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Abstract

Background Heterogeneity in type 2 diabetes presentation and progression suggests that

precision medicine interventions could improve clinical outcomes. We undertook a sys-

tematic review to determine whether strategies to subclassify type 2 diabetes were asso-

ciated with high quality evidence, reproducible results and improved outcomes for patients.

Methods We searched PubMed and Embase for publications that used ‘simple sub-

classification’ approaches using simple categorisation of clinical characteristics, or ‘complex

subclassification’ approaches which used machine learning or ‘omics approaches in people

with established type 2 diabetes. We excluded other diabetes subtypes and those predicting

incident type 2 diabetes. We assessed quality, reproducibility and clinical relevance of

extracted full-text articles and qualitatively synthesised a summary of subclassification

approaches.

Results Here we show data from 51 studies that demonstrate many simple stratification

approaches, but none have been replicated and many are not associated with meaningful

clinical outcomes. Complex stratification was reviewed in 62 studies and produced repro-

ducible subtypes of type 2 diabetes that are associated with outcomes. Both approaches

require a higher grade of evidence but support the premise that type 2 diabetes can be

subclassified into clinically meaningful subtypes.

Conclusion Critical next steps toward clinical implementation are to test whether subtypes

exist in more diverse ancestries and whether tailoring interventions to subtypes will improve

outcomes.
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Plain language summary
In people with type 2 diabetes there

may be differences in the way people

present, including for example, their

symptoms, body weight or how much

insulin they make. We looked at

recent publications describing

research in this area to see whether it

is possible to separate people with

type 2 diabetes into different sub-

groups and, if so, whether these

groupings were useful for patients.

We found that it is possible to group

people with type 2 diabetes into dif-

ferent subgroups and being in one

subgroup can be more strongly linked

to the likelihood of developing com-

plications over others. This might

mean that in the future we can treat

people in different subgroups differ-

ently in ways that improves their

treatment and their health but it

requires further study.
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Type 2 diabetes is a global health problem posing substantial
burdens on human health1. The diagnosis of type 2 dia-
betes is based on elevated blood glucose coupled with the

absence of clinical features indicating alternative subtypes, such as
type 1, monogenic, pancreatic or medication-induced diabetes2. A
diagnosis of type 2 diabetes is generally the default or can be
arrived at through exclusion of other types. Traditionally, most
type 2 diabetes care guidelines have advocated treatment choice
based on cost-effectiveness and side effects of specific medica-
tions, which have no relationship to underlying pathophysiology
in the individual. More recent guidelines have suggested differ-
ential glucose-lowering therapies on the basis of higher body mass
index (BMI) (favouring use of glucagon-like peptide analogue,
GLP-1) or presence or absence of cardiovascular and/or renal
disease and/or heart failure (favouring GLP-1 and/or sodium-
glucose co-transporter 2, SGLT-2 inhibitors)3.

There is considerable heterogeneity in the clinical character-
istics of patients with type 2 diabetes. Clinicians recognise that
differences in degree of obesity or body fat distribution, age,
dyslipidaemia or presence of metabolic syndrome can influence
prognosis in diabetes and can be important considerations in
treatment and management4–6. There is increasing awareness
that type 2 diabetes heterogeneity may reflect differences in the
underlying pathophysiology, environmental contributors, and the
genetic risk of affected individuals. The mechanisms leading to
the development of type 2 diabetes may differ from one indivi-
dual to another and this could impact treatment and outcome.

Accurate characterisation of the heterogeneity in type 2 dia-
betes may help individualise care and improve outcomes. This
goal has been realised in part for monogenic diabetes, where
treatments can be tailored to genetic subtype to deliver precision
care achieving better outcomes than standard care7. Given the
complex pathophysiology and genetics of type 2 diabetes,
applying precision medicine approaches is challenging. Critical to
this endeavour is a better understanding of specific subtypes.

There are many studies of type 2 diabetes subtypes. The lit-
erature reflects diverse approaches based on the presence or
absence of one or more simple clinical features or biomarkers
and, more recently, sophisticated methods that deploy machine
learning (ML) or use omics data. Classification approaches such
as clustering methods to categorise this heterogeneity show inter-
cluster differences in progression to complications or need for
insulin treatment. These approaches consider clinical features at
diagnosis8 or clinical information combined with genetic data to
characterise disease heterogeneity9,10. Simpler approaches are
more easily implemented across all resource settings, while
complex approaches may have greater precision in classifying
heterogeneity. The breadth and scope of the evidence in favour of
type 2 diabetes subclassification have not to date been thoroughly
examined.

The Precision Medicine in Diabetes Initiative (PMDI) was
established in 2018 by the American Diabetes Association (ADA)
in partnership with the European Association for the Study of
Diabetes (EASD). The ADA/EASD PMDI includes global thought
leaders in precision diabetes medicine who are working to address
the burgeoning need for better diabetes prevention and care
through precision medicine11. This Systematic Review is written
with the ADA/EASD PMDI as part of a comprehensive evidence
evaluation in support of the 2nd International Consensus Report
on Precision Diabetes Medicine12.

In this systematic review for the PMDI we aimed to provide a
critical assessment of the evidence to date for type 2 diabetes
subclassification using (i) simple approaches based on categor-
isation of clinical features, biomarkers, imaging, or other para-
meters, and (ii) complex subclassification approaches that use ML
incorporating clinical data and/or genomic data. We aimed to

identify areas where further research is needed with the goal to
improve patient and health system outcomes in type 2
diabetes care.

Our analysis shows that many simple approaches to sub-
classification have been tried but none have been replicated and
most are not associated with meaningful clinical outcomes.
However, a more complex stratification, using machine learning
applied to clinical variables, yielded reproducible subtypes of type
2 diabetes that are associated with outcomes. Both approaches,
however, require a higher grade of evidence but support the
premise that type 2 diabetes can be subclassified into clinically
meaningful subtypes.

Methods
This systematic review was written and conducted in accordance with
our pre-established protocol (PROSPERO ID CRD42022310539)
and reported using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Statement (PRISMA)13. We system-
atically reviewed papers to address two research questions devised by
an expert working group: 1) What are the main subtypes of type 2
diabetes defined using simple clinical criteria and/or routinely avail-
able laboratory tests (simple approaches), and 2) What sub-
phenotypes of type 2 diabetes can be reproducibly identified using
ML and/or genomics approaches (complex approaches)? Subse-
quently, we refer to the first question as simple approaches and the
second question as complex approaches. The quality of each paper
was reported, and the aggregate of data evaluated using the Grading
of Recommendations, Assessment, Development, and Evaluations
(GRADE) system14.

Study eligibility criteria. We included English-language original
research studies of all design types that analysed populations with
prevalent or new-onset type 2 diabetes and attempted in some
way to stratify or subgroup patients with type 2 diabetes. We used
broad terms to identify stratification studies and all approaches to
stratification (the exposure) were included (supplementary
table 1). We excluded studies examining risk for the development
of type 2 diabetes, use of glycaemic control (e.g. HbA1c strata)
alone to stratify, studies of stratification in types of diabetes other
than type 2 diabetes, and review articles or case reports.

