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Abstract

Background Pancreatic ductal adenocarcinoma (PDAC) has an overall 5-year survival rate of

just 12.5% and thus is among the leading causes of cancer deaths. When detected at early

stages, PDAC survival rates improve substantially. Testing high-risk patients can increase

early-stage cancer detection; however, currently available liquid biopsy approaches lack high

sensitivity and may not be easily accessible.

Methods Extracellular vesicles (EVs) were isolated from blood plasma that was collected

from a training set of 650 patients (105 PDAC stages I and II, 545 controls). EV proteins were

analyzed using a machine learning approach to determine which were the most informative

to develop a classifier for early-stage PDAC. The classifier was tested on a validation cohort

of 113 patients (30 PDAC stages I and II, 83 controls).

Results The training set demonstrates an AUC of 0.971 (95% CI= 0.953–0.986) with

93.3% sensitivity (95% CI: 86.9–96.7) at 91.0% specificity (95% CI: 88.3–93.1). The trained

classifier is validated using an independent cohort (30 stage I and II cases, 83 controls) and

achieves a sensitivity of 90.0% and a specificity of 92.8%.

Conclusions Liquid biopsy using EVs may provide unique or complementary information that

improves early PDAC and other cancer detection. EV protein determinations herein

demonstrate that the AC Electrokinetics (ACE) method of EV enrichment provides early-

stage detection of cancer distinct from normal or pancreatitis controls.
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Plain language summary
Pancreatic cancer is one of the

deadliest cancers and it is often

detected when it is too late, limiting

treatment options and reducing sur-

vival rates. Identifying blood-based

markers of pancreatic cancer may

help us to diagnose it earlier, when it

is more treatable. Tiny particles cir-

culating in the blood stream, called

extracellular vesicles (EVs), contain

useful information about tumors,

which can be collected with our

innovative technology. In this study,

we analyzed markers present within

EVs and developed a computational

tool using this information to identify

people with early-stage pancreatic

cancer. With further testing in real-

world settings, this approach may

prove useful for surveillance and

early detection of this deadly disease.
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Pancreatic cancer was the third leading cause of cancer-
related death in the United States in 2022 with 49,830
deaths; an estimated 62,210 additional Americans were

diagnosed during this time, and 75% of these patients will not
survive beyond 12 months of the initial diagnosis1. By 2030,
pancreatic cancer is expected to surpass colorectal cancer in
becoming the second leading cause of death2,3. Pancreatic Ductal
Adenocarcinoma (PDAC) is the most prevalent type, accounting
for greater than 90% of all pancreatic cancer malignancies4,5.

The United States Preventive Services Task Force (USPTF)
does not endorse screening for pancreatic cancer for the average-
risk population but does recommend surveillance for patients at
high risk due to inherited genetic syndromes (e.g., Peutz–Jeghers
syndrome, hereditary pancreatitis) or with a familial history of
pancreatic cancer. Other known PDAC risk factors that have not
been supported for surveillance by the USPTF include new-onset
diabetes (NOD) in adults over 50 years old, pathogenic germline
mutations (ATM, BRCA1/2, CDKN2A, MLH1, MSH2, MSH6,
PALB2, STK11, TP53), obesity, age, and pancreatic cysts such as
intraductal papillary mucinous neoplasms (IPMNs). For patients
with a pathogenic germline mutation, current International
Cancer of the Pancreas Screening (CAPS) guidelines indicate that
these patients should undergo pancreatic surveillance only if there
is also familial history of PDAC6. Interestingly, 78–91% of the
PDAC patients who carry these mutations do not have the family
history and thus are not recommended for PDAC surveillance by
most current professional society guidelines; nevertheless, these
patients still possess an elevated disease risk7,8.

Surveillance of patients with an elevated risk for PDAC, pri-
marily with clinical and imaging modalities, could potentially
improve outcomes; however, effective surveillance programs face
several challenges, including patient compliance, disparities in
healthcare, proximity to high-quality imaging centers, and the
potential for malignancy to develop between imaging events9–12.
Several studies have shown that diagnosis of pancreatic cancer at
the local stage is severely limited for healthcare-vulnerable
patients13–15. Given these impediments, and the high mortality
of PDAC, there is a need to develop easily accessible approaches
with the ability to identify PDAC at its earliest stages10.

