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Abstract

Background Aiming at objective early detection of neuromotor disorders such as cerebral

palsy, we propose an innovative non-intrusive approach using a pressure sensing device to

classify infant general movements. Here we differentiate typical general movement patterns

of the “fidgety period” (fidgety movements) vs. the “pre-fidgety period” (writhing

movements).

Methods Participants (N= 45) were sampled from a typically-developing infant cohort.

Multi-modal sensor data, including pressure data from a pressure sensing mat with 1024

sensors, were prospectively recorded for each infant in seven succeeding laboratory sessions

in biweekly intervals from 4 to 16 weeks of post-term age. 1776 pressure data snippets, each

5 s long, from the two targeted age periods were taken for movement classification. Each

snippet was pre-annotated based on corresponding synchronised video data by human

assessors as either fidgety present or absent. Multiple neural network architectures were

tested to distinguish the fidgety present vs. fidgety absent classes, including support vector

machines, feed-forward networks, convolutional neural networks, and long short-term

memory networks.

Results Here we show that the convolution neural network achieved the highest average

classification accuracy (81.4%). By comparing the pros and cons of other methods aiming at

automated general movement assessment to the pressure sensing approach, we infer that

the proposed approach has a high potential for clinical applications.

Conclusions We conclude that the pressure sensing approach has great potential for effi-

cient large-scale motion data acquisition and sharing. This will in return enable improvement

of the approach that may prove scalable for daily clinical application for evaluating infant

neuromotor functions.
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Plain language summary
The movement of a baby is used by

health care professionals to deter-

mine whether they are developing as

expected. The aim of this study was

to investigate whether a pad con-

taining sensors that measured pres-

sure occurring as the babies moved

could enable identification of differ-

ent movements of the babies. The

results we obtained were similar to

those obtained from use of a com-

puter to process videos of the moving

babies or other methods using

movement sensors. This method

could be more readily used to check

the movement development of babies

than other methods that are

currently used.
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Over the past decades, our knowledge on human sponta-
neous movements, their onset, developmental trajectory,
and predictive value for clinical outcomes has become

increasingly profound1,2. Among the rich presentations of infant
movements, a specific spontaneous motor repertoire, termed
general movements by Prechtl and colleagues2,3, has gained
substantial attention. The Prechtl general movements assessment
(GMA) has proven to be an efficient and reliable diagnostic tool
for detecting cerebral palsy within the first few months of human
life4. The significance of general movements as a biomarker for
divergent early brain development, and their long-term relevance
for cognitive, speech-language, and motor development have
been widely acknowledged5–8.

GMA is a method based on visual gestalt perception. The
expertise of the GMA assessors comes from intensive training and
sustaining practice. The cumulative cost and effort required for
human assessors to achieve and maintain adequate performance
are considerable. In common with other man-powered assess-
ments, human factors may affect GMA assessors’ performance,
which may have impeded an even broader application of this
efficient diagnostic tool. As a consequence, increasing efforts on
automated solutions to classify infant motor functions have been
made in the last years to supplement the classic GMA9–12, where
most attempts have been, remaining true to the GMA metho-
dology, devoted to developing vision-based solutions, for example
see13–18. Several sensor-based methods directly capturing 3D
motion data of the infants have also been developed19–25. Both
vision-based methods using marker-based body tracking26 and
methods applying non-vision sensors19–23, require attaching
elements or devices to the infant’s body, which can become
cumbersome and might alter infants’ behavioural status and their
motor output27. To optimise tracking and evaluating develop-
mental behaviours in early infancy, we developed in 2015 a
comprehensive multimodal approach28. One of our aims was to
systematically examine the potential of different techniques and
their combinations to classify, among others, infant movement
patterns. With a prospective longitudinal approach, we recruited
a cohort of typically developing infants. For recording their
movements, we utilised, in addition to a multi-camera video set-
up (2D-RGB and 3D Kinects), inertial motion units (IMUs,
accelerometer sensors), and a pressure sensing mat28.

Pressure sensitive mats have been broadly applied in infant
monitoring, sport training, and patient care to evaluate dynamic
force distribution and displacement in sitting, lying, or standing
positions in individuals with different mobilities and at different
ages29–39. Pressure sensing devices have also been used for
assessing preterm- and term-infants’ sleeping behaviours, gross
motor patterns, and postural control40–50. Reported in a recent
abstract, Johnson and colleagues51 used a force plate to assess
motor patterns in 12 typically developing infants aged 2 to
7 months. They clustered the infants into three groups according
to their movement variabilities (i.e., moderate, mild, and little
variability). Greater variability captured by the pressure sensing
device seemed to be associated with an age-specific general
movement pattern, the fidgety movements (FMs), i.e., a general
movement pattern that presents during 9–20 weeks of post-term
age in typically developing infants27. No further technical details
were revealed in the abstract. Kniaziew-Gomoluch and colleagues
examined the postures of infants who presented either normal or
abnormal FMs. They found statistical differences between the two
groups in their Centre of Pressure (CoP) parameters measured by
a force plate45,46. The authors, however, did not apply machine
learning to classify general movements.

