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Text-based predictions of COVID-19 diagnosis
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Abstract

Background There is a prevailing view that humans’ capacity to use language to characterize

sensations like odors or tastes is poor, providing an unreliable source of information.

Methods Here, we developed a machine learning method based on Natural Language Pro-

cessing (NLP) using Large Language Models (LLM) to predict COVID-19 diagnosis solely

based on text descriptions of acute changes in chemosensation, i.e., smell, taste and che-

mesthesis, caused by the disease. The dataset of more than 1500 subjects was obtained from

survey responses early in the COVID-19 pandemic, in Spring 2020.

Results When predicting COVID-19 diagnosis, our NLP model performs comparably (AUC

ROC ~ 0.65) to models based on self-reported changes in function collected via quantitative

rating scales. Further, our NLP model could attribute importance of words when performing

the prediction; sentiment and descriptive words such as “smell”, “taste”, “sense”, had strong

contributions to the predictions. In addition, adjectives describing specific tastes or smells

such as “salty”, “sweet”, “spicy”, and “sour” also contributed considerably to predictions.

Conclusions Our results show that the description of perceptual symptoms caused by a viral

infection can be used to fine-tune an LLM model to correctly predict and interpret the

diagnostic status of a subject. In the future, similar models may have utility for patient

verbatims from online health portals or electronic health records.
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Plain language summary
Early in the COVID-19 pandemic,

people who were infected with SARS-

CoV-2 reported changes in smell and

taste. To better study these symp-

toms of SARS-CoV-2 infections and

potentially use them to identify

infected patients, a survey was

undertaken in various countries ask-

ing people about their COVID-19

symptoms. One part of the ques-

tionnaire asked people to describe

the changes in smell and taste they

were experiencing. We developed a

computational program that could

use these responses to correctly

distinguish people that had tested

positive for SARS-CoV-2 infection

from people without SARS-CoV-2

infection. This approach could allow

rapid identification of people infected

with SARS-CoV-2 from descriptions

of their sensory symptoms and be

adapted to identify people infected

with other viruses in the future.
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Recent advances in natural language processing (NLP)
models have had a clear impact on the way that computers
understand, interpret, and generate human language,

opening up new possibilities for the use of NLP in a wide range of
applications, including healthcare1–3. Although NLP models are
not currently part of routine clinical practice, they could represent
helpful cost-effective, and easy-to-use first-aid tools to support
clinicians in decision-making4, especially when the symptoms
reported are unexpected. A clear example of a situation in which
the inclusion of NLP models would have helped clinical practice
is represented by the coronavirus disease-19 (COVID-19). Several
anecdotal reports in early March 2020 suggested new loss of smell
and taste as one of the core symptoms of COVID-19. Since then,
several studies confirmed that altered chemosensation in all three
modalities involved in flavor perception, namely olfaction, gus-
tation, and chemesthesis5–9, has been experienced by the majority
of individuals who contracted COVID-1910,11. Although direct
smell testing provides better estimates of the prevalence of smell
loss in the population10, the vast majority of healthcare providers
did not have and still does not have tools at hand to test for loss of
smell and taste or chemesthesis in a standardized way12. Never-
theless, they could reliably and invariantly access verbal reports of
the patients’ perceptual experiences. Chemosensory self-reports
have long-been considered unreliable sources of information
from a research and clinical perspectives13, yet early in the pan-
demic, changes in smell11 and the analysis of text-based sources
was able to pre-date the spread of COVID-19. For instance, self-
reports of smell/taste changes were closely associated with hos-
pital overload and they could represent earlier markers of the
spread of infection of SARS-CoV-2 than the ones implemented
by government authorities14. Additionally, during the initial
pandemic waves, negative reviews of Yankee Candles have con-
sistently peaked, indicating that a large group of individuals may
have been unaware of their smell loss, but were able to report that
products did not have the expected smell15. Even as the acute
novel phase of the pandemic subsides, the impact of COVID-19
on those who lost their sense of smell is long-lasting and ~5–10%
of such patients present persistent chemosensory loss16–18.

