We also scanned the references
of included manuscripts for inclusion as well as relevant reviews
and meta-analyses published within the past two years for addi-
tional citations.

For both systematic reviews we included studies (randomised
or non-randomised trials and observational studies) published in
English and including women ≥16 years old with diagnosed
GDM, as defined by the study authors. For the first systematic
review (precision diet and lifestyle interventions), we included
studies with any behavioural intervention using any approach
(e.g., specific exercise, dietary interventions, motivational inter-
viewing) that examined precision markers that could tailor a
lifestyle intervention in a more precise way compared to a control
group receiving standard care only. For the second systematic
review (precision markers for escalation of pharmacological
interventions to achieve glucose targets), we included studies
investigating women with GDM that required escalation of
pharmacological therapy (e.g., insulin, metformin, sulphonylurea)
compared to women with GDM that achieved glucose targets
with diet and lifestyle measures only, or women with GDM
treated with oral agents that required progression to insulin to
achieve glucose targets. For both reviews, we included any
relevant reported outcomes; maternal (e.g., treatment adherence,
hypertensive disorders of pregnancy, gestational weight gain,
mode of birth), neonatal (e.g., birthweight, macrosomia, shoulder
dystocia, preterm birth, neonatal hypoglycaemia, neonatal death),
cost efficiency or acceptability. We excluded studies with a total
sample size <50 participants to ensure sufficient data to interpret
the effect of precision markers. We also excluded studies
published before or during 2004, in order to consider studies
with standard care similar to ACHOIS4.

Study selection and data extraction. The results of our two
searches were imported separately into Covidence software
(Veritas Health Innovation, Australia, available at www.
covidence.org) and duplicates were removed. Two reviewers
independently reviewed identified studies. First, they screened
titles and abstracts of all references identified from the initial
search. In a second step, the full-text articles of potentially rele-
vant publications were scrutinised in detail and inclusion criteria
were applied to select eligible articles. Reason for exclusion at the
full-text review stage was documented. Disagreement between
reviewers was resolved through consensus by discussion with the
group of authors.

Two reviewers independently extracted relevant information
from each eligible study, using a pre-specified standardised
extraction form. Any disagreement between reviewers was
resolved as outlined above.

Data extracted included first author name, year of publication,
country, study design, type and details of the intervention when
applicable, number of cases/controls or cohort groups, total
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number of participants and diagnostic criteria used for GDM.
Extracted data elements also included outcomes measures, size of
the association (Odds Ratio (OR), Relative Risk (RR) or Hazard
Ratio (HR)) with corresponding 95% Confidence Interval (CI)
and factors adjusted for, confounding factors taken into
consideration and methods used to control covariates. We
prioritised adjusted values where both raw and adjusted data
were available. Details of precision markers (mean (standard
deviation) for continuous variables or N (%) for categorical
variables) including BMI (pre-pregnancy or during pregnancy),
ethnicity, age, smoking status, comorbidities, parity, glycaemic
variables (e.g., oral glucose tolerance test (OGTT) diagnostic
values, HbA1c), timing of GDM diagnosis, history of diabetes or
of GDM, and season were also extracted.

Quality assessment (risk of bias and GRADE assessments). We
first assessed the quality and risk of bias of each individual study
using the Joanna Briggs Institute (JBI) critical appraisal tools17. A
Grading of Recommendations, Assessment, Development, and
Evaluations (GRADE) approach was then used to review the total
evidence for each precision marker, and the quality of the
included studies to assign a GRADE certainty to this body of
evidence (high, moderate, low and/or very low)18. Quality
assessment was performed in duplicate and conflicts were
resolved through consensus.

Statistical analysis. Where possible, meta-analyses were con-
ducted using random effects models for each precision marker
available. The pooled effect size (mean difference for continuous
outcomes and ORs for categorical outcomes) with the corre-
sponding 95% CI was computed. The heterogeneity of the studies
was quantified using I2 statistics, where I2 > 50% represents
moderate and I2 > 75% represents substantial heterogeneity across
studies. Publication bias was assessed with visual assessment of
funnel plots. Statistical analyses were performed using Review
Manager software [RevMan, Version 5.4.1, The Cochrane Col-
laboration, Copenhagen, Denmark].