As pressure sensing mats record force changes in motion
across spatial and temporal dimensions, it has the potential to
distinguish infant movements that are different in their timing,

speed, amplitude, spatial distribution, connection, and organisa-
tion (reflecting the involvement and displacement of different
body-parts), which are the characterising features discriminating
general movements at different ages, and more importantly, of
distinctive qualities27 (physiological vs. pathological). Compared
to other motion tracking techniques, the application of pressure
mats does not require complex and time-consuming setups and is
fully non-intrusive to the infants. The pressure mat data can be
readily deidentified thus circumvent potential data privacy issues
when it comes to data transfer and sharing52. If a pressure sen-
sitive mat can reliably detect different infant general movement
patterns, it will have great potential for routine clinical applica-
tions which may substantially increase the accessibility of GMA.

With the current proof-of-concept study, we sought to test the
viability of using a pressure sensitive mat to classify different
general movement patterns. We intended to use the pressure
sensing mat to first analyse typical development, which shall build
the basis for future investigations targeting altered development
(i.e., classification of typical vs. atypical patterns pinpointing
neurological dysfunction). Utilising data obtained from the
aforementioned prospective-longitudinal infant cohort28, we
aimed to examine whether pressure data can be used to differ-
entiate typical FMs from “pre-fidgety movements”, i.e., writhing
movements27.

In this study, we demonstrate that pressure sensing metho-
dology can generate adequate infant movement classification.
With ongoing technological advances on infant-suitable devices,
easy-to-apply, non-intrusive pressure sensing solutions have great
potential to be applied in daily clinical practice and surveillance of
infant neuromotor functions. Developing pressure sensing
approaches will forcefully contribute to meeting the urgent need
of acquiring and sharing large datasets across centres, and in
return, accelerate further development and improvement of the
technology. Considering pros and cons of different sensing
techniques, we suggest that multimodal non-intrusive (i.e., pres-
sure and video) data acquisition and analyses combining different
venues of motion information may be a propitious direction for
research and practice. This approach may optimise and stream-
line infant movement evaluations enabling efficient and broader
clinical implementation of GMA and help to objectively identify
infants at elevated likelihood for developing neuromotor dis-
orders such as cerebral palsy.

Methods
For the current study, we used a validated expert-annotated
dataset reported in a previous study of our research group16

(please find details below; see also Fig. 1). Data acquisition was
done at iDN’s BRAINtegrity lab at the Medical University of
Graz, Austria. Movement data were collected as a part of the
umbrella project with a prospective longitudinal design aimed to
profile typical cross-domain development during the first months
of human life28. Data analyses for the current study were done at
the Systemic Ethology and Developmental Science Unit—SEE,
Department of Child and Adolescent Psychiatry and Psy-
chotherapy at the University Medical Centre Göttingen, Ger-
many. The study was approved by the Institutional Review Board
of the Medical University of Graz, Austria (27-476ex14/15) and
the University Medical Centre Göttingen, Germany (20/9/19).
Parents were informed of all experimental procedures and study
purpose, and provided their written informed consent for parti-
cipation and publication of results.

Participants. Participants of the umbrella project28 included 51
infants born between 2015 and 2017 to monolingual German-
speaking families in Graz (Austria) and its close surroundings.
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Inclusion criteria were: uneventful pregnancy, uneventful delivery
at term age (>37 weeks of gestation), singleton birth, appropriate
birth weight, uneventful neonatal period, inconspicuous hearing
and visual development. All parents completed high-school or
higher level of education. The parents had no record of alcohol or
substance abuse. From the 51 infants, one was excluded due to a
diagnosed medical condition at 3 years of age. Another five were
excluded due to incompleteness of recordings within the required
age intervals (see below). The final sample for the current study
comprised 45 infants (23 females).

Data acquisition. From 4 to 16 weeks of post-term age, each
infant was assessed at 7 succeeding sessions in a standard
laboratory setting in biweekly intervals. Post-term ages at the
seven sessions were: T1 28 ± 2 days, T2 42 ± 2 days, T3
56 ± 2 days, T4 70 ± 2 days, T5 84 ± 2 days, T6 98 ± 2 days, and
T7 112 ± 2 days. According to the GMA manual27, 5 to 8 weeks of
post-term period (T2 and T3 belong to this period) is a transi-
tional- or “grey”-zone between the writhing and the fidgety
periods and is not ideal for assessing infant general movements.
FMs are most pronounced in typically developing infants from
12 weeks of post-term age onwards27 (corresponding to T5-7).
Therefore, to analyse infant general movements, data from T1 as
“pre-fidgety period” and T5-7 as “fidgety period” were taken for
the current study.