Recently, the use of blood-based biomarkers to detect cancer,
commonly known as liquid biopsy, has expanded with the advent
of new technologies and innovative research16–19. The concept of
liquid biopsy was developed to address the need for minimally
invasive testing, particularly in situations where tumor tissue is
not readily available. Liquid biopsy now encompasses a range of
methods that involve the isolation and study of tumor-derived
molecules including DNA, RNA, and protein. Extracellular
Vesicles (EVs), including exosomes, are among the most pro-
mising sources of biomarkers providing a full spectrum of
informative cellular components - DNA, RNA, metabolites, and
proteins20–22. EVs have been shown to mediate cell-to-cell
communication, and play an important role in regulating
tumor malignancy23,24. EVs, in particular those from 50 to
200 nm in size, have been shown to promote tumorigenesis and
carry functional protein biomarkers representing the tumor
proteome making them suitable candidates for their application
in liquid biopsies, including early cancer detection20,24–26. Thus,
EVs represent a prime source for the enrichment and detection of
cancer-specific biomarkers for multiple solid tumors, including
pancreatic cancer27,28.

We previously demonstrated that the Verita™ platform, based
on the alternating current electrokinetics (ACE) technology,
efficiently isolates EVs, including exosomes, from plasma samples
in the range of 50 to 200 nm29,30 and has been shown to have
applications in multiple areas31–36. This approach was used to
compare EV-protein concentrations across case and control

groups and develop a machine-learning algorithm identifying a
subset of EV biomarkers that allowed the detection of multiple
early-stage cancers including pancreatic, ovarian and bladder
cancers30. In this study, we further refine our approach to spe-
cifically identify PDAC with early-stage cancers using EVs
derived from blood plasma (ExoVita™ Pancreas assay). The
developed classifier achieved a performance of 90% sensitivity
and 92.8% specificity on an independent validation cohort
(30 stage I and II PDAC cases, 83 controls) thus providing an
advance in the fight against this deadly disease.

Methods
Specimen collection. The specimens for the training set were
obtained from commercial biorepositories (ProteoGenex, Culver
City, CA; DxBiosamples, San Diego, CA; Discovery Life Sciences,
Huntsville, AL; Fox Chase Cancer Center, Philadelphia, PA;
iSpecimen, Lexington MA; Tissue for Research, Newmarket,
England). The specimens for the validation set were obtained
from the Oregon Health and Sciences University, Portland, OR;
Biotheme, Plantation, FL; Proteogenex, Culver city, CA; and
iSpecimen, Lexington MA. Details on the specimens including
phenotypical information are shown in Supplementary Data 1
and 2. Whole venous blood was collected and processed to
plasma under appropriate Institutional Review Board/Indepen-
dent Ethical Committee approval, and all patients filed informed
consent. In particular, the specimens obtained from Oregon
Health & Science University (OHSU) were collected through the
Oregon Pancreas Tissue Registry (IRB00003609). Informed con-
sent was obtained from all subjects and all experimental protocols
were approved by the OHSU Institutional Review Board. All
methods were carried out in accordance with relevant guidelines
and regulations. All PDAC cases with a pathologically confirmed
diagnosis of cancer were treatment-naïve (prior to surgery, local,
and/or systemic anticancer therapy) at the time of blood collec-
tion. The information regarding cohort demographics, staging
(per 7th edition AJCC), pathology and surgical status was pro-
vided by the biorepositories and reviewed for accuracy by a
consulting physician. The training set was comprised of 105
PDAC cases and 545 controls while the validation set was com-
posed of 30 PDAC confirmed cases and 83 controls matching the
criteria for the training set while also including 11 patients with
presentations of either chronic or acute pancreatitis. All patient
samples were collected in K2EDTA plasma vacutainer tubes.