For simple approaches the exposure was defined as any of the
following; a routine blood or urine biomarker that was widely
available in most clinic settings; a blood or urine biomarker that
might not be routinely available now but could have the potential
to become easily accessible; any routinely available imaging
modality; any physiological assessment that could be undertaken
in an outpatient setting or results from routinely available
dynamic tests. The stratification approach was either a cut-off or
categorisation based on one or more of the above or if an index,
ratio, trend or other analysis was undertaken, it could be
calculated without complex mathematics. Finally, all outcomes
were accepted for example clinical characterisation of subgroups,
association with specific biomarkers and association with
complications or mortality.

For complex approaches, the exposure used was defined as any
of the inputs for the simple approach outlined above and/or any
form of genetic data. However, unlike the simple approach, the
stratification approach either deployed ML approaches or used
other complex statistical approaches for stratification. All
outcomes were accepted, as above, for simple.

Literature search and selection strategy. PUBMED and
EMBASE databases were searched from inception to May 2022
for relevant articles using a strategy devised by expert health
sciences librarians (supplementary methods). We undertook
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independent searches for each systematic review question. From
both searches, each abstract and subsequently, full text paper, was
screened by two independent team members for eligibility. In
addition to the initial exclusion criteria, at the full-text review
stage, we further excluded studies where exposures were not
clearly defined and/or if the data on outcomes of the stratification
were not available in results or supplementary material. We also
excluded studies where the only stratification modality was a
measure of glycaemic control, as this itself provides the diagnosis
of type 2 diabetes. In cases of disagreement between two
reviewers, a third reviewer made the final decision. The process
involved group-based discussions to resolve disagreements to
ensure all decisions were made on the same grounds.

Data extraction. Data were manually extracted from each full-
text paper by individual team members and cross-checked by an
independent team member at the data synthesis stage. We
extracted relevant data on study design (observational or clinical
trial), analysis design (cross-sectional or prospective), study
population characteristics, stratification method and results
(exposure), outcomes, and study quality assessment. For popu-
lation characteristics, we extracted data on whether the type 2
diabetes population was new-onset or prevalent, the sample size,
ethnicity and gender, the duration of diabetes (for cross-sectional
analysis) and duration of follow-up (for longitudinal follow-up).
For exposures, we extracted the approach to stratification and the
number and nature of subgroups identified. For outcomes, we
documented the type of outcome studied and the findings
according to stratified subgroup.

Data synthesis. Following full-text data extraction, we undertook
a qualitative analysis of exposures (measures used to stratify
individuals) for each systematic review question. For simple sub-
classification approaches, we extracted the details of stratification
criteria in each paper (supplementary methods), then categorised

the exposure as blood/urine test, imaging, age). After data
extraction, these exposures were further refined into subcategories
based on common emerging themes (e.g., use of pancreatic
autoantibodies, BMI categories, measures of beta-cell function,
use of lipid profiles). For complex approaches, the exposure
included both the input clinical and/or genetic data used and the
ML approach to analysis (e.g., k-means, hierarchical clustering,
latent-class analysis), deployed. In both reviews, outcomes were
heterogeneous, so we broadly categorised them where possible.
Due to the variability in exposures and outcomes, it was not
possible to undertake formal meta-analyses of any outcome. All
coding, categorisation and thematic synthesis was undertaken
and agreed upon by at least three members of the research team.

Quality assessment. The GRADE system was used to assess the
quality of the studies extracted13. At least two members assessed
whether study exposures and outcomes were clearly defined, valid
and reliable, and whether confounders were appropriately accounted
and adjusted for. Disagreements were resolved by discussion
between the joint first and senior authors during group discussion.
Assessors evaluated study limitations, consistency of results, impre-
cision, and reporting bias to assign study-specific and overall
GRADE certainty ratings as very low, low, moderate and high15.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Search and screening for simple and complex systematic review
questions. The first question examined simple stratification
approaches using clinical variables that may reveal type 2 diabetes
heterogeneity. A total of 6097 studies met the inclusion criteria
and were screened (Fig. 1A). Of these, 183 studies were included
for full text data review, of which 132 studies were subsequently
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Fig. 1 PRISMA systematic review attrition diagram. A This shows the flow diagram for simple approaches to subclassification and B Complex approaches.
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excluded. The most common reasons for exclusion at the full-text
review stage were studies conducted in populations without
prevalent or incident type 2 diabetes, study designs that used ML
approaches or stratification approaches that used HbA1c or
diabetes medications. In total, 51 “simple approach” studies
underwent full-text data extraction.

The second question aimed to identify papers with complex
approaches, mostly ML-based strategies, to identify subgroups of
patients with type 2 diabetes (Fig. 1B). A total of 6639 studies
were screened, of which 106 were found eligible for full-text
review. The most common reasons for exclusion were study
populations not comprising participants with type 2 diabetes or
classification approaches not using ML. In total, 62 ‘complex’
studies underwent full-text data extraction.

Use of simple approaches to subclassify type 2 diabetes
Description of extracted studies: The 51 studies using simple type
2 diabetes subclassification approaches incorporated 1,751,350
participants with prevalent or new-onset type 2 diabetes. Among
them, 39% (20/51) of studies included participants of white
European ancestry, 43% (22/51) incorporated exclusively parti-
cipants from non-white European ancestries and 17% (9/51)
included mixed ancestry groups (Supplementary Data 1). The
majority of the studies (78%, 40/51) were conducted in popula-
tions with prevalent type 2 diabetes, and 22% (11/51) in new-
onset type 2 diabetes. Approximately half the studies had a
prospective design (25/51), the remaining half had a cross-
sectional (26/51) design. For longitudinal studies, study follow-up
periods ranged from <1 year to 22 years.

Studies included a wide range of exposures (Fig. 2) based on
routine clinical measurements with standard cut-offs or group-
ings. These included assessment of individual routine clinic-based
measurements (e.g., levels of BMI, or biomarker variability over
time) or composite stratification incorporating two or more tiers
of criteria (e.g. groupings combining one or more biomarkers or
anthropometric measurements) including both routine and non-
routine but clinically available tests, including oral glucose
tolerance tests (OGTT) which, while a glycaemic test, also

indirectly measures insulin resistance. The associations of
stratified exposure characteristics were investigated with various
outcomes: 1) measures of glycaemia, 2) clinical characteristics,
3) measures of diabetes progression such as time-to-insulin
treatment or development of microvascular complications and
4) cardiovascular outcomes and/or mortality.

Description of categorised subgroups: Simple approaches to
classification included use of lipid profiles (n= 8), BMI (n= 6),
pancreatic beta-cell related measures (n= 6), pancreatic auto-
antibodies (n= 6), age at diagnosis (n= 2), OGTT data (n= 4),
cardiovascular measures (n= 3), other biomarkers in urine or
blood and alternative approaches (n= 5) (Table 1).