Infant movement data were recorded in form of RGB and
RGB-D video streams, accelerometer and gyroscope data, and
pressure sensing mat data28. All sensors were synchronised. Data
recording procedure followed the GMA guidelines27. The
pressure data was acquired using a Conformat pressure sensing
mat53 (Tekscan, Inc., South Boston, Massachusetts, USA). The
mat was laid on the mattress, covered by a standard cotton sheet.
During a laboratory assessment, the infant was placed in supine
on the mat by the parent. The Conformat contains 1024 pressure
sensors arranged in a 32 × 32 grid array on an area of
471.4 × 471.4 mm2, producing pressure image frames (8 Bit,
32 × 32 pixels, sampling rate 100 Hz).

Data annotation. For movement classification using machine
learning methods with pressure mat data, human-annotation data
was needed. These annotation data were available from a previous

study16. Human annotation was based on RGB recordings which
were synchronised with the pressure mat recordings. In that
previous study16, we first cut suitable videos (i.e., infants were,
overall, awake and active and not fussy) from T1 to T5-7 of the 45
infants each into brief chunks (i.e., snippets). Based on initial pilot
trials, we determined the shortest length of each video snippet to
be 5 s, a reasonable duration of unit for machine learning, as
well as a minimum length of video for human assessors feeling
confident to judge whether the FM is present (FM+) or absent
(FM−) on each snippet16, providing the ground truth labels to
train and test classification models as described below.

For the purpose of proof-of-concept, only a fraction of the
total available snippets (N= 19451) was sampled and annotated
by human assessors. Out of the entire pool, 2800 snippets were
randomly chosen: 1400 from T1, the pre-fidgety period, and the
other 1400 from T5-7, the fidgety period. Two experienced
GMA assessors, blind of the ages of the infants, evaluated each
of the randomly ordered 2800 5-s snippets independently,
labelling each snippet as “FM+ ”, “FM−”, or “not assessable”
(i.e., the infant during the specific 5 s was: fussy/crying, drowsy,
hiccupping, yawning, refluxing, over-excited, self-soothing, or
distracted, all of which distort infants’ movement pattern and
shall not be assessed for GMA27. The interrater agreement of
the two assessors for classes FM+ and FM− was Cohen’s kappa
κ= 0.97. The intra-assessor reliability by rerating 280
randomly-chosen snippets (i.e., 10% of the sample) was Cohen’s
kappa κ= 0.85 for assessor 1, and κ= 0.95 for assessor 2 for the
classes FM+ and FM−. Snippets with discrepant labelling for
classes FM+ vs. FM− by the assessors (N= 24), and the ones
labelled as “not assessable” by either assessor (N= 990) were
excluded. A remaining total of 1784 video snippets were labelled
identically by both assessors as either FM+ (N= 956), or FM−
(N= 828). Of the 1784 snippets, 1776 had corresponding
synchronised pressure mat data, which were used for the
machine learning procedures described below. Among the 1776
pressure mat snippets, 948 adopted the corresponding label of
“FM+ ”, and 828 of “FM−”.

Feature extraction for motion encoding. A flow diagram of the
feature extraction procedure is shown in Fig. 2. As input, we used
the 1776 pressure mat recordings, each 5 s long, corresponding to
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Fig. 1 Diagram of the study pipeline. The numbers “n” correspond to the number of snippets in each step.
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the 5 s video snippets described above16, with a sampling rate of
100 Hz, which led to 500 frames per snippet. One frame consists
of 1024 pressure sensor values arranged on a 32 × 32 grid (see
frames on the left side in Fig. 2).

We first cropped the area [1:29, 4:29] of original grid size
32 × 32 (red rectangle), since in most cases the sensor values
outside this area were 0. Thus, the size of the cropped area was
29 × 26 leading to 754 pressure sensor values. Generally, only two
areas were strongly activated on the pressure mat, where
activations on the top correspond to the infant shoulders and/
or head, and activations at the bottom correspond to the infant
hips. Therefore, we split the cropped grid of size 29 × 26 into two
parts, 12 × 26 (top) and 17 × 26 (bottom), and tracked the CoP in
these two areas.