Isolation of EVs using the Verita™ Platform. EVs, including
exosomes, were extracted from plasma using an AC Electrokinetic
(ACE)-based isolation platform (Biological Dynamics, CA,
USA)29,30. The process starts with 240 µL of undiluted plasma
from each patient and then it is introduced into a Verita™ chip,
and an electrical signal of 7 Vpp and 14 KHz was applied while
flowing the plasma across the chip at 3 µL/min for 120 min. EVs
were captured onto the energized microelectrode array, and
unbound materials were washed off the chip with Elution Buffer I
(Biological Dynamics) for 30 min at 3 µL/min. The electrical
signal was turned off, releasing EVs into the solution remaining
on the chip (35 µL), which was then collected, and this solution
containing purified, concentrated/eluted EVs was used directly
for further analysis.

EV-protein biomarker analysis. Verita-isolated EV samples were
used directly in commercial multiplex immunoassays to quantify
the presence of marker proteins. In brief, 25 µL of each purified
EV sample was used for analysis by each of three different bead-
based immunoassay kits, according to the manufacturer’s direc-
tions for each kit (Human Circulating Biomarker Magnetic Bead
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Panel 1 (Cat # HCCBP1MAG-58K), Human Angiogenesis
Magnetic Bead Panel 2 (Cat # HANG2MAG-12K), and Human
Circulating Cancer Biomarker Panel 3 (Cat # HCCBP3MAG-
58K); Millipore Sigma, Burlington, MA). Protein biomarker
concentration was assessed using the MAGPIX system (Luminex
Corp, Austin, TX) according to the manufacturer’s protocols.
Belysa software v. 3.0 (EMD Millipore) was used to determine
final protein concentrations from the calibration curves. In cases
with missing values or results below the lower limit of detection
(LLoD), values were set (imputed) to the LLoD.

ExoVita pancreas classifier development. The initial determi-
nation of the biomarker set, subsequent algorithm selection,
biomarker feature selection, and perturbation analysis were
determined from the Training set exclusively using cross-
validation as described below. The final chosen model, limited
to the subset of features selected, was then locked in the Training
set, and applied to the independent Validation set.

Initial determination of biomarker set. The analysis dataset began
with 52 EV-protein biomarkers under consideration for potential
use as features. Prior to machine-learning (ML) analysis, two
filter-based feature selection methods were used to determine a
subset of potentially informative and reliably measurable bio-
markers as the prospective set of candidate features: (1) Bio-
markers used in the model were first reduced to a set of 36
proteins by restricting candidate biomarkers to those which could
be reliably measured, as determined by ≤50% of patients having
values imputed to the lower limit of detection (LLoD). (2) From
the reduced set of 36 EV-protein markers, biomarker pairs with
>0.9 Pearson-r correlation coefficients (see Supplementary Data 3)
were subjected to Kolmogorov–Smirnov test for binary response
indicating the presence or absence of cancer. The biomarker with
the highest P value within the pair, corresponding to lower dif-
ferentiation in respect to the binary case-control response, was
removed from consideration (a total of 2 biomarkers were
removed). The resulting 34 EV-protein biomarkers comprised the
prospective set of candidate features for ML analysis.

Algorithm selection, biomarker feature selection, and training
performance. The ExoVita Pancreas ML classifier development
process used 100 repetitions of fivefold cross-validation strati-
fied by the binary presence of cancer response to determine the
optimal combination of feature transformation, algorithm,
algorithm-specific hyper-parameters, and candidate biomarkers
that maximized the partial AUC (pAUC). The pAUC is defined
as the area under the ROC curve for specificities ranging from
90 to 100%. All combinations were applied within the folds of
cross-validation, avoiding data leakage from the simulated
training sets into their corresponding simulated validation set
folds. Performance was evaluated within the simulated valida-
tion sets and subsequently aggregated as the average perfor-
mance over all simulated validation sets. Further filter-based
feature selection, identical to what was used to determine the
initial set of candidate biomarkers, was applied within the cross-
validation procedure to explore lower acceptable imputation
values both up to the 50% level, and lower acceptable Pearson-r
correlation coefficients up to the 0.9 value. The set of different
algorithms considered included boosted tree-based methods,
regularized logistic regression, neural networks, random
forest, and support vector machines. Feature transformations
under consideration were specific to the choice of algorithm.
These included discretizing transformers, nonlinear functions,
scaling transformations, and standardization techniques where
appropriate37.