Different categories of triglycerides, low-density lipoprotein
(LDL) cholesterol, high-density lipoprotein (HDL) cholesterol,
atherogenic small dense lipoproteins with and without features of
metabolic syndrome were used to stratify type 2 diabetes in eight
studies. Cardiovascular disease (CVD) outcomes were assessed in
3/8 of the studies16–18 which showed that a more atherogenic
metric of the specific lipid exposure (e.g., higher LDL cholesterol)
was associated with a greater frequency of CVD outcomes. Other
outcomes included pulse wave velocity19 or clinical characteristics;
age, BMI, presence of metabolic syndrome in specific subgroups.

The six studies assessing pancreatic autoantibodies focused on
glutamic acid decarboxylase 65 (GAD-65) levels. Studies used
positive versus negative status or high versus low titre, and one
study sub-stratified by age. Outcomes included time-to-insulin
treatment20,21, associations with other clinical characteristics such
as lipid profiles, BMI and blood pressure22–24 and measures of
beta-cell function. There was no consistency in study design and
most were observational with low to moderate evidence grade;
two studies showed that GAD-65 positivity was associated with
faster time-to-insulin treatment20,21.

Patients with type 2 diabetes were stratified according to their
BMI in six studies, either by BMI alone (n= 5) or BMI in
combination with HbA1c. The number of BMI categories varied
between two and six in the identified studies. The association
between BMI and glycaemic outcomes (change in HbA1c from

SIMPLE COMPLEX

APPROACH

Cut-offs applied
to a single
biomarker or
measurement to
define subgroups

Composite use of
>1 biomarker or
measurement to
define subgroups

Trend analysis of
biomarker level
over time
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BMI GAD-65 HOMA HbA1c Age
Input: clinical or ‘omics markers

Machine learning /
computational analysis

Genetic data

Other data

Hard clustering

Soft clustering on
endotypes

Multi-trait regression
modelling

Decision point
for outcome

Fig. 2 Schematic overview of approaches used to subclassify type 2 diabetes. The figure summarises simple approaches that have been taken to
subclassify type 2 diabetes and complex approaches. HbA1c glycated haemoglobin, BMI body mass index, GAD-65 glutamic acid decarboxylase-65 antibodies.
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baseline) was assessed in four studies either as primary or
secondary outcomes6,25,26. We graded the quality of evidence as
very low to moderate, and no consistency of effect was observed
across all studies. In one secondary analysis of a randomised
control trial, higher BMI at baseline was associated with faster
progression to adverse renal outcomes, however, this was not
replicated in any other study27.

Age at diagnosis was assessed as a stratification tool in two
studies; younger age (mean age 33 years) was associated with
higher rates of proliferative retinopathy in an observational study
with 12 months follow-up versus older age (mean 50 years)4. In a
second study, patients aged 60–75 versus those >75 years had a
high risk of CVD and mortality when stratified by cholesterol
levels6. Neither study was replicated to confirm findings.

Four studies used results from oral glucose tolerance tests
(OGTT) as exposures. The specific stratification approach applied
to OGTT profiles was different in each study and based on cut-
offs of fasting glucose levels, glucose gradients after stimulation
and responses to different drug treatments. Outcomes included
clamp-derived insulin sensitivity and differences in the shape of
glucose profiles between youths and adults28.

Measures of estimated beta-cell function were assessed in six
studies including C-peptide levels and homoeostasis model
assessment-2 indices for beta-cell function (HOMA2-B) or insulin
resistance (HOMA2-IR), which require measurement of fasting
insulin and glucose levels. C-peptide was defined using variable
cut-offs. Outcomes included clinical phenotype data, response to
medication, and microvascular or macrovascular complications.
For example, hyperinsulinaemia and higher urine C-peptide were
independently associated with cardiovascular disease.

Other exposure variables included less routine biomarkers,
pulse wave velocity, ketosis/ketoacidosis and other disease
indices, but these were each single studies precluding grouping.
All data are summarised in Table 1.

Use of complex approaches to subclassify type 2 diabetes
Description of extracted studies: There were 62 studies of com-
plex/ML approaches to type 2 diabetes subclassification in a total
of 793,291 participants (Table 2). Over half of the studies inclu-
ded non-European ancestry in relevant proportions (>20%). Only
~30% (19 out of 62) of the studies analysed participants with
new-onset diabetes. Mean diabetes duration ranged from recent
onset (within 1 year) to over 36 years. Most data were from
observational studies (46 out of 62), with some post-hoc analyses
of clinical trials (10), survey data (4) and mixed study types (2).
Half of the studies had prospective design (31 out of 62) with a
mean follow-up duration ranging from 1 year to 11.6 years.
K-means clustering was the most applied ML approach (30 out of
62). Eight studies used established centroids8 to assign partici-
pants to clusters. Two studies decomposed combinations of
genetic variants and their association with clinical and laboratory
phenotypes into genotype-phenotype clusters by using Bayesian
non-negative matrix factorisation.

Description of the categorised subgroups: Following the seminal
work by Ahlqvist et al.8, multiple studies used the variables
derived at time of diabetes diagnosis: age, HbA1c, BMI, HOMA2-
B, HOMA2-IR and GAD-65 antibody (Table 2). The majority of
these studies employed C-peptide-based homoeostasis model
assessment indices (HOMA, or its updated variant, HOMA2,
using fasting insulin and glucose), as surrogates for insulin
resistance (HOMA2-IR) and insulin secretion (HOMA2-B). In
different contexts and populations, 22 studies replicated identi-
fication of the four non-autoimmune diabetes subtypes first
described by Ahlqvist et al.8: severe insulin-deficient diabetes
(SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-

related diabetes (MOD), and mild age-related diabetes (MARD).
The subset of studies including measurements of GAD antibody
also identified the fifth cluster, severe autoimmune diabetes
(SAID). Associations of these subtypes with clinical outcomes,
including glycaemia, microvascular and macrovascular outcomes,
and death, were replicated in 12 studies (Table 3).

Thirteen additional papers used variations of the original set of
variables from Ahlqvist et al.8 by substituting HOMA with C-
peptide, adding lipid traits, e.g. HDL-cholesterol, or approximat-
ing the clusters from different/simplified variable sets by applying
advanced statistical learning approaches such as self-normalising
neural networks. These approaches identified some type 2
diabetes subgroups resembling the clusters from Ahlqvist et al.
and also novel subgroups related to the additional variables
(Fig. 3). Several of the novel subgroups were associated with
clinical outcomes. However, these findings have not been
replicated in other studies (Table 2).