Next, we computed position coordinates x and y of the CoP
and the average pressure values p of the top and the bottom areas
for each frame as the following:

xt=b ¼
∑ii ´ pt=b i; j

� �

∑i;jpt=b i; j
� � ; yt=b ¼

∑jj ´ pt=b i; j
� �

∑i;jpt=b i; j
� � ; pt=b ¼

∑i;jpt=b i; j
� �

mt=b ´ nt=b
ð1Þ

Here, pt(i,j) and pb(i,j) correspond to the pressure sensor values at
the position (i= 1..mt/b, j= 1..nt/b) of the top (t) and bottom (b)
parts, respectively. To reduce signal noise, for each value x, y, and
p, we applied moving average filter with a sliding window of size 5
frames (0.05 s).

To avoid biases that could be caused by infant size and weight,
we normalised values x, y, and p between 0 and 1 as follows:

pt=b ¼
pt=b �min pt=b

� �

max max pt
� ��min pt

� �
;max pb

� ��min pb
� �� � ð4Þ

Thus, the original input of size 500 × 32 × 32 was reduced to
500 × 6, i.e., six signals of 500 time steps.

Classification models. For classifying infant movements (FM+
vs. FM−), we compared a support vector machine (SVM) and a

feed-forward network (FFN), also known as multi-layer percep-
tron, with manually defined features against a convolutional
neural network (CNN) and a long-short term memory (LSTM)
network with learned features (for examples of network archi-
tectures see Fig. 3).

In case of the SVM and FFN, we used statistical features
obtained from signals xt/b, yt/b, and pt/b and their derivatives x’t/b,
y’t/b, and p’t/b by computing mean and standard deviation values
for each signal. In one case, we only used statistical features from
the original signals, which resulted in 12 input values in total. In
another case, we used statistical features from both the original
signals and their derivatives, which resulted in 24 input values in
total. As shown in Supplementary Table 1, we investigated SVMs
with different kernels (RBF and polynomial) and FFN architec-
tures with one or two fully connected (FC) layers with 12 or 24
inputs.

In case of the CNN and the LSTM, we used the original
signals xt/b, yt/b, and pt/b as input and allowed the networks to
learn features from these signals by utilising one or multiple
convolutional or LSTM layers (see Supplementary Table 1).
For the CNN, behind the convolutional layer(s), we used an
average pooling layer to reduce the input dimension as
commonly used for the convolutional network architectures.
This was then followed by one or two FC layers. All details
of the network architectures and their parameters can be
found in Supplementary Table 1. The schematic diagrams of
an FFN architecture (F2), a CNN architecture (C3F2), and a
LSTM architecture (L1F1.2) are presented in Fig. 3a–c,
respectively.

The SVMs were implemented using Python scikit-learn library54.
We used either the radial basis function (RBF) kernels or the
polynomial kernels of degrees 1–3. Regularisation parameter
C= [0.1, 1, 10, 100, 1000], and kernel coefficient gamma= [0.01,
0.1, 1, 10, 100] were tuned on the validation set (see section
“Evaluation procedure and quantification measures” below).

All network architectures were implemented using
TensorFlow55 and Keras API56. To train the network architec-
tures we used the Adam optimiser with a binary cross-entropy as

32x32

1
2

500

Crop (29x26)
and split

Filter and
normalize

500x6

1

500

…

Compute
xt, yt, pt and
xb, yb, pb

12x26 (top) and
om)

1…6

xb, yb, pb

xt, yt, pt

Fig. 2 Flow diagram of the feature extraction procedure for the motion encoding. The feature extraction procedure consists of the following three steps:
(1) cropping of the original pressure grid area and splitting into two areas, (2) computing centre of pressure (CoP) values for the top and bottom areas, and
(3) filtering and normalisation.

xt=b ¼
xt=b �min xt=b

� �

max max xt
� ��min xt

� �
;max xb

� ��min xb
� �

;max yt
� ��min yt

� �
;max yb

� ��min yb
� �� � ð2Þ

yt=b ¼
yt=b �min yt=b

� �

max max xt
� ��min xt

� �
;max xb

� ��min xb
� �

;max yt
� ��min yt

� �
;max yb

� ��min yb
� �� � ð3Þ
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a loss function, batch size 4, and default training parameters, i.e.,
learning rate= 0.001, b1= 0.9, b2= 0.999, and e= 1e-07. To
avoid overfitting, we used a validation stop with validation split
1/6 and patience 10.

Statistics and reproducibility. To evaluate and compare the
performances of the above presented classification models, we used
a 5-fold cross-validation procedure. We divided the dataset into
five subsets (each subset contained snippets from nine different
infants). One subset was used as the test set for each fold, and the
remaining four subsets were used to train the network architecture.
The number of snippets in the training and test sets for each fold is
given in Table 1. In each fold in the training set, we had on average
662 (SD= 4) snippets for the absence of fidgetymovements (FM−)
and 758 (SD= 3) for the presence of fidgety movements (FM+)
class. In the test sets, we had on average 166 (SD= 4) snippets for
the FM− and 190 (SD= 3) for the FM+ class.