Early work indicated quantitative self-reports of chemosensory
function based on recall19,20 or direct test with household items9

can be used to predict COVID-1919, yet they are not commonly
used in healthcare. Thus, we were interested in exploring an
alternative method that would match data collection with the
resources available across healthcare contexts, namely the
straightforward collection of written comments describing
changes in perception in participants’ own words when asked
about their smell and taste. Further, this approach might reveal
characteristics of underlying perceptual changes caused by the
disease that would evade a standard chemosensory test, since the
relationship between COVID-19 and human language descrip-
tions of perceptual changes has been largely underexplored.

Here, we present a case study using a machine learning approach
to detect COVID-19 using text describing perceptual changes
related to chemosensory changes during COVID-19. Chemosen-
sory losses often manifest via changes in flavor perception, as flavor
arises from different sensory modalities: smell, taste and che-
mesthesis. The technical definition of taste is much narrower than
common usage, at least in English, meaning that taste and loss of
smell are often conflated21,22. We hypothesized that linguistic
features manifesting from chemosensory changes, broadly defined,
would allow us to develop a novel framework to classify individuals
with and without COVID-19 only using responses to a crowd-
sourced survey on smell and taste abilities. We framed this task as a
sentiment analysis problem, which looks at the emotion expressed
in a text implementing a higher-level classifier that divides the
spectrum of emotions into positive, negative, and neutral23–25, and

applied cutting-edge Natural Language Processing (NLP) models.
Indeed, recent evolutions of Large LanguageModels (LLMs)26 have
led to modular algorithms allowing the fine-tuning adaptation of
pre-trained models on custom data. Receiver Operating Char-
acteristic (ROC) curves are widely used in both psychophysics and
medical diagnostics for binary classification; here we used the Area
Under Curve of the ROC (AUC-ROC) as the evaluation metric for
such a binary classification problem. To further investigate the
hidden relationship between human language and COVID-19
symptoms, we also used a game-theory method (SHAP) to analyze
the importance of each word in determining COVID-19 status.
Following this approach, we were able to differentiate COVID-19
positive and negative subjects with an AUC-ROC of 0.65 while also
finding that sentiment-related and chemosensory describing words
are the most important to distinguish subjects that had the disease.

Methods
Data collection. In this analysis, we used a crowdsourced dataset
collected between April 7th and July 2nd 2020 by the Global
Consortium for Chemosensory Research (GCCR). This dataset
consists of questionnaire surveys in 30+ languages, including
questions related to the perception of smell, taste, and chemesthesis
before, during and after COVID-19. It was approved by the IRB of
Pennsylvania State University. Participants gave informed consent
to participate. As authors were part of the GCCR no license was
needed to access the data and a secondary IRB approval was
waived. Participants were categorized as being either positive or
negative, based on self-report of lab-based test results of COVID-
19. In our NLP analysis, we focused on questionnaire responses in
English from 1653 participants. The majority of the participants
were COVID-19 positive (N= 1432, 86.6%), and 13.4% of the
participants were COVID-19 negative (N= 221). The COVID-19
negative participants were further classified into option 5 class
(N= 125) and option 6 class (N= 96), depending on whether or
not they had respiratory symptoms. Given some participants did
not provide any text descriptions about their perception ability
change, we excluded them in this study and ended up with a total of
1232 participants (positive N= 1085, negative option 5N= 89 and
option 6N= 58). We used the responses to four questions as the
input: (1) Comment—changes in smell, (2) Comment—changes in
taste, (3) Comment—changes in chemesthesis, and (4) Comment
—Anything else smell, taste, flavor.