Feature (biomarker) importance was assessed concurrently with
cross-validation performance using a model-agnostic permuta-
tion-based method. Within each simulated Training-Validation
set pair, the model was fit in Training set and performance was
assessed in the matched Validation set. Three measures of
performance were considered as baselines: the partial AUC for
specificity values ranging from 90 to 100%, the overall AUC, and
the sensitivity of the model. Subsequently, for each feature used in
the model, the values of said feature were randomly shuffled ten
times across all observations in the Validation set and the average
loss in performance from baseline for each of the three metrics
across the ten random shuffles was computed as the feature
permutation score. This process was repeated and averaged across
each simulated Training-Validation set pair and all repetitions of
cross-validation. Higher permutation score values indicated
greater loss in performance and, therefore, greater importance to
the model (Supplementary Data 4).

Algorithm robustness to perturbation. Following the methodology
used to assess model robustness in ref. 38, prospective candidate
models with high performance in the Training set cross-
validation procedure were fit to the entirety of the Training set
and subjected to perturbation analysis to determine their
robustness to empirically observed within-patient variation at the
biomarker level.

Average within-patient coefficients of variation (CVs) were
calculated for each biomarker using all measurements used to
build the analysis dataset. To perform this calculation, all
measurements indicating no presence were set to the biomarker-
specific LLoD and the within-patient CVs were calculated for each
patient for each biomarker. These CVs were then averaged across
all patients for each biomarker to obtain the mean within-patient
CV for each biomarker (Supplementary Data 5).

Using these CV values, the measurements were then altered
such that each observed data point was randomly varied up
to +/− the input CV% in 68% of the sample data (equivalent to
observing at 1 std dev in a bell curve) and between +/− CV%
to 2CV% in the remaining 32% of the data (a more far-off
scenario representing data between 1 and 2 std dev in a bell
curve). This process was repeated 100 times and used to create
100 perturbed in silico test sets to assess the robustness of the
candidate models determined to be of most interest to empirically
observed within-patient biomarker variation.

Choice of the optimal algorithm. The final choice of algorithm
aimed to balance performance in the training set cross-validation
procedure, including robustness to biomarker perturbation, par-
simony, and interpretability. This was determined to be a logistic
regression model using recursive feature elimination37 to select a
subset of seven, Log2 transformed EV-protein biomarkers subject
to a ≤30% imputed value cutoff and a ≤0.5 Pearson-r correlation
coefficient biomarker filter.

The locked ExoVita Pancreas classifier used is based on a
logistic regression algorithm. The logistic regression model
employs a logistic function, or sigmoid function, to map a linear
combination of input features to a value between 0 and 1. In our
case, we call this value the ExoVita Score and chose a cutoff point
within the 0 to 1 range to achieve our desired specificity level of
91% in the Training set. The cutoff is then fixed from the training
set and used in the independent Validation set to classify tested
samples as high likelihood or low likelihood for PDAC.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.
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Results
Biomarker and model selection from the training set. To
evaluate EV-protein concentrations, ACE methodology was used
to isolate EVs from blood plasma in a training cohort of 650
patients, including 105 pathologically confirmed, treatment-naive,
stage I or II PDAC cases, and 545 control patients with no history
of cancer for the training set (Table 1 and Fig. 1a). Following
isolation, EVs were analyzed using multiplex immunoassays to
determine the concentrations of individual proteins associated
with the EVs (Fig. 1b, c). Through the development of the
machine-learning (ML) classifier that provided optimal diag-
nostic performance for detection of early-stage PDAC, seven EV-
protein biomarkers were selected (Supplementary Data 4 and 6).