The training set was split into training (5/6 of the training data)
and validation (1/6 of the training data) subsets. In case of the
SVM, we trained 25 models with different parameter combina-
tions C= [0.1, 1, 10, 100, 1000], and gamma= [0.01, 0.1, 1, 10,
100] on the training set. We then selected the model with the
highest classification accuracy on the validation set, which was
then evaluated on the test set. In case of the neural networks, for
each fold we trained the network 20 times and then selected the

model with the lowest loss score on the validation set, which was
then evaluated on the test set.

For the evaluation of the classification performances, we used
three common classification performance measures, i.e., sensitiv-
ity (true positive rate [TPR]), specificity (true negative rate
[TNR]) and balanced accuracy (BA):

TPR ¼ TP
TP þ FN

ð5Þ

TNR ¼ TN
TN þ FP

ð6Þ

BA ¼ TPRþ TNR
2

ð7Þ

where TP is the number of true positives, TN the number of true
negatives, FP the number of false positives, and FN the number of
false negatives.

To compare classification accuracies of the network architec-
tures, we calculated average classification performance measures
across five test sets, confidence intervals of mean (CI 95%), and p
values for comparison of means using two-sample t test.
Statistical significance was set at p < 0.05.

Data and code are publicly available at Zenodo57.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Signal examples. Examples of the pressure mat sensor values
and the extracted feature signals x, y, and p are shown in Fig. 4,
where the signals of an example of FM− and an example of FM+
are shown in the panels (a, b) and (c, d), respectively. In the
panels (a, c), changes of pressure activity patterns caused by the
infant’s movement were presented. Extracted signals are shown
in the panels (b, d). In case of an absence of fidgety movements
(FM−, b), local (short) signal patterns of lower frequency and
larger amplitudes are observable. As a contrast, in case of a
presence of fidgety movements (FM+, d), local (short) signal

Table 1 Data split of 5-fold cross-validation.

Fold
number

Training set (# of
snippets)

Test set (# of snippets)

FM− FM+ Total FM− FM+ Total

1 662 761 1423 166 187 353
2 662 754 1416 166 194 360
3 665 760 1425 163 188 351
4 666 757 1423 162 191 353
5 657 760 1417 171 188 359

The whole dataset contained 1776 snippets (828 FM- and 948 FM+) obtained from 45 infants.
Each fold contained snippets from 36 and 9 infants for the training (~80% of snippets) and the
test set (~20% of snippets), respectively. The training set was further split into the training
(83.33% [30 infants]) and the validation (16.67% [6 infants]) subsets.
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Fig. 3 Schematic diagrams of the network architectures. a feed-forward network F2, (b) convolutional neural network C3F2, and (c) long short-term
memory network L1F1.2. For more details, please see Supplementary Table 1.
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patterns of higher frequency and smaller amplitudes can be seen,
which resembles the FM characteristics27.

Classification results. Results of the classification performances
for the best models are summarised and compared in Fig. 5. The
performances of all models and all the performance measures are
presented in Supplementary Table 2.

SVMs. Applying SVMs with manually defined statistical
features, the worst average classification performance was
obtained when only the original signals x, y, and p (no derivatives,
S1.RBF, S1.P1-3) were used, where the average balanced accuracy
BA= 69.13–71.49%. Compared to the classification performance
with additional features from the signal derivatives x’, y’, and p’
(S2.RBF, S2.P1-3), the average BA= 73.87–76.15%. However, the
improvement from 71.49% (S1.RBF) to 76.15% (S2.P1) was not
statistically significant (t test, p= 0.0776).

FFN architectures. Applying FFN architectures with manually
defined statistical features, the worst average classification
performance was obtained when only the original signals x, y,
and p (no derivatives, network F1.1) were used, where the average
balanced accuracy BA= 72.11%. Adding statistical features from
the signal derivatives x’, y’, and p’ (network F1.3) and increasing
the number of neurons of a FC layer from 100 to 200 improved
the classification performance (average BA= 75.57%). However,
this improvement was not statistically significant (t test,
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Fig. 4 Examples of the pressure mat values and the extracted signals for one sample of the FM- and one sample of the FM+ class. a, c Pressure mat
values (FM+ and FM− in a and c, respectively) obtained at 0.2, 0.4, …, 5 s. The blue and the red colours correspond to the low- and the high-pressure
values, respectively. The red crosses correspond to the positions of the centre of mass for the top and the bottom areas of the pressure mat (see Fig. 2).
b, d Signals for position x, y of the centre of mass, and the average pressure p (FM+ and FM− in b and d, respectively).
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Fig. 5 Comparison of the best performing network architectures (see
Supplementary Table 1) on their classification performances (FM+ vs.
FM-). Statistics obtained from n= 5 test sets. For number of snippets in
each test set please refer to Table 1. Coloured bars indicate for each model
the average balanced accuracy (BA) obtained from the five test sets. Error
bars denote the confidence intervals of the mean (CI 95%). The average BA
between the CNN (C3F2) and the FFN (F1.3), and between the CNN (C3F2)
and the LSTM (L1.F2) is significantly different (t test, p= 0.0343 and
p= 0.0008). The average BA between the SVM (S2.P1) and the CNN
(C3F2) is not statistically significant (t test, p= 0.0911).
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p= 0.2080). Adding a second FC layer (network F2) did not
improve the classification performance (average BA= 73.58%).