Cross-validation experiments. To build machine learning models
and systematically evaluate the predictive performance of our
method, we partitioned the 1232 non-missing participants into the
training, validating and testing subsets. We performed tenfold
cross-validation experiments. Specifically, in each fold, we used
90% of the data to train the model and select hyperparameters
through validation. Then the remaining 10% of the data were held
out as an independent testing set to evaluate performance. The
average performance from tenfold cross-validation experiments
was calculated to represent the overall predictive performance of
our method. We designed two scenarios: (1) using option 5 class
participants as negative cases against positive cases and (2) using
option 6 class participants as negative cases against positive cases.
The performances of these two scenarios were calculated and
reported. Since the dataset is highly unbalanced with 86.6%
COVID-19 positive 13.4% COVID-19 negative participants, we
randomly oversampled the negative participants so that the ratio of
positive and negative samples became equal (1:1) in model training.
Since the dataset is highly unbalanced with 86.6% COVID-19
positive 13.4% COVID-19 negative participants, we randomly
oversampled the negative participants so that the ratio of positive
and negative samples became equal (1:1) in model training.
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NLP model. We developed natural language processing models to
address the text-based predictions of COVID-19. Specifically, we
leveraged the state-of-the-art Bidirectional Encoder Representa-
tions from Transformers (BERT) framework27, RoBERTa and
DistilBERT28 a light-weighted and faster version. The word
tokenizer was pre-trained and used in preprocessing the text
input. Then we fine-tuned the three models, BERT, RoBERTa and
DistilBERT on the GCCR dataset. The deep NLP models were
implemented using “transformers” (4.21.0) in Python.

Performance evaluation. We used the area under the receiver
operating characteristic curve (AUC-ROC) to comprehensively
evaluate the predictive performance of this binary classification
task. Compared to other cutoff-dependent metrics (i.e., accuracy,
sensitivity, and false-positive rate), AUC-ROC is independent of
the cutoff selection during classification and systematically con-
siders the performance of each cutoff value. The baseline AUC-
ROC of random prediction is 0.5.

Statistical tests. To evaluate the statistical differences of AUC-
ROC values among different models, we performed the Wilcoxon
signed-rank test. Specifically, the AUC-ROC values from tenfold
cross-validation experiments were calculated from both our NLP
model and the baseline. Then we ran the one-sided paired Wil-
coxon test using R (4.1.3).

Statistics and reproducibility. To evaluate the statistical differ-
ences of AUC-ROC values among different models, we
performed the Wilcoxon signed-rank test. Specifically, the AUC-
ROC values from tenfold cross-validation experiments were cal-
culated from both our NLP model and the baseline. Then we ran
the one-sided paired Wilcoxon test using R (4.1.3).

SHAP analysis. To investigate the contribution of each word in
determining the COVID-19 diagnosis, we performed the SHAP
analysis of the trained DistilBERT models. For each sample in the
testing set during tenfold cross-validation experiments, we calcu-
lated the SHAP value of each word in the input text. Then the
absolute SHAP values of all words in all the testing samples were
collected and summarized. Based on the occurrence of words, we
focused on the high-frequency words that occurred in at least 10%
of all testing samples. Meanwhile, the pronouns (i.e., “I”) and
articles (i.e., “the”) were excluded from the SHAP analysis owing to
their neutral sentiment. We performed this analysis for both option
5 class and option 6 class models, where the results were similar.
The SHAP analysis was performed using “shap” (0.39.0) in Python.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Overview of experimental design. Here, we developed a machine
learning method to detect COVID-19 based on text descriptions of
changes in chemosensation (Fig. 1A). We leveraged a large-scale
dataset from a survey organized by the GCCR with responses col-
lected between April and July, 2020. It consists of a crowdsourced
questionnaire in participants with respiratory diseases and illnesses.
The surveyed symptoms include self-reported nasal congestion and
changes in smell, taste, and chemesthesis perceptual ability during or
before the respiratory illness. The GCCR questionnaire contains
quantitative questions that require binary or scaled responses, as well
as qualitative questions such as the responses to four questions we
used as input for the present analysis: (1) Comment—changes in
smell, (2) Comment—changes in taste, (3) Comment—changes in

chemesthesis, and (4) Comment—Anything else smell, taste, flavor
(see Fig. 1B, C). Responses were segregated based on the self-
reported COVID-19 status by participants.