As part of the diabetes scientific community, we are sensitive in
using inclusive language, especially in relation to gender.
However, the vast majority of original studies that the GDM
precision medicine working groups reviewed used women as their
terminology to describe their population, as GDM per definition
occurs in pregnancy which can only occur in individuals that are
female at birth. To be consistent with the original studies defined
populations, we use the word ‘women’ in our summary of the
evidence, current gaps and future perspectives, but fully acknowl-
edge that not all individuals who experienced a pregnancy may
self-identify as women at all times over their life course.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Study selection and study characteristics. PRISMA flow charts
(Figs. 1 and 2) summarise both searches and study selection
processes.

For the first systematic review (precision approaches to diet
and lifestyle interventions), we identified 2 eligible studies
(n= 2354 participants), which were randomised trials from
USA and Singapore (Supplementary Data 1)19,20.

For the second systematic review (precision markers for
escalation of pharmacological interventions to achieve target
glucose levels), we identified 48 eligible studies (n= 25,724
participants) (Supplementary Data 2)21–68. There were 34 studies

(n= 23,831 participants) investigating precision markers for
escalation to pharmacological agent(s) in addition to standard
care with diet and lifestyle advice. Of these, 29 studies
(n= 20,486) reported escalation to insulin as the only option21–49

and 5 (n= 3345) reported escalation to any medication
(metformin, glyburide and/or insulin)50–54. There were 12 studies
(n= 1836 participants) investigating precision markers for
escalation to insulin when treatment with oral agents was not
adequate to achieve target glucose levels. Initial treatment
was with glyburide in 6 of these studies (n= 527)55–60 and
metformin in the other 6 studies (n= 1142)61–66. A further 2
eligible studies reported maternal genetic predictors of need for
supplementary insulin after glyburide (n= 117 participants)67

and maternal lipidome responses to metformin and insulin
(n= 217 participants)68.

The majority of included studies were observational in design.
Most studies reported outcomes of singleton pregnancies. The
studies were from a range of geographical locations: Europe
(Belgium, Finland, France, Italy, Netherlands, Poland, Portugal,
Spain, Sweden), Switzerland, Middle East (Israel, Qatar, United
Arab Emirates), Australasia (Australia, New Zealand), North
America/Latin America (Canada, USA and Brazil) and Asia
(China, Malaysia, Japan). There were a range of approaches to
GDM screening, choice of diagnostic test and diagnostic glucose
thresholds.

Quality assessment. Study quality assessment is presented as an
overall risk of bias for the studies included in the meta-analyses in
Fig. 3 and as a heat map for quality assessment for each included
study in Fig. 4. Most of the studies were rated as low risk of bias,
as they adequately described how a diagnosis of GDM was
assigned, defining inclusion and exclusion criteria, and reported
the protocol for initiation of pharmacological therapy. Not all
studies reported whether women received diet and lifestyle advice
as standard care. Few studies reported whether the precision
marker was measured in a valid and reliable way. Using the
GRADE approach, the majority of precision markers were clas-
sified as having a low certainty of evidence with some classified as
very low certainty (Tables 1 and 2). No publication bias (as
ascertained by funnel plot analyses) was detected.

Precision diet and lifestyle interventions in GDM. Two studies
examining different precision approaches to behavioural inter-
ventions were included in the first systematic review, so we pre-
sent a narrative synthesis of the findings. Neither study examined
whether a precision approach to specific lifestyle interventions
facilitated achievement of glucose targets during pregnancy or
improved outcomes that reflect glycaemic control during preg-
nancy such as macrosomia, large for gestational age, or neonatal
hypoglycaemia.

In one study of women with GDM19, the intervention was
distribution of a tailored letter based on electronic health record
data detailing gestational weight gain (GWG) recommendations
(as defined by the Institute of Medicine). Receipt of this tailored
letter increased the likelihood of meeting the end-of-pregnancy
weight goal among women with normal pre-pregnancy BMI, but
not among women with overweight or obese pre-pregnancy BMI.
This study identified normal pre-pregnancy BMI as a precision
marker for intervention success.

The second study20 used a Web/Smart phone lifestyle coaching
programme in women with GDM. Pre-intervention excessive
GWG was evaluated as a potential precision marker for the
response to the Web/Smart phone lifestyle coaching programme
in preventing excess GWG. There was no difference between
study arms with respect to either excess GWG or absolute GWG
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by the end of pregnancy indicating that early GWG is not a useful
precision marker with respect to this intervention.

Precision markers for escalation of pharmacological interven-
tions to achieve glucose targets in GDM. Of the 34 studies of
precision markers for escalation to pharmacological therapy to
achieve glucose targets in addition to standard care with diet
and lifestyle advice, 23 studies (n= 19,112 participants) were
included in the meta-analysis21–23,25,26,31–36,38,40,41,43–46,48,50–53

and 11 studies (n= 7158 participants) in the narrative
synthesis24,27–30,37,39,42,47,49,54.