CNN architectures. A CNN network architecture with learned
features and only one convolutional layer (C1F1.1, four filters of
size 7 × 1) led to a better average classification performance
(BA= 77.46%), compared to the best average performance of the
FFN architecture (BA= 75.57%). However, the difference was not
statistically significant (t test, p= 0.4305).

Increasing the number of filters and the filter size (C1F1.2, 16
filters of size 13 × 1; C1F1.3, 64 filters of size 21 × 1) did not
improve the classification performance, the average BA was
74.85% (C1F1.2) and 75.03% (C1F1.3), respectively. Increasing
the number of neurons in a FC layer (C1F1.4) or adding a second
FC layer (C1F2) also did not improve the classification
performance, the average BA was 73.93% (C1F1.4) and 76.00%
(C1F2), respectively.

Using architectures with two (C2F1) or three convolutional
layers (C3F.1-2, C3F2) further improved the classification
performance. The best classification performance was obtained
by using a CNN architecture with three convolutional layers and
two FC layers (C3F2), with an average BA= 81.43%.

LSTMs. The classification performance using LSTMs was
inferior than using the other classification models. The average
BA of LSTMs ranged from 66.93 to 69.04%. The highest average
classification accuracy was obtained using one LSTM layer and
two FC layers, L1F2 (average BA= 69.04%). Adding an
additional LSTM layer and increasing the number of LSTM
neurons did not improve the classification accuracy (average
BA= 68.54%).

Model comparison. Comparison of the best classification
models of the four network architectures are shown in Fig. 5.
The CNN with learned features led to the highest average
classification accuracy of 81.43% (CI= [78.00% 84.86%]). It
outperformed the SVM (76.15%, CI= [72.00% 80.30%]) and the
FFN (75.57%, CI= [72.65% 78.49%]) with manually defined
features. The LSTM with learned features led to the worst
classification performance (69.04%, CI= [65.94% 72.13%]).

Discussion
In the current study, we carried out a proof-of-concept evaluation
and explored the feasibility of using a pressure sensing device to
track and classify age-specific infant general movement patterns.
We adopted an existing pre-annotated dataset from a typically
developing infant cohort16 and examined whether a pressure data
could be used to differentiate between typical movement patterns
during the “fidgety age period” and the ones during the “pre-fidgety
period”. With the current pressure mat approach, and the CNN
architectures, the highest average classification accuracy achieved
was 81%, with 86% sensitivity and 76% specificity for classifying
presence vs. absence of the fidgety movements (FM+ vs. FM−).

We demonstrated that simple classification models such as
SVMs or feed-forward network architectures (FFN) with manu-
ally defined statistical features can reach a moderate classification
accuracy (up to 76%). With the CNN architectures that allow for
learning relevant features instead of predefining them, a higher
classification accuracy (up to 81%) was achieved. The lowest
accuracy was obtained using the long short-term memory
(LSTM) network (69%).