Additional papers (n= 27) assessed various sets of phenotypic
inputs for ML approaches. Grouped into five categories of inputs,
studies identified many subtypes and associations with clinical
outcomes, however, they all lacked replication (Table 2). Four
papers applied complex ML methods to a set of less than ten
clinical variables such as systolic blood pressure, waist circum-
ference, BMI, fasting plasma glucose, and age at diabetes
diagnosis, and resulting subgroups were variably associated with
outcomes, such as mortality. Eleven studies used a larger set of
more than ten clinical features as inputs for classification,
including data from electronic health records29,30, and identified
subgroups variably associated with clinical outcomes, including
risk of cardiovascular disease. Two other studies specifically
employed cardiovascular traits, including ECG31 and
echocardiographic32 for ML algorithm inputs, and each identified
subgroups with different associations with risk of cardiovascular
disease. Finally, four studies involved inputs of change of
glycaemic variables (HbA1c trajectories, glycaemia during a
mixed meal test, continuous glucose monitoring features)33–35,
one study focused on fasting GLP-1, GIP and ghrelin levels36, and
two studies focused on behavioural traits such as novelty seeking,
harm avoidance, and hospital anxiety and depression scale.

Human genetic risk information is rapidly penetrating clinical
medicine. Two sets of papers utilised genomic data to identify
diabetes subtypes, either in the form of inherited common genetic
variation10,37 or gene expression data from muscle biopsies38

(Table 2). The first approach clustered genetic variants with clinical
traits associated with type 2 diabetes to identify subsets of variants
predicted to act in shared mechanistic processes. Using these sets of
genetic variants, process-specific or partitioned polygenic scores
were constructed in individuals with type 2 diabetes and were
associated with differences in clinical features and prevalence of
metabolic outcomes, with replication across multiple cohorts. The
muscle gene expression study has not been replicated. Overall, half
of the studies had cross-sectional designs, and the other half involved
prospective follow-up (Table 2).

Quality assessment. For simple approaches, of the 51 studies
assessed, 55% were quality graded as very low-, or low-GRADE
certainty, 45% had moderate certainty and none achieved high
certainty. For complex approaches, around 70% of the studies had
moderate evidence certainty. In both approaches, the majority of
the studies had moderate or lower GRADE certainty on account of
the (1) study design not addressing precision medicine objectives
(not an RCT testing differential treatment effects in subclassified
type 2 diabetes groups), (2) lack of a meaningful clinical outcome
(i.e. although subgroups of type 2 diabetes were found, the mea-
sured outcome had little clinical significance because the study was
not designed to study this) (3) Confidence in the findings were low

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00360-3 ARTICLE

COMMUNICATIONS MEDICINE |           (2023) 3:138 | https://doi.org/10.1038/s43856-023-00360-3 |www.nature.com/commsmed 7

www.nature.com/commsmed
www.nature.com/commsmed


T
ab

le
2
S
um

m
ar
y
of

pu
bl
is
he

d
st
ud

ie
s
us
in
g
co
m
pl
ex

ap
pr
oa

ch
es

to
ty
pe

2
di
ab

et
es

cl
as
si
fi
ca
ti
on

.

A
pp

ro
ac
h

T
ot
al

n
%

Fe
m
al
e

M
ea
n
ag

e/
ag

e
ra
ng

e

%
R
ac
e/

et
hn

ic
it
y

br
ea
kd

ow
n

%
P
re
va
le
nt

or
ne

w
on

se
t
T
2D

,
n
(%

)
%

P
ro
sp
ec
ti
ve

or
C
ro
ss

se
ct
io
na

l,
n

(%
)

M
ac
hi
ne

le
ar
ni
ng

ap
pr
oa

ch
T
2D

su
bc
la
ss
ifi
ed

G
ro
up

s
id
en

ti
fi
ed

O
ut
co
m
e
ca
te
go

ry
,
n
(%

)
O
ve
ra
ll
qu

al
it
y,

n
(%

)
R
ef
er
en

ce
s

C
om

pl
ex
:
A
hl
qv
is
t
an
d

di
re
ct
ly

re
pl
ic
at
ed

A
hl
qv
is
t
cl
us
te
rs

(2
2
st
ud

ie
s)

n
=
8
8
,1
9
7

4
3%

fe
m
al
e

55
.3

ye
ar
s

8
1%

N
on

-H
is
pa
ni
c
W

hi
te
,

11
%

Ea
st

A
si
an
,
4
%

H
is
pa
ni
c,
3%

So
ut
h
A
si
an
,

<
1%

Bl
ac
k,

<
1%

O
th
er

Pr
ev
al
en

t
(n

=
11
,

50
%
),
N
ew

on
se
t

(n
=
11
,
50

%
)

Lo
ng

itu
di
na
l
(n

=
8
,

36
.6
%
),
C
ro
ss
-

se
ct
io
na
l
(n

=
14
,

6
3.
6
%
)

10
0
%

k-
m
ea
ns

SA
ID
,
SI
D
D
,
SI
R
D
,

M
O
D
,
M
A
R
D

M
ic
ro
va
sc
ul
ar

&
m
ac
ro
va
sc
ul
ar

ev
en

ts
(n

=
9
,

4
1%

),
C
lin
ic
al

an
d

bi
oc
he

m
ic
al

tr
ai
ts

(n
=
4
,

18
%
)

M
ic
ro
va
sc
ul
ar

ev
en

ts
on

ly
(n

=
3,

13
%
),
G
ly
ca
em

ia
(n

=
2,

9
%
),
M
ac
ro
va
sc
ul
ar

ev
en

ts
on

ly
(n

=
1,
5%

),
om

ic
(n

=
1,
5%

),
O
th
er

(n
=
2,

9
%
)

V
er
y
Lo
w

(n
=
1,

5%
),
Lo
w

(n
=
3,

13
%
),
M
od

er
at
e

(n
=
18
,
8
2%

)

8
,4
0
,8
9
–1
0
8

C
om

pl
ex
:
Si
m
ila
r
to

A
hl
qv
is
t
cl
us
te
rs

(1
3
st
ud

ie
s)

n
=
21
4
,0
9
3

4
5%

fe
m
al
e

58
.6

ye
ar
s

72
%

N
on

-H
is
pa
ni
c
W

hi
te
,

12
%

H
is
pa
ni
c,

10
%

So
ut
h

A
si
an
,4

%
Ea
st

A
si
an
,2

%
Bl
ac
k,

<
1%

N
at
iv
e

A
m
er
ic
an
,
<
1%

O
th
er

Pr
ev
al
en

t
(n

=
11
,

8
5%

),
N
ew

on
se
t

(n
=
2,

15
%
)

Lo
ng

itu
di
na
l
(n

=
7,

54
%
),
C
ro
ss

se
ct
io
na
l

(n
=
6
,
4
6
%
)

a)
A
dd

iti
on

of
co
m
pl
em

en
ta
ry

cl
in
ic
al

va
ri
ab
le
s

(i
.e
.,
H
D
L,
T
G
,w

ai
st

ci
rc
um

fe
re
nc
e,

ur
ic

ac
id
,
et
c.
)

b)
In
co
rp
or
at
in
g

ne
w

cl
us
te
ri
ng

,
i.e
.,

se
lf-
no

rm
al
is
in
g

ne
ur
al

ne
tw

or
ks

tr
ai
ne

d
on

k-
m
ea
ns

cl
us
te
ri
ng

.
c)

A
dd

iti
on

of
et
hn

ic
-s
pe

ci
fi
c

th
re
sh
ol
ds

fo
r
BM

I.