Receiver operating characteristic curve and threshold deter-
mination in the training set. The classifier outputs a numerical
score (ExoVita Score) between 0 and 1, which was used to
compare the case and control populations (Table 1), with scores
analyzed to create a receiver operating characteristic (ROC) curve
(Fig. 2a). The area under the ROC curve (AUC) of the ExoVita
Pancreas classifier on the training set was 0.971 (95% CI:
0.953–0.986; Fig. 2a). The AUC obtained for the stage I cases vs
the controls was 0.958 (95% CI: 0.913–0.987) and for the stage II
cases vs the controls was 0.979 (95% CI: 0.967–0.990) as shown in
Fig. 2b. Because the intended use population for the test is
individuals with a high risk for PDAC, the threshold was set at a
91% specificity level yielding a sensitivity in the training set of

Table 1 Patient demographics for training and validation sets.

Cohort Training set
(N= 650)

Validation set
(N= 113)

N Median age (range) Female Male N Median age (range) Female Male

PDAC cases 105 62 (38–82) 62 43 30 70 (45–85) 15 15
Stage I 39 64 (47–74) 28 11 10 68 (51–83) 6 4
Stage II 66 61 (38–82) 34 32 20 74 (45–85) 9 11
Controls 545 59 (40–84) 312 233 83 59 (45–82) 59 24

Fig. 1 Schematic of the overall approach. a The training cohort included a total of 650 patients. After Extracellular Vesicle (EV) isolation and EV biomarker
profile, machine learning (ML) was used to generate the ExoVita Pancreas classifier. The locked classifier was then applied to an independent validation set
of 113 patients. b Data acquisition and analysis workflow starting with blood plasma followed by EV isolation and EV-protein measurement. The data was
processed to determine the most suitable approach for the development of a Pancreatic Ductal Adenocarcinoma (PDAC) classifier. c Heatmap
representation of the differences in EV-protein expression between the cases and control cohorts. The data was transformed by taking the case and control
groups, dividing the mean of the control group across individual markers, and then applying a log2 conversion. This figure was created with assistance from
biorender.com.
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93.3% (95% CI: 86.9–96.7), with stage I sensitivity of 94.9% (95%
CI: 83.1–98.6), and stage II sensitivity of 92.4% (95% CI:
83.5–96.7) as shown in Table 2. A detailed record of all possible
ExoVita Score cutoffs (thresholds) from the training set and their
respective performance in both the training and validation set are
shown in Supplementary Data 7.

Perturbation analysis. To evaluate the robustness of the ExoVita
Pancreas classifier, perturbation analysis of the assay was con-
ducted by intentionally altering the data based on experimental
observations of variations in the EV-protein readings to see how

those variations would affect the output of the model. To accom-
plish this, the reproducibility of each of the seven biomarkers was
analyzed individually using the full cohort of patient data to
identify the mean and median CVs (Supplementary Data 6).
Details on the perturbation analysis are described in “Methods”.

Following the methodology used by Chalasani et al.38, a total of
100 perturbed test datasets were created to assess the robustness
of the model against the algorithm developed in the training set
(Fig. 2). The average AUC obtained across 100 perturbation sets
was 0.967 with an average sensitivity of 92.7% and an average
specificity of 89.4% (Table 3 and Supplementary Data 8).

Fig. 2 Performance of ExoVita pancreas in training set. a ExoVita Score distribution across the case (n= 105) and control (n= 545) cohorts in the
training set. The box plots represent the median and interquartile range with each dot overlayed representing a patient in the training set. The whiskers
represent the min and max of the distribution. b Further split of the ExoVita Score for the stage I and II cases in the training dataset. The box plots represent
the median and interquartile range with each dot overlayed representing a patient in the training set. The whiskers represent the min and max of the
distribution. The dotted line in both (a, b) represents the threshold selected to obtain 91% specificity as demonstrated on the receiver operating
characteristic (ROC) curves displayed to the right of each panel. The 95% CI on the AUC is determined by bootstrapping in a total of 2000 repetitions.

Table 2 Performance of ExoVita pancreas classifier in the training and validation sets.