While pressure sensitive devices have been used to evaluate
infant sleep-wake behaviours, gross motor patterns, and postural
control40–50, they have rarely been used to classify infant general
movements51. As such, at the moment, we can only compare the
performance of the pressure mat to that of the vision-based sensors.
We are aware that a direct comparison is not possible, since dif-
ferent data sets were used across different studies9,11. However,
both the pressure mat technique and the vision-based methods are
non-intrusive sensing approaches, which are conformable to the
GMA guidelines27. In studies that attempted to distinguish FM+
versus FM−, the classification performance with the current
pressure sensing mat seemed to be slightly lower than the perfor-
mances based on RGB or RGB-D videos (see Table 2). The first
possible reason for the lower performance might be that the mat
used in this study was not specifically configurated to capture infant
motion. As technology advances continuously, more sensitive and
suitable pressure sensing devices for infant motion tracking may
improve the performance of the pressure-based classification.
Second, the lower performance may be partially explained by the
fact that the pressure sensing mat only measures motion of some
body parts as compared to motion data obtained from full-body
tracking. Infants during “active-wakefulness”27 frequently lift their
legs and arms above the lying surface2, here, the pressure mat. The
motions of the lifted extremities can therefore not be captured
directly but are indirectly translated through the changing force
distribution patterns of the body parts (e.g., head, shoulder, back,
and hips) that are in contact with the mat. This may partly explain
the lower classification performance of the pressure mat in the
current study compared to our previous study using the same
dataset but analysing full-body skeleton data16. Third, for this
proof-of-concept study, we only randomly sampled a fraction of
the available data of the entire data pool. The performance of the
algorithm may be improved if a greater amount of data would be
included in future studies. Adopting an existing expert-annotated
dataset, the performance of the pressure mat was currently based
on rather short, 5 s long snippets. Using longer recordings for the
machine learning procedures in the future might also improve the
classification accuracy of the pressure sensing devices. Finally, one
could also explore other CNN architectures such as temporal
convolutional networks with residual connections which may
improve the accuracy even further58.

Importantly, data used in the current study originated from a
healthy, typically developing cohort. The absence of fidgety

Table 2 Comparison of classification performance of different methods for recognition of fidgety movements.

Data Classification/
Recognition

Classification performance measure

Sens. (%) Spec. (%) Balanced accuracy (%) Accuracy (%)

Kulvicius et al., current study Pressure sensing mat FM+ vs. FM− 86 76 81
Reich et al., 202116 RGB video FM+ vs. FM− 88 88 88
McCay et al., 202117 RGB-D videoa FM+ vs. FM− 100 100 100
Tsuji et al., 202018 RGB video FM recognition 85
Machireddy et al., 201768 RGB video FM recognition 84
Adde et al., 201369 RGB video FM recognition 89 79 84
Adde et al., 200970 RGB video FM+ vs. FM− 90 80 85

aSynthetic MINI-RGBD dataset generated from RGB-D videos71.
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movements (FM−) in this dataset reflects normal, age-typical
motor patterns, i.e., the writhing movements27, which are known
to have significantly different quality and motion appearance
from the pathological absence of FMs3. The pathological absence-
of-fidgety patterns of infants with neurological deficits, e.g., with
monotonous, jerky, or cramped-synchronised movement
characters27, when compared to normal smooth and fluent FMs
of the same aged infants, could be easier to detect by the pressure
mat and result in higher classification performance. Our current
dataset however does not allow for testing this hypothesis. Rather,
following a classic physiology-prior-pathology paradigm59, with
the data obtained from a healthy infant cohort, the present study
was intended to examine the performance of the pressure sensing
mat on classifying typical general movements, which are known
to physiologically change their patterns during the first months of
development, i.e., from the writhing to the fidgety pattern27. We
would like to emphasise that the variabilities of the typical general
movements are enormous, also within the same age period (e.g.,
the “fidgety age”), and shall not be underestimated60. Without a
high-fidelity reflection and discernment of typical developmental
patterns, attempts of classifying altered development may prove
void. An AI-driven approach aiming at future clinical application
therefore needs to investigate both typical and atypical patterns to
warrant sensitivity as well as specificity.

As has been discussed in the recent reviews on AI-based GMA
approaches, the objectives and the applied datasets of the existing
studies are dissimilar from each other, which makes direct
comparison of diverse approaches difficult9–11. Different labs
each work on a separate set of data, often limited in sample size. It
was often not reported in the published works, how the respective
dataset was annotated and validated11, although valid annotations
(e.g., FM+ vs. FM−) are the key for ML classification. Until now,
no approved public-accessible large datasets are available in the
field of researching general movements, although such dataset
would be the basis for developing and comparing automated
GMA solutions. This urgently calls for pooling and merging high-
quality data across sites, which is challenging, partly due to the
complex participants’ confidentiality and privacy concerns52,61.
With the pressure sensing data, participants’ privacy protection
can be easily achieved since no personal identifiable data is
necessary for the analyses. As a comparison, with vision-based
approaches, i.e., using cameras, which are predominantly used in
the field9–11, facial images, being one of the most sensitive per-
sonal identifiers, are commonly present in the datasets. Data de-
identification and privacy protection can only be done through
additional laborious technical manipulations52.