SA
ID
,
SI
D
D
,
SI
R
D
,

M
O
D
,
an
d
M
A
R
D
.

Fi
ve

cl
us
te
rs
:
O
ld
er

on
se
t,
Se
ve
re

hy
pe

rg
ly
ca
em

ia
,

Se
ve
re

ob
es
ity

,
Y
ou

ng
er

O
ns
et
,
an
d

In
su
lin

us
e.

Fo
ur

cl
us
te
rs
:
4
2%

(o
ld
er

on
se
t)
,
14
%

(p
oo

r
gl
uc
os
e

co
nt
ro
l)
,
24

%
(s
ev
er
e
ob

es
ity

),
an
d

20
%

(y
ou

ng
er
-

on
se
t)
.

N
ew

su
bg

ro
up

s
M
D
,

EO
ID
D
,
EO

IR
D
,

LO
ID
D
,
LO

IR
D
.

M
ic
ro
va
sc
ul
ar

&
m
ac
ro
va
sc
ul
ar

(n
=
5,

38
%
),

M
ic
ro
va
sc
ul
ar

ev
en

ts
on

ly
(n

=
3,

23
%
),
M
ac
ro
va
sc
ul
ar

ev
en

ts
(n

=
1,
8
%
),
G
ly
ca
em

ia
(n

=
1,
8
%
),
O
th
er

(n
=
3,

23
%
)

V
er
y
Lo
w

(n
=
1,
8
%
),

Lo
w

(n
=
5,

38
%
)

M
od

er
at
e
(n

=
7,

54
%
)

4
1,
52

,5
4
,5
9
,1
0
9
–1
17

C
om

pl
ex
:
Si
m
pl
e
cl
in
ic
al

fe
at
ur
es

(4
st
ud

ie
s)

n
=
22

,2
9
6

4
6
.5
%

fe
m
al
e

56
ye
ar
s

34
%

N
on

-H
is
pa
ni
c

W
hi
te
,
25

%
A
si
an
,
25

%
M
id
dl
e
Ea
st
er
n,

9
%

Bl
ac
k,

5%
H
is
pa
ni
c,

1%
N
at
iv
e

A
m
er
ic
an
/A

m
er
ic
an

In
di
an
/A

la
sk
an

N
at
iv
e,

<
1%

O
th
er

Pr
ev
al
en

t
T
2D

(n
=
3,

75
%
),
N
ew

on
se
t

(n
=
1,
25

%
)

Lo
ng

itu
di
na
l
(n

=
3,

75
%
),
C
ro
ss
-s
ec
tio

na
l

(n
=
1,
25

%
)

50
%

k-
m
ea
ns

(n
=
2)
,
50

%
ot
he

r
(n

=
2)

va
ri
ab
le

M
or
ta
lit
y
(n

=
2,

50
%
),

C
ar
di
ov
as
cu
la
r
ev
en

ts
(n

=
1,

25
%
),
C
lin
ic
al

an
d

bi
oc
he

m
ic
al

tr
ai
ts

(n
=
1,

25
%
)

M
od

er
at
e
(n

=
3,

75
%
),
Lo
w

(n
=
1,

25
%
)

11
8
–1
21

C
om

pl
ex
:C

om
pl
ex

cl
in
ic
al

fe
at
ur
es

(1
1
st
ud

ie
s)

n
=
38

6
,8
8
9

4
6
.8
%

fe
m
al
e

6
0
ye
ar
s

57
%

N
on

-H
is
pa
ni
c
W

hi
te
,

24
%

A
si
an
,8

%
Bl
ac
k,
6
%

H
is
pa
ni
c,

<
5%

O
th
er

Pr
ev
al
en

t
T
2D

(n
=
9
,

8
2%

),
N
ew

on
se
t

(n
=
2,

18
%
)

Lo
ng

itu
di
na
l
(n

=
7,

6
4
%
),
C
ro
ss
-s
ec
tio

na
l

(n
=
4
,3

6
%
)

va
ri
ab
le

va
ri
ab
le

C
ar
di
ov
as
cu
la
r
ev
en

ts
(n

=
4
,

36
%
),
G
ly
ca
em

ic
co
nt
ro
l

(n
=
3,

27
%
),
C
om

pl
ic
at
io
ns

ot
he

r
th
an

C
V
D

ev
en

t
(n

=
2,

18
%
),
M
or
ta
lit
y
(n

=
1,
9
%
),

O
th
er

(n
=
1,
9
%
)

M
od

er
at
e
(n

=
9
,

8
2%

),
Lo
w

(n
=
2,

18
%
)

29
,3
0
,1
22

–1
30

C
om

pl
ex
:
C
ar
di
ov
as
cu
la
r

fe
at
ur
es

(2
st
ud

ie
s)

n
=
9
74

55
.4
%

fe
m
al
e

6
3
ye
ar
s

10
0
%

N
on

-H
is
pa
ni
c

W
hi
te

Pr
ev
al
en

t
T
2D

(n
=
2,

10
0
%
)

Lo
ng

itu
di
na
l
(n

=
2,

10
0
%
)

Fa
ct
or

an
al
ys
is

(c
lu
st
er
in
g)

(n
=
1,

50
%
),
H
ie
ra
rc
hi
ca
l

cl
us
te
ri
ng

(n
=
1,

50
%
)

3
an
d
4
cl
us
te
rs

C
ar
di
ov
as
cu
la
r
de

at
h
an
d

ev
en

ts
(n

=
2,

10
0
%
)

M
od

er
at
e
(n

=
1,

50
%
),
Lo
w

(n
=
1,

50
%
)

31
,3
2

C
om

pl
ex
:
Be

ha
vi
ou

ra
l

fe
at
ur
es

(2
st
ud

ie
s)

n
=
6
53

4
0
.5
%

fe
m
al
e
6
3.
5
ye
ar
s

4
8
%

N
on

-H
is
pa
ni
c

W
hi
te
,
50

%
A
si
an
,
2%

ot
he

rs

Pr
ev
al
en

t
(n

=
1,

50
%
),
N
ew

on
se
t

(n
=
1,
50

%
)

Lo
ng

itu
di
na
l
(n

=
1,

50
%
),
C
ro
ss

se
ct
io
na
l

(n
=
1,
50

%
)

cl
us
te
ri
ng

,
hi
er
ar
ch
ic
al

cl
us
te
ri
ng

2
an
d
4
cl
us
te
rs

G
ly
ca
em

ic
co
nt
ro
l
(n

=
2,

10
0
%
)

M
od

er
at
e
(n

=
1,

50
%
),
Lo
w

(n
=
1,

50
%
)

13
1,
13
2

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00360-3

8 COMMUNICATIONS MEDICINE |           (2023) 3:138 | https://doi.org/10.1038/s43856-023-00360-3 | www.nature.com/commsmed

www.nature.com/commsmed


due to small sample sizes, lack of replication or lack of diversity of
studied subgroups and (4) the potential for bias was large due to
lack of adjustment for possible confounders.