Cohort Training set (95% CI)a Validation set (95% CI)a

N Sensitivity, % Specificity, % N Sensitivity, % Specificity, %

PDAC cases 105 93.3 (86.9–96.7) 30 90.0 (74.4–96.5)
Stage I 39 94.9 (83.1–98.6) 10 100.0 (72.2–100)
Stage II 66 92.4 (83.5–96.7) 20 85.0 (64.0–94.8)
Controls 545 91.0 (88.3–93.1) 83 92.8 (85.1–96.6)

aTwo-sided 95% Wilson confidence intervals.
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ExoVita Pancreas classifier evaluation using an independent
validation cohort. Based on the performance of the training set, a
second set of samples, comprising 30 stage I and II cases and 83
controls, were tested in a blinded fashion and served as an
independent validation set for ExoVita Pancreas. The control
dataset included 11 patients with presentation of pancreatitis (as
shown in Supplementary Data 2). EVs were isolated from patient
samples, and biomarker concentrations measured using the same
methods as those used for the training cohort. Following data
collection, the ExoVita Pancreas classifier algorithm, using the
previously selected cutoff value based on the 91% specificity from
the training set (as shown in Fig. 2), was applied to the validation
set. After the ExoVita Scores were computed for each patient, the
blind was removed, and the test calls were then compared to the
known patient condition (case, control) to evaluate the perfor-
mance of the classifier in the validation set (Table 2). We found
that the test performance for this independent validation set was
90.0% sensitivity (95% CI: 74.4– 96.5) and 92.8% specificity (95%
CI: 85.1–96.6), which was well within the expected outcomes
from the training set and confirmed the potential utility of the
ExoVita Pancreas classifier (Fig. 3).

Discussion
Pancreatic cancer is a deadly disease with high mortality, despite
having a relatively low prevalence when compared to other cancers. It
is currently one of the leading causes of cancer-related deaths in the
United States and both the incidence and death rates are expected to
grow2,39,40. The poor prognosis for pancreatic cancer stems from the
combination of inadequate diagnostic methods at the early stages and
a lack of curative strategies for the late stages5. Stage I or earlier

PDAC patients have 5-year survival rates as high as 80%41, while
survival rates for stage IV patients plummet to about 3%12,42. While
carbohydrate antigen 19-9 (CA19-9) is FDA-approved and widely
used to aid in the diagnosis of pancreatic cancer43, it lacks the
necessary performance features for surveillance44–46. A contribution
by Poruk et al.47 showed the aggregated (from multiple studies)
performance of CA19-9 as 78.2% sensitivity and 82.8% specificity.
From the same publication, the aggregate performance of another
commonly used marker for pancreatic cancer, carcinoembryonic
antigen (CEA), is 44.2% sensitivity and 84.8% specificity. A more
recent publication showed sensitivities for CA19-9 of 64.7% when
comparing resectable pancreatic cancer cases to healthy controls and
46.5% to when compared to pancreatitis patients, all at a 99%
specificity48. Therefore, there is a clinical need for a more effective
PDAC detection test and more responsive biomarkers that can
provide early disease detection.

Numerous liquid biopsy tests have been emerging that utilize
cell-free DNA as an analyte19,49–53. However, for individuals not
previously diagnosed with cancer, these diagnostic tests may yield
high specificities, but fail to demonstrate adequate sensitivities for
early-stage disease. Indeed, many of these tests show sensitivity
sufficient to detect only late-stage disease (stage III/IV), when
tumor burden has increased, symptoms have intensified, and
curative options have narrowed. One recent proteomics-based
approach has been shown with the possibility of detecting PDAC
in all stages; however, interpretation of its efficacy is hindered by
the removal of indeterminate patients from the analysis and from
dependency on detection of CA19-9 expression using conven-
tional methodologies54. In high-risk settings, and therefore likely
enhanced prevalence cohorts, higher sensitivity surveillance is
likely to produce improved early detection outcomes.