Not to be forgotten, any clinical tool, if intended for broad
application, has to be easy-to-use. Compared to other types of
motion sensors (Table 3), data acquisition through pressure mats is
non-intrusive, and requires minimum cost and setup efforts, which

can be readily integrated into busy clinical routines almost any-
where. Importantly, the pressure sensing mat provides motion
information in form of dynamic force changes in 2D-space. This is
different from, and can provide a unique add-up to the information
obtained through video data (usually body pose) or inertial motion
sensors (acceleration and/or angular velocity)28. In case of cameras,
additional algorithms need to be utilised to extract pose and/or
motion information14–16,62, whereas accelerometers inertial
motion units (IMUs), or a pressure sensing mat provide motion
information directly20,23,24,46,51. Although single RGB cameras are
easy to install and operate (no synchronisation nor calibration
required), they only provide 2D pose/motion information as
compared to RGB-D cameras or IMU sensors. Both single RGB
and RGB-D cameras frequently suffer from occlusions (either
caused by the setup, e.g., in an incubator, or by the infant’s own
movements) and may lose track of some body parts from time to
time. This limitation may be overcome by using multiple
cameras26,63. However, such a setup becomes notably more com-
plicated due to the necessity for synchronisation and calibration of
the cameras, and also due to the amount of information generated,
which needs to be processed to obtain 3D body pose and/or motion
information64,65. Considering the strengths and limitations of
different sensors9–12,66, pressure sensing mat data can augment
other sensor modalities, especially single RGB or RGB-D camera
setups to improve infant motion analysis.

Our results demonstrate that the currently applied pressure
mat, although not specifically designed for tracking infant
movements, delivered promising classification results in distin-
guishing typical fidgety from pre-fidgety movements. Although
the classification performance of the pressure mat, in common
with that of the most existent automated GMA approaches, is still
inferior than the performance of human GMA experts10–12,66, the
current study sets out an initial step for a line of non-intrusive AI-
driven GMA research beyond using vision-based sensors (please
also see below for comparison of different sensing modalities). It
shall motivate further efforts to examine and improve the per-
formance of the pressure sensors with extended datasets
encompassing different patterns of general movements.
Further studies shall evaluate if pressure sensors can reliably
distinguish general movement patterns between: (a) normal pre-
fidgety movements, i.e., age-typical writhing movement patterns
before FMs emerge; (b) abnormal pre-fidgety movements, e.-
g., poor-repertoire or cramp-synchronised patterns27; (c) normal
movement patterns during the fidgety age period; and
(d) abnormal movement patterns during the fidgety age period,
e.g., absent or abnormal FMs27. Our present study tested the
classification between (a) and (c). This, from both the clinical and
technological perspectives, is not comparable to the classification
between (c) and (d), which was the focus of most studies listed in
Table 2.

Table 3 Comparison of different sensors for acquisition of pose or motion information.

Single RGB camera Single RGB-D
camera

Multiple RGB
cameras

Multiple accelerometers/
IMUs

Pressure sensing
mat

Sensor type External
(non-intrusive)

External
(non-intrusive)

External
(non-intrusive)

Wearable (on-body) External
(non-intrusive)

Obtained pose/motion
information

2D pose 3D pose 3D pose 3D acceleration and 3D
angular velocity

2D position and
pressure

Extraction of pose/motion
information

Indirect Indirect Indirect Direct Direct

Synchronisation required NO NO YES YES NO
Calibration required NO NO YES YES NO
Data privacy issue YES YES YES NO NO
Applicability and handling in
clinical settings

Easy Easy Complicated Complicated Easy
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It has to be pointed out that the GMA is undoubtedly far beyond
only identifying the presence or absence of the FMs3,11,67, although
the FM pattern is of high diagnostic value60 and has hence gained
extensive attention, including in the field of developing automated
GMA10. Naturally, motion information captured by the pressure
sensing devices, like by many other sensors, can tell us much more
than whether a specific motility (e.g., the FMs) exists29,32,35,43,47.
Future studies shall also investigate the potential of the pressure
sensing mat for detecting other classes of motion features, within or
beyond general movements, that are of clinical significance.

In short, pressure sensing solutions, by nature pseudonymised,
provide a promising venue for realising easy and large-scale
multi-centre data acquisition and sharing. This, if done, will
enable synergy to develop, evaluate, and improve infant motion-
tracking technologies that may ultimately scale up the imple-
mentation of AI-driven GMA.

Data availability
The data used for the classification experiments is publicly available at Zenodo: https://
doi.org/10.5281/zenodo.810409757. The source data underlying results presented in Fig. 5
and Supplementary Table 2 is available in the Supplementary Data. All other data are
available from the corresponding author on reasonable request.

Code availability
The code is publicly available at Zenodo: https://doi.org/10.5281/zenodo.810409757.
Python scripts were tested on Linux OS with TensorFlow 2.10.1, Keras 2.10.0, Python
3.7.6, and Numpy 1.21.6. Matlab script was tested on Windows OS and MATLAB
R2019b.
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