Discussion
Summary of findings. This systematic review analysed two broad
approaches to the subclassification of type 2 diabetes to identify
clinically meaningful subtypes that may advance precision diag-
nostics. We found many simple stratification approaches using,
for example, clinical features such as BMI, age at diagnosis, and
lipid levels, but none had been replicated and many lacked
associations with clinical outcomes. Complex stratification
models using ML approaches with and without genetic data
showed reproducible subtypes of type 2 diabetes associated with
outcomes. Both approaches require a higher grade of evidence but
support the premise that type 2 diabetes can be subclassified into
clinically meaningful subtypes.

Simple approaches to subclassification included urine and
blood biomarkers, anthropometric measures, clinical data such as
age at diagnosis, surrogate beta-cell metrics derived from blood
C-peptide or insulin along with other less diabetes-related
biomarkers such as bilirubin levels or pulse wave velocity.
Approaches to subclassification were diverse. Some studies
dichotomised continuous variables based on clinical cut-points.
Other studies used a composite exposure (two or more criteria
each with cut-points) or analysed changes in continuous variables
over time e.g. change in eGFR over time.

The study designs, specific cut-offs and outcomes were
heterogenous, and no studies met high-quality GRADE certainty.
No study evaluating a simple approach to type 2 diabetes
subtyping has been adequately reproduced, although some studies
identified biologically plausible subgroups. For example, sub-
classifications derived using BMI, beta-cell function, lipid profiles
and age appeared to be associated with some outcomes which
could be helpful in clinical practice. These potential subclassifica-
tions need to be replicated in better-designed studies (see section
on additional supporting literature). Other evidence not included
in our systematic review (either due to the study population
including people without diabetes or the analysis was only
performed in people with the exposure without a comparison
group), support the role of simple variables in stratifying diabetes;
for example, younger age at diagnosis is reproducibly associated
with worse cardiorenal outcomes in a number of studies39.

Machine learning approaches yielded some reproducible
subtypes of type 2 diabetes using a variety of clinical and genetic
variables. The best-replicated subtypes were the clusters first
described by Ahlqvist et al.8, which were replicated in 22 studies,
including ~88,000 individuals of diverse ancestry. There also was
replication of genetic subtypes of type 2 diabetes from Udler
et al.10 with associations with clinical features seen in multiple
cohorts across almost 454,000 individuals36. However, the latter
associations involved small absolute effects with unclear clinical
utility for individual patient management, and studies were
restricted to individuals of European ancestry. While there was
replication of the clusters from Ahlqvist et al. across studies, the
generated clusters appeared to be dependent on the character-
istics of the underlying populations, especially factors such as
distribution of ancestry, age, duration of diabetes, anthropometric
trait variability as in BMI, and the variety of variable terms
included in learning models. Nevertheless, at least some of the
resulting subtypes appeared to be robust to differences in specific
ML method, input variables, and populations (Fig. 3).

Many of the input variables for the complex ML subtyping
approaches were also used in studies involving simple approaches to
subclassification, recapitulating the biological plausibility of specificT

ab
le

2
(c
on

ti
nu

ed
)

A
pp

ro
ac
h

T
ot
al

n
%

Fe
m
al
e

M
ea
n
ag

e/
ag

e
ra
ng

e

%
R
ac
e/

et
hn

ic
it
y

br
ea
kd

ow
n

%
P
re
va
le
nt

or
ne

w
on

se
t
T
2D

,
n
(%

)
%

P
ro
sp
ec
ti
ve

or
C
ro
ss

se
ct
io
na

l,
n

(%
)

M
ac
hi
ne

le
ar
ni
ng

ap
pr
oa

ch
T
2D

su
bc
la
ss
ifi
ed

G
ro
up

s
id
en

ti
fi
ed

O
ut
co
m
e
ca
te
go

ry
,
n
(%

)
O
ve
ra
ll
qu

al
it
y,

n
(%

)
R
ef
er
en

ce
s

C
om

pl
ex
:
G
ly
ce
m
ic

fe
at
ur
es

(4
st
ud

ie
s)

n
=
6
7,
0
6
4

4
2.
8
%

fe
m
al
e
6
2.
5
ye
ar
s

4
0
.6
%

N
on

-H
is
pa
ni
c

W
hi
te
,
25

%
A
si
an
,
25

%
M
id
dl
e
Ea
st
er
n,

9
.4
%

O
th
er

Pr
ev
al
en

t
(n

=
3,

75
%
),
N
ew

on
se
t

(n
=
1,
25

%
)

Lo
ng

itu
di
na
l
(n

=
3,

75
%
),
C
ro
ss

se
ct
io
na
l

(n
=
1,
25

%
)

50
%

k-
m
ea
ns
,2

5%
la
te
nt
-c
la
ss

an
al
ys
is
,
25

%
hi
er
ar
ch
ic
al

cl
us
te
ri
ng

3
an
d
4
cl
us
te
rs

G
ly
ca
em

ic
co
nt
ro
l
(n

=
2,

50
%
),
C
ar
di
ov
as
cu
la
r
ev
en

ts
(n

=
2,

50
%
)

M
od

er
at
e
(n

=
3,

75
%
),
V
er
y
lo
w

(n
=
1,
25

%
)

33
–3
5,
13
3

C
om

pl
ex
:
G
en

et
ic
s

(3
st
ud

ie
s)

n
=
4
2,
9
52

10
0
%

N
on

-H
is
pa
ni
c

W
hi
te

Pr
ev
al
en

t
T
2D

(n
=
3,

10
0
%
)

C
ro
ss

se
ct
io
na
l

(n
=
3,

10
0
%
)

Ba
ye
si
an

N
on

-
ne

ga
tiv

e
M
at
ri
x

Fa
ct
or
is
at
io
n

(n
=
2,

6
7%

),
H
ie
ra
rc
hi
ca
l

cl
us
te
ri
ng

(n
=
1,

33
%
)

5
cl
us
te
rs

of
va
ri
an
t-

tr
ai
t
as
so
ci
at
io
ns
;
3

cl
us
te
rs

of
sk
el
et
al

dy
sr
eg
ul
at
ed

ge
ne

s/
pa
th
w
ay
s
in

pe
op

le
w
ith

di
ab
et
es

C
or
on

ar
y
ar
te
ry

di
se
as
e,

st
ro
ke
,
re
na
l
di
se
as
e

M
od

er
at
e
(n

=
2,

6
7%

),
Lo
w

(n
=
1,

33
%
)

10
,3
7,
38

C
om

pl
ex
:
H
or
m
on

al
(1

st
ud

y)
n
=
9
6
pa
rt
ic
ip
an
ts

53
%

fe
m
al
e

6
2
ye
ar
s

10
0
%

N
on

-H
is
pa
ni
c

W
hi
te

N
ew

on
se
t
(n

=
1,

10
0
%
)

C
ro
ss

se
ct
io
na
l(
n
=
1,

10
0
%
)