A recent study by Nakamura et al. has shown how exosome
transcriptomic signatures can be used in early pancreatic cancer
detection55 while an earlier pilot study using the approach
described here showed that a set of 13 EV-protein biomarkers
could detect the presence of early-stage pancreatic, ovarian and
bladder cancers in comparison to healthy controls in the context
of a multi-cancer early detection (MCED)-type test30. For this
study, the cohort size was greatly expanded to enable dis-
crimination of early-stage PDAC, focused to the context of a
single-cancer test, and includes both training and blinded inde-
pendent validation cohorts. The larger training cohort permitted

Table 3 Performance outcomes from 100 simulated, in silico,
datasets for perturbation analysis.

Performance metric Mean value Minimum value Maximum value

AUC 0.967 0.962 0.971
Specificity 89.4% 87.7% 90.9%
Overall sensitivity 92.7% 89.6% 96.0%
Stage I sensitivity 92.6% 85.7% 95.9%
Stage II sensitivity 92.8% 89.5% 96.1%

Fig. 3 ExoVita pancreas performance in the independent validation set. a ExoVita Score distribution across the case (n= 30) and control (n= 83)
cohorts in the validation set. The box plots represent the median and interquartile range with each dot overlayed representing a patient in the validation set.
The whiskers represent the min and max of the distribution. The dotted line represents the threshold selected to obtain 91% specificity from the training
set. The receiver operating characteristic (ROC) curve analysis for the validation set is shown on the right. The 95% CI on the Area Under the Curve (AUC)
is determined by bootstrapping in a total of 2000 repetitions. b Comparison of performance for the training and validation cohorts broken down by stage
using the ExoVita Score threshold selected in the training set. The error bars represent the two-sided 95% Wilson confidence interval.
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refinement of the algorithm while the validation set afforded for
an independent evaluation of the developed classifier.

This work demonstrates that EV-protein biomarkers can be
used to detect PDAC at its earliest stages while optimizing for
high sensitivity. One advantage for use of EV biomarkers in liquid
biopsy tests is that EVs are generated during all stages of cell
transformation, from normal to tumor cell, and their release into
circulation is often accelerated during the process of
tumorgenesis25,26,56. Nascent tumors in situ may release EVs into
circulation long before CTCs and ctDNA can be measured in
blood, and EV presence is not dependent on cell death or
necrosis57. In addition, EVs regulate cancer progression as well as
transfer oncogenic proteins and nucleic acids during their inter-
actions with the tumor microenvironment, suggesting that these
markers are not simply related to inflammatory responses58.

EVs have been shown to play active roles in communication
between tumor and stroma, expressing integrins that promote
metastasis; they also play roles in immune response inhibition in
cancer59,60 It is thus likely that EVs from both tumor and stroma
will carry protein markers whose levels are altered during
tumorigenesis. Proteins with roles in angiogenesis (such as fer-
ritin, CA15-5, and leptin) are likely to be carried by EVs from
tumor cells to endothelial cells. Other proteins, such as CA19-9
with roles in matrix remodeling, are also likely to be on EVs
targeting the stroma. As in our earlier study30, markers relating to
all aspects of tumor progression and function are represented, but
with less overlap. CA19-9, ferritin, and HER3 can function as
cancer drivers, and CA15-3, ferritin, leptin, and other markers
used here are implicated in pathways affecting apoptosis, angio-
genesis, and metastasis. Leptin, ferritin, FGF2, and prolactin may
potentiate cancer stem cell formation; ferritin also impacts
pathways leading to the EMT transition. Both ferritin and leptin
are linked to the immune response. In this light, choice of a
specific marker may not be as crucial to the test as is sufficient
diversity of marker roles to cover the full range of tumor phe-
notypes, phases, and growth patterns61–66.

Currently, there are no screening strategies recommended to
identify PDAC in the general population and strategies are lim-
ited for high-risk populations. These include the CAPS Con-
sortium recommendation for annual screening with endoscopic
ultrasonography (EUS) and/or MRI/magnetic resonance cho-
langiopancreatography for those individuals at high risk for
PDAC2,10,18,67. A blood-based test may be more accessible for
populations at high risk for PDAC, since patients could poten-
tially use blood draw centers close to home or work, as well as
mobile phlebotomy clinics. This could have broad implications
for patients living in medically underserved areas or with eco-
nomic impediments to healthcare access68.