Table 1 and Supplementary Figs. 1–13 show that precision
markers for GDM to be adequately managed with lifestyle
measures were lower maternal age, nulliparity, lower BMI, no
previous history of GDM, lower HbA1c, lower glucose values at the
diagnostic OGTT (fasting, 1 h, 2 and/or 3 h glucose), no family
history of diabetes, later gestation of diagnosis of GDM and no

macrosomia in previous pregnancies. There was a similar pattern
for not smoking but this did not reach statistical significance.

Twelve studies (n= 1836 participants) of precision markers for
escalation to insulin to achieve glucose targets in addition to oral
agents were included in the meta-analysis55–66.

Table 2 and Supplementary Figs. 14–25 show that precision
markers for achieving glucose targets with oral agents only were
nulliparity, lower BMI, no previous history of GDM, lower
HbA1c, lower glucose values at the diagnostic OGTT (fasting, 1 h,
and/or 2 h glucose), later gestation of diagnosis of GDM and later
gestation at initiation of the oral agent. In sensitivity analyses,
there were no differences in the precision markers predicting
response to metformin versus glyburide (Supplementary Data 3).

Similar precision markers for escalation to pharmacotherapy
to achieve glucose targets were observed in the 11 studies
(n= 7158 participants) that were not included in the meta-
analysis24,27–30,37,39,42,47,49,54 (Supplementary Data 4). Additional
precision markers including foetal sex28, ethnicity30,47 and season
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Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams for precision approaches to enhance
behavioural (diet and lifestyle) interventions. The PRISMA flow diagram details the search and selection process applied in the review.
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of birth37 were evaluated in some studies but there was
insufficient data to draw conclusions.

There was a paucity of data in examining other precision
markers with only weak evidence that the maternal lipidome68 or
genetics67 hold potential as precision markers for escalation of
pharmacological treatment (Supplementary Data 4).

Discussion
As the factors contributing to the development of GDM and its
aetiology are heterogeneous5–8, it is plausible that the most
effective treatment strategies may also be variable among women

with GDM. A precision medicine approach resulting in more
rapid normalisation of hyperglycaemia could have substantial
benefits for both mother and foetus. By synthesising the evidence
from two systematic reviews, we sought to identify key precision
markers that may predict effective lifestyle and pharmacological
interventions. There were a paucity of studies examining preci-
sion approaches to better target lifestyle-based interventions for
GDM treatment highlighting the pressing need for further
research in this area. However, we found a number of precision
markers to enable earlier identification of those requiring esca-
lation of pharmacological therapy. These included characteristics
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Fig. 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams for precision markers for escalation of
pharmacological interventions. The PRISMA flow diagram details the search and selection process applied in the review.
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such as BMI, that are easily and routinely measured in clinical
practice, and thus have potential to be integrated into prediction
models with the aim of achieving rapid glycaemic control. With
the relatively short timeframe available to treat GDM, commen-
cing effective therapy earlier, and thus reducing excess foetal
growth, is an important target to improve outcomes. Basing
treatment decisions closely on precision markers could also avoid
over-medicalisation of women who are likely to achieve glucose
targets with dietary counselling alone.

In our first systematic review, we identified only two studies
addressing precision markers in lifestyle-based interventions for
GDM, over and above the usual lifestyle intervention as standard
care19,20. In both studies, precision markers were examined as
secondary analyses of the trials and only two precision markers
(communication of GWG goals according to pre-pregnancy BMI;
and early GWG as a precision marker for the efficacy of tech-
nological enhancement to a behavioural intervention) were
assessed; it is thus not possible to conclusively identify any pre-
cision marker in lifestyle-based interventions for GDM. This gap
in the literature highlights the need for more research, as also
echoed by patients and healthcare professionals participating in
the 2020 James Lind Alliance (JLA) Priority Setting Partnership
(PSP)69.

Our second systematic review extends the observations of a
previous systematic review reporting maternal characteristics
associated with the need for insulin treatment in GDM11. We
identified a number of additional precision markers of successful
GDM treatment with lifestyle measures alone, without need for
additional pharmacological therapy. The same set of predictors
identified women requiring additional insulin after treatment
with glyburide as with metformin, despite their different
mechanisms of action. However, the numbers of women included
in most studies were relatively low and most studies with data in
relation to need to escalation to insulin in addition to glyburide
were over 10 years old55,56,58–60. We acknowledge that there
are also differences in diagnostic criteria, clinical practices, and
preferences for choice of which drug to start as first pharmaco-
logical agent in various global regions which may limit the gen-
eralisability of our findings.