T
w
o-
st
ep

cl
us
te
r

an
al
ys
is

us
in
g
lo
g-
lik
el
ih
oo

d
di
st
an
ce

m
ea
su
re
s

T
w
o
cl
us
te
rs

(c
lu
st
er

1:
lo
w

G
LP
-1

an
d

G
hr
el
in
;
cl
us
te
r
2:

hi
gh

G
LP
-1

an
d

G
hr
el
in
)

G
ly
ce
m
ia

(n
=
1,
10
0
%
)

M
od

er
at
e
(n

=
1,

10
0
%
)

36

T2
D
ty
pe

2
di
ab
et
es
,
G
A
D
gl
ut
am

ic
de

ca
rb
ox
yl
as
e
an
tib

od
y,

U
C
PC

R
ur
in
e
C
-p
ep

tid
e
to

cr
ea
tin

in
e
ra
tio

,
BM

I
bo

dy
m
as
s
in
de

x,
C
V
D
ca
rd
io
va
sc
ul
ar

di
se
as
e,

O
G
TT

or
al

gl
uc
os
e
to
le
ra
nc
e
te
st
,
C
K
D
ch
ro
ni
c
ki
dn

ey
di
se
as
e,

LD
L
lo
w

de
ns
ity

lip
op

ro
te
in

ch
ol
es
te
ro
l,
SA

ID
se
ve
re

au
to
im

m
un

e
di
ab
et
es
,
SI
D
D
se
ve
re

in
su
lin

de
fi
ci
en

t
di
ab
et
es
,S

IR
D
se
ve
re

in
su
lin

re
si
st
an
t
di
ab
et
es
,
M
O
D
m
ild

ob
es
ity

-r
el
at
ed

di
ab
et
es
,M

A
RD

m
ild

ag
e-
re
la
te
d
di
ab
et
es
,
M
D
m
ild

di
ab
et
es
,
EO

ID
D
ea
rl
y-
on

se
t
in
su
lin

de
fi
ci
en

t
di
ab
et
es
,
EO

IR
D
ea
rl
y-
on

se
t
in
su
lin

re
si
st
an
t

di
ab
et
es
,L
O
ID
D
la
te
-o
ns
et

in
su
lin

de
fi
ci
en

t
di
ab
et
es
,
LO

IR
D
la
te
-o
ns
et

in
su
lin

re
si
st
an
t
di
ab
et
es
.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00360-3 ARTICLE

COMMUNICATIONS MEDICINE |           (2023) 3:138 | https://doi.org/10.1038/s43856-023-00360-3 |www.nature.com/commsmed 9

www.nature.com/commsmed
www.nature.com/commsmed


clustering variables in defining type 2 diabetes subtypes. One study
directly compared a simple clinical approach to the clustering
approach from Ahlqvist et al.8 and found that simple single clinical
measures analysed in a quantitative (rather than categorical)
framework could better predict relevant clinical outcomes, such as
incidence of chronic kidney disease and glycaemic response to
medications40. Thus, further research is needed to determine
whether assigning a patient to one of the clusters from Ahlqvist
et al.8 offers additional clinical benefit beyond evaluation of simple
clinical measures and also beyond current standard of care. For
example, high quality randomised controlled trial evidence is needed
to demonstrate that knowledge of a patient’s clinical or genetic
cluster membership could meaningfully guide treatment and/or
clinical care and improve outcomes.

Study quality. No studies included in our systematic review had
above moderate certainty of evidence. Some strengths of included
studies were the large sample sizes, the diversity of variables
considered, and inclusion of both prevalent and new-onset cases
of type 2 diabetes. However, the varied study designs and lack of
replication limits our ability to draw firm conclusions about the
most effective approaches to subclassification. Most variables
used for subclassification capture momentary metabolic states,
which limits their long-term utility as cluster assignment is likely
to change over time41,42. Most studies were retrospective analyses
of established cohorts, and there were, at the time of the search,
no data available involving subtype-stratified clinical trials or real
world implementation of approaches. Finally, most studies
focused on European-ancestry populations, and the clinical value
of these approaches may vary across different ancestries. While
East Asian ancestries had representation in some studies, research
in Black, South Asian and Hispanic populations remains sparse.
This is particularly important, as four out of five people with type
2 diabetes come from marginalised groups or live in low- or
middle-income countries. Future precision diagnostic interven-
tions should address and narrow inequalities.

Additional supporting literature. Since our literature search was
conducted, four new publications have advanced our under-
standing of type 2 diabetes subclassification.

Two recent studies applied ML approaches to stratify diabetes
heterogeneity, both considering continuous approaches rather
than with discrete clusters43,44. Nair et al. used a non-linear
transformation and visualisation of nine variables onto a tree-like
structure44 and with replication in two large datasets. This
approach linked underlying disease heterogeneity to risk of
complications; those at risk of cardiovascular disease had a
different phenotype to those with microvascular complications
and to drug response and demonstrated associations of gradients
across the tree using genetic process-specific scores from Udler
et al.10 Wesolowska-Andersen et al. performed soft-clustering
from 32 clinical variables which yielded 4 diabetes archetypes
comprising a third of the study population. The remaining study
population was deemed as mixed-phenotype. This study has not
been replicated43. A third study re-identified the genetic subtypes
and their clinical associations from Udler et al.45.

Additionally, one of the first clinical trials to assess precision
medicine approaches for diabetes management was published after
our literature search. The TriMaster Study tested dichotomised BMI
and eGFR strata in a three-period crossover trial using three
pharmacologic interventions with the primary hypothesis being
stratum-specific differences in HbA1c46. Participants with obesity
(BMI > 30 kg/m2) showed a glycaemic benefit on pioglitazone versus
sitagliptin and participants with lower eGFR (60–90ml/min/
1.73m2) responded with lower HbA1c to sitagliptin as comparedT
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to canagliflozin. In a secondary analysis, drug-choice corresponding
to patient preferences yielded lower glycemia than a random
allocation, suggesting that listening to patients is critical in informing
therapeutic decisions47. Ramifications of this study are limited by the
non-comparable pharmacologic doses used, and the primary focus
on glycaemia which may not be indicative of long-term therapeutic
success and/or prevention of complications. Yet these studies have
generated higher quality evidence linking type 2 diabetes hetero-
geneity to treatment and disease outcomes. It remains to be seen if
these can be replicated in other ancestries and translated into ‘usable
products’ for healthcare professionals.

It is worth noting that ketosis-prone type 2 diabetes, an
established type 2 diabetes subtype, was not captured adequately in
our systematic review: only one study included ketosis-prone type
2 diabetes as an exposure48. Study designs for ketosis-prone type 2
diabetes were usually analyses of cohorts with diabetic ketoacidosis
at presentation with type 1 diabetes as the outcome, rather than as
an exposure in people with type 2 diabetes. Since our search was
designed to identify studies stratifying type 2 diabetes, this
literature was not captured. Like many other ‘simple’ criteria for
classification, the characteristics of people with diabetic ketoaci-
dosis at presentation of type 2 diabetes have been studied, but with
few prospective studies that have been replicated49.