With an aim to develop a more accessible, blood-based screening
test for populations at high risk for PDAC, it was investigated here if
a test integrating information from EV-protein biomarkers might
have sufficient sensitivity to detect the cancer at its earliest stages.
Using EVs purified from patient plasma, biomarker proteins were
collectively quantified, and machine learning utilized to assign a total
score (ExoVita Score) to each patient. By selecting an ExoVita Score
threshold that achieves high sensitivity it will be possible to detect an
increased number of cancer cases and bring them into the con-
tinuum of care earlier. In this study, the ExoVita Pancreas classifier
demonstrated differentiation between early-stage PDAC (stages I/II)
and healthy control patients using a model comprised of 7 EV-
protein biomarkers yielding an AUC of 0.971 with a sensitivity of
93.3% at a specificity of 91.0%. Furthermore, the performance of the
classifier is confirmed using an independent validation set showing
both >90% sensitivity and specificity as shown in Table 2. Impor-
tantly, to better reflect future testing circumstances, a proportion of
the control patients present certain conditions, as shown in the

medical history and noted condition columns on Supplementary
Data 1 and 2. The training set included 62 patients with either type-2
diabetes mellitus (T2DM) or pancreatitis while the validation set
included 15 control patients with either T2DM or either acute or
chronic pancreatitis. In the validation set, the classifier yielded just
one control patient as positive from the noted conditions cohort.
Because pancreatitis is a high-risk condition for PDAC, it is possible
that this individual had very early, as-yet undiagnosed PDAC
malignancy. Unfortunately, as direct access to the patient was not
available, this could not be further investigated69. Overall, the results
suggest that the ExoVita Pancreas test may be useful in dis-
criminating the presence of very early PDAC.

For the first implementation of this ExoVita Pancreas test, the
intended population is patients with higher-than-average risk for
PDAC, including those with familial risk due to germline mutations,
a history of pancreatitis, those with intraductal papillary mucinous
neoplasms (IPMNs), and patients over 50 years of age with new-
onset diabetes (NOD)9. The criteria for defining high-risk popula-
tions remain controversial as a general consensus from different
guidelines has been accepted, but is not well-documented. For
example, only recently have sequencing tests become more accessible
to test patients with germline mutations at risk for PDAC. Given the
increase in testing, long-term data will be required to capture the
accuracy of these relative risks within these populations. In addition,
a blood-based test could help bridge the gap of healthcare disparities.
By offering high-risk patients a high-sensitivity test with easier
access, more routine assessments can be made that aim to mitigate
the mortality of PDAC while avoiding the enormous healthcare
costs associated with false test results when screening an average-risk
population. It is expected that these patients should receive
standard-of-care testing in parallel with a blood-based test that can
enhance overall clinical utility during patient care.

There are multiple limitations of this study. First, the case
cohort is a relatively homogenous population that does not reflect
diverse groups in the real world (see Supplementary Data 1 and
2). Second, this is a retrospective case-control study with no
longitudinal follow-up data to provide information about treat-
ment outcomes or the future appearance of pancreatic disease in
the control patients. Third, cases with presentations of advanced
PDAC (stages III and IV) were purposedly excluded, whereas in
real life it is expected that advanced cases will be discovered.

In summary, this contribution describes an effective, high-
sensitivity test to identify early-stage PDAC using an EV/exosome-
isolating liquid biopsy platform. ACE technology was utilized to
isolate EVs from patient plasma followed by analysis of EV-protein
levels for a panel of seven biomarkers, and machine learning was
employed to establish an algorithm identifying PDAC with high
sensitivity and specificity. This approach is scalable and cost-
effective and may ultimately lead to a more accessible screening
application for PDAC. Further investigations on this topic are
underway including a prospective, multi-center, observational reg-
istry study—ExoLuminate Study—to evaluate patients at high risk
for PDAC (NCT0562552).

Data availability
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