Notably, many of the identified precision markers are routinely
measured in clinical practice and so could be incorporated into
prediction models of need for pharmacological treatment70,71. By
identifying those who require escalation of pharmacological
therapy earlier, better allocation of resources can be achieved.
Additionally, some of the precision markers identified, such as
BMI, are potentially modifiable. This raises the question of how
women can be helped to better prepare for pregnancy72. Imple-
menting interventions prior to pregnancy could help understand
if these precision markers are on the causal pathway, thus pro-
viding an opportunity for prevention and improving health
outcomes.

Importantly, there was a lack of data on other potential pre-
cision treatment biomarkers, with only two eligible low-quality
studies reporting maternal genetic and metabolomic findings67,68.
In the non-pregnancy literature, efficacy of dietary interventions
has been reported to differ for patients with distinct metabolic
profiles, for example high fasting glucose versus high fasting
insulin, or insulin resistance versus low insulin secretion73–75.
More recent evidence from appropriately designed, prospective
dietary intervention studies has confirmed that dietary interven-
tions tailored towards specific metabolic profiles have more
beneficial effects than interventions not specifically designed
towards a patient’s metabolic profile76–79. Ongoing studies such
as the Westlake Precision Birth Cohort (WeBirth) in China
(NCT04060056) and the USA Hoosier Moms Cohort
(NCT03696368) are collecting additional biomarkers which will
enhance knowledge in this field. However, implementing such
measures in clinical practice, if they prove informative, could be
complex and expensive and thus not suitable for use in all global
contexts.

Our study has several limitations: Our reviews primarily relied
on secondary analyses from observational studies that were not
specifically designed to address the question of precision medi-
cine in GDM treatment and were not powered for many of the
comparisons made. Prior to introduction in clinical practice, any
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Yogev 2011 + + + +

Fig. 3 Risk of bias graph: review authors’ judgements about each risk of
bias item presented as percentages across all studies included in the
meta-analyses. Green circle with + sign, Yes, Red circle with – sign, No,
Blank – not described.
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Fig. 4 Risk of bias summary: review authors’ judgements about each risk of bias item for each study included in the meta-analyses. Green – low risk of
bias, Grey – unclear risk of bias, Red – high risk of bias.

Table 1 Lifestyle adequate to achieve target glucose levels vs need for escalation to pharmacological agent(s) to achieve glucose
targets.

Precision Marker Studies Participants Statistical Method Effect Estimate (95%CI) GRADE

Age (years) 20 14620 Mean difference (95%CI) −0.98 [−1.23, −0.73] ⊕⊕◯◯
Nulliparity 8 6969 Odds Ratio (95%CI) 1.53 [1.23, 1.89] ⊕⊕◯◯
Body mass index kg/m2 16 11313 Mean difference (95%CI) −1.83 [−2.32, −1.35] ⊕⊕◯◯
Previous history of GDM 13 9885 Odds Ratio (95%CI) 0.46 [0.37, 0.57] ⊕⊕◯◯
Haemoglobin A1C (%) 8 4825 Mean difference (95%CI) −0.21 [−0.27, −0.14] ⊕⊕◯◯
Fasting glucose (mg/dl) 13 8663 Mean difference (95%CI) −6.26 [−8.44, −4.08] ⊕⊕◯◯
1-h glucose(mg/dl) 10 6579 Mean difference (95%CI) −15.33 [−20.81, −9.85] ⊕◯◯◯
2-h glucose(mg/dl) 12 8255 Mean difference (95%CI) −9.06 [−13.55, −4.56] ⊕◯◯◯
3-h glucose(mg/dl) 3 2126 Mean difference (95%CI) −8.56 [−12.58, −4.54] ⊕◯◯◯
Family history of diabetes 13 9256 Odds Ratio (95%CI) 0.66 [0.59, 0.75] ⊕⊕◯◯
Gestational age at GDM diagnosis (weeks) 9 5882 Mean difference (95%CI) 3.06 [2.33, 3.79] ⊕⊕◯◯
Smoking history 5 3488 Odds Ratio (95%CI) 0.80 [0.52, 1.23] ⊕⊕◯◯
Previous history of macrosomia 7 5595 Odds Ratio (95%CI) 0.63 [0.42, 0.94] ⊕⊕◯◯

Very low ⊕◯◯◯.
Low ⊕⊕◯◯.