Age at diagnosis as a simple approach to stratification also did not
feature strongly in our search results. The body of literature that
outlines higher risk of microvascular or macrovascular complications
in early-onset type 2 diabetes has focussed on comparing people with
type 2 diabetes to those without diabetes in different age groups39,50

or studied cohorts of early-onset cases in isolation51 and, thus, would
not have been captured in our search strategy. Recent epidemiological
studies have compared outcomes between early and late age onset
strata52,53 showcasing higher risks of cardiorenal outcomes with early
age at onset, but these were retrospective analyses of health record
databases, potentially confounded by age-related risk of complica-
tions and duration of diabetes. To move forward, prospective studies
stratifying different interventions (e.g., tighter treatment targets or
better cardiovascular risk reduction) in those diagnosed at younger
age, are needed.

Findings in context. We found that simple features have not
been precisely and reproducibly evaluated to a high enough
standard to subclassify type 2 diabetes into subtypes. This is not
surprising, as many studies were not necessarily conducted for the
purpose of ‘precision diagnosis’, but rather as studies of clinical
phenotypes spanning a time period that preceded the current
research focus on precision medicine. It is important to re-
emphasise that many of the simple clinical criteria studied, do
have other bodies of evidence supporting associations with out-
comes, like age -at -diagnosis. While these studies have set the
scene, the field needs more robust evidence.

‘Complex’ methods for diabetes subclassification have shown
better reproducibility, have been linked to a variety of meaningful
clinical outcomes more consistently, and more recently have been
able to demonstrate differential treatment responses related to
stratification.

What do these findings mean for a precision medicine
approach to type 2 diabetes diagnosis? Ideally, subclassification
strategies should be deployed at diagnosis of type 2 diabetes on
the basis of measured clinical characteristics such that people in
different subgroups of type 2 diabetes could be treated differently.
One key question is whether such efforts would cost-effectively
improve clinical outcomes, compared to the current standard of
care. However, another more fundamental question is whether
subclassification approaches at diagnosis alone are enough? For
example, another approach may be to iteratively subclassify
longitudinal disease trajectories. Such an approach is supported
by studies that have shown cluster-based assignments of type 2
diabetes at diagnosis are not robust and may change over time54.
It may be argued that subclassification at one-time point is overly
simplistic and should be regularly reviewed based on trajectory.

Irrespective of the subclassification approach studied, they need
replication in independent datasets, assessment in diverse popula-
tions, in people with both new-onset and prevalent diabetes, and
investigation using prospective data, ideally in the form of
randomised clinical trials. Clinical trials of treatment approaches
tailored to diabetes subtypes will be necessary to understand the
clinical benefits of clinical subtyping. Ideally, sub-phenotyping

Fig. 3 Main characteristics of diabetes clusters derived using a modified set of clustering variables, compared to original ‘Alhqvist’ clusters. Clustering
variables denoted in blue are consistent across the different studies, those in black are unique to the particular study outlined. A greyed-out box indicates
that the indicated diabetes cluster was replicated from the Ahlqvist study, a dark blue box indicates a new diabetes cluster. GAD, glutamic decarboxylase
antibody; BMI, body mass index; HDL, high-density lipoprotein cholesterol; HOMA2-IR/B, homoeostasis model assessment-2 insulin resistance/beta cell
function. SAID, severe autoimmune diabetes; SIDD, severe insulin-deficient diabetes; SIRD, severe insulin resistant diabetes; MOD, mild obesity-related
diabetes; MARD, mild age-related diabetes.
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should lead to benefits for patients in real-world clinical settings.
Conducting these studies will be challenging due to the necessity for
extensive follow-up, large sample sizes, and substantial resource
requirements. There is a pressing need for innovative strategies to
generate high-quality evidence on treatment options tailored to
specific diabetes subtypes in diverse populations. These data will be
critical to determine generalisability of findings and amenability for
clinical translation including in resource-constrained settings.

Clinical applicability. The current evidence supports distin-
guishable subtypes of type 2 diabetes and that these subtypes are
associated with variation in clinical outcomes. However, the very
low to moderate quality of existing studies and the need for
replication in ancestry-diverse studies make it difficult to identify
a strongly evidence-based, universally applicable approach.

The most clinically valuable methods are likely to be those that
are easy and inexpensive to implement. For more complex
approaches, computer decision support tools will need to be
developed and assessed for feasibility and utility. Although the
evidence supporting complex approaches has leap-frogged the
evidence in favour of more simplified approaches, there is still likely
a place for simple approaches that can be more accessible at diverse
clinical interfaces. Meanwhile how cluster assignment could be
translated into actionable data for the individual remains unclear;
will for example, a given person with type 2 diabetes exist in a
distinct subgroup with associated outcomes or will the subtype of
type 2 diabetes have associated probabilities or risks of certain
outcomes? While stratifying people with type 2 diabetes into discrete
subtypes might result in information loss, compared to continuous
risk modelling40, discrete clusters might inform clinical decisions42.

Limitations. The limitations of this review reflect the limitations of
the literature. To manage the breadth of literature analysed in this
systematic review, focussed on genomic data and did not include
proteomic or metabolomic data as these are potentially more
premature for clinical use. We also did not include studies on
participants at risk of type 2 diabetes, although we recognise that a
body of evidence is emerging to stratify type 2 diabetes incidence
risk using multiple approaches that are similar to those for estab-
lished type 2 diabetes. Since we focused on studies that attempted
to subgroup type 2 diabetes, we also did not capture analyses of
independent cohorts with a particular type 2 diabetes phenotype at
baseline, for example, studies of young people with type 2 diabetes
or those with ketosis-prone type 2 diabetes, as outlined.

Next steps and recommendations. Future research should aim to
identify and validate clinically useful and cost-effective methods
for type 2 diabetes subclassification that can be applied across
diverse populations. Such research will involve replication of a
given approach in independent datasets, including from diverse
ancestral populations, to ensure generalisability that doesn’t
widen health disparities. For simple stratification approaches,
there is still much that can be done—agreement on standardised
study designs for precision diagnostics studies could be a first
step. For ML requiring real-time computation, the development
of strategies to overcome local resource constraints in imple-
menting these methods could be explored.

Conclusion
In this first systematic review of the evidence underpinning type 2
diabetes diagnostic subclassification, multiple approaches were
identified. Among them are strategies that used simple criteria based
on fundamental categorisation of mostly routine measures, and
complex approaches with multi-trait or genetic inputs that required
ML or other computation. While simple approaches are more easily

deployed, the study designs and level of evidence currently limits
any firm conclusions regarding the utility of such approaches. The
clinical variables and data incorporated into ‘complex’ approaches
have yielded reproducible subclassifications and a growing body of
evidence supports clinically meaningful associations of subtypes
with outcomes and treatment responses. This is a rapidly evolving
field with higher quality evidence emerging. It will be crucial to
develop interventions that target diverse populations and be feasible
in all resource settings to prevent widening existing inequalities in
the precision medicine era of diabetes care.

Data availability
The extracted data from full-text articles included in this systematic review are available
in Supplementary Data 1.
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