Table 2 Oral pharmacological agent adequate to achieve target glucose levels vs need for escalation to insulin to achieve glucose
targets.

Precision Marker Studies Participants Statistical method Effect Estimate (95%CI) GRADE

Age (years) 11 1473 Mean difference (95%CI) −1.04 [−2.10, 0.03] ⊕⊕◯◯
Nulliparity 8 1215 Odds Ratio (95%CI) 1.55 [1.17, 2.04] ⊕⊕◯◯
Body mass index (kg/m2) 10 1692 Mean difference (95%CI) −1.21 [−2.21, −0.21] ⊕⊕◯◯
Previous history of GDM 8 1412 Odds Ratio (95%CI) 0.43 [0.30, 0.63] ⊕⊕◯◯
Haemoglobin A1C (%) 6 1152 Mean difference (95%CI) −0.21 [−0.29, −0.13] ⊕⊕◯◯
Fasting glucose (mg/dl) 12 1836 Mean difference (95%CI) −8.02 [−11.87, −4.16] ⊕◯◯◯
1-h glucose (mg/dl) 8 1177 Mean difference (95%CI) −10.64 [−18.25, −3.02] ⊕◯◯◯
2-h glucose (mg/dl) 10 1378 Mean difference (95%CI) −7.31 [−11.38, −3.25] ⊕◯◯◯
3-h glucose (mg/dl) 6 679 Mean difference (95%CI) 0.00 [−11.79, 11.79] ⊕◯◯◯
Family history of diabetes 6 1040 Odds Ratio (95%CI) 0.79 [0.50, 1.25] ⊕⊕◯◯
Gestational age at GDM diagnosis (weeks) 11 1473 Mean difference (95%CI) 2.64 [1.42, 3.86] ⊕⊕◯◯
Gestation at oral pharmacological agent initiation
(weeks)

7 967 Mean difference (95%CI) 3.79 [2.08, 5.51] ⊕⊕◯◯

Very low ⊕◯◯◯.
Low ⊕⊕◯◯.
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marker would have to be rigorously and prospectively tested with
respect to sensitivity and specificity to predict treatment needs.
The majority of data were extracted from clinical records leading
to a lack of detail, such as the precise timing of BMI measure-
ments, and limited information about whether BMI was self-
reported or clinician measured. There was marked variation in
approaches to GDM screening methods, choice of glucose chal-
lenge test and diagnostic thresholds as well as heterogeneity in
glucose targets or criteria met to warrant escalation in treatment.
Whilst we included studies from a range of geographical settings,
the majority of studies were from high income settings, and
therefore our findings may not be applicable to low- and middle-
income countries. Pregnancy outcomes of precision medicine
strategies for GDM also remain unknown, underscoring the need
for tailored interventions that account for patient perspective and
diverse patient populations.

Despite these limitations, our study has several strengths. We
used robust methods to identify a broad range of precision
markers, many of which are routinely measured and can be easily
translated into prediction models. We excluded studies where the
choice of drug was decided by the clinician based on participant
characteristics to avoid bias. Our study also highlights the need
for further research in this area, particularly in exploring whether
there are more sensitive markers that could be identified through
omics approaches.

In conclusion, our findings suggest that precision medicine for
GDM treatment holds promise as a tool to stream-line indivi-
duals towards the most effective and potentially cost-effective
care. Whether this will impact on short-term pregnancy out-
comes and longer term health outcomes for both mother and
baby is not known. More research is urgently needed to identify
precision lifestyle interventions and to explore whether more
sensitive markers could be identified. Prospective studies,
appropriately powered and designed to allow assessment of dis-
criminative abilities (sensitivity, specificity), and (external) vali-
dation studies are urgently needed to understand the utility and
generalisability of our findings to under-represented populations.
This is an area of active research with findings from ongoing
studies (NCT04187521, NCT03029702, NCT05932251) eagerly
awaited. Consideration of how identified markers can be imple-
mented feasibly and cost effectively in clinical practice is also
required. Such efforts will be critical for realising the full potential
of precision medicine and empowering patients and their health
care providers to optimise short and long-term health outcomes
for both mother and child.

Data availability
The included studies are detailed in Supplementary Data 1 and 2. The data underlying
Tables 1 and 2 are in Supplementary Figs. 1–13 and 14–25, respectively. Additional
information is available via contact with the corresponding author.
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