Surprisingly, 1232 out of 1635 participants responded to the
four questions, sometimes extensively describing their chemo-
sensory symptoms. We also noted the existence of a clear overlap
in the description of chemosensory symptoms between COVID-
19 positive and negative cases which may derive from the fact that
upper respiratory tract infections caused by common colds and
flu have similar symptoms and may also compromise olfaction,
albeit only temporarily29. Based on this data we developed an
NLP deep learning model that accepts the text as input and
predicts COVID-19 status. We built a binary classification NLP
model to distinguish COVID-19 positive participants from
COVID-19 negative participants. The ground truth is based on
the outcomes of COVID-19 lab tests, where participants were
classified as either COVID-19 positive (label= 1) or COVID
negative (label= 0). The predictive performance was evaluated by
the area under receiver operating characteristic curve (AUC-
ROC), a standard metric for binary classification problems. To
understand the feature importance of each word in detecting
COVID-19, we performed SHAP analysis and revealed words
with high contributions and frequencies.

Machine learning identifies COVID-19 positive participants
based on text analysis. The subset of the GCCR questionnaire
responses used for the analysis initially consisted of 1653 english-
speaking participants. Based on responses to Question 8—“Have
you been diagnosed with COVID-19?”— the COVID-19 positive
Laboratory-tested group included those that responded with either
option 2 (“Yes—diagnosed with viral swab”) or option 3 (“Yes—
diagnosed with another lab test”) and the COVID-19 negative−
Lab-tested group responded with option 5 (“No, I had a negative
test, but I have symptoms) or responded with option 6 (“No—I do
not have any symptoms“). This dataset is highly unbalanced, since
the majority of participants are COVID-19 positive (N= 1432,
86.6%) and only a small fraction are COVID-19 negative (N= 221,
13.4%). The negative participants were further sub-grouped into
individuals with (N= 125, 7.6%, option 5) or without (N= 96,
5.8%, option 6) obvious respiratory symptoms, further complicat-
ing the problem. The final dataset that contained responses to the 4
comments relative to chemosensory perception consisted of 1232
participants, of which N= 1085 received a positive test result and
147 received a negative test result. This latter group was again
further divided in two subgroups, depending on whether they had
(option 5) or they did not have (option 6) respiratory symptoms.
Two classification NLP models were developed based on these two
subgroups against positive participants.

For the LLM we used a distilled version of the Bidirectional
Encoder Representations from Transformers (BERT) model27,
DistilBERT28, which is lighter and faster (Fig. 2A). Indeed, BERT
was trained on 3.3B words and has 110M parameters. The
DistilBERT model and word tokenizer are pre-trained, so we fine-
tuned this pre-trained model using the GCCR dataset. To evaluate
the predictive performance of our model, we performed a tenfold
cross-validation experiment (see Methods - Cross Validation). The
baseline of random prediction of an AUC-ROC analysis is 0.5 while
the average AUC-ROC for distinguishing positive cases from
negative cases without respiratory symptoms (option 6 class in the
survey; see Supplementary Information) is 0.65, as shown in the
blue boxplot in Fig. 2B, indicating that the model was able to
extract information to generate a prediction above random. As
expected, the average AUC-ROC for identifying negative cases with
respiratory symptoms (option 5 class) is 0.62 (the orange boxplot in
Fig. 2B), which is slightly lower than option 6 class with no
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respiratory symptoms. For both subjects without symptoms, option
6 class, and subjects with respiratory symptoms, option 5 class, the
average and minimum AUC-ROCs from tenfold cross validations
are higher than a random baseline (Supplementary Data). The
random baseline AUC-ROCs are calculated by shuffling labels of
testing samples as predictions, conserving the same positive ratio of
the real data. This indicates free text descriptions of changes in
smell, taste, and chemesthesis contain information related to

COVID-19 even when similar respiratory symptoms are present in
COVID-19 positive and negative classes. In addition to DistilBERT,
we also fine-tuned BERT and RoBERTa models and evaluated their
performance (Supplementary Fig. 1 and Supplementary Data). For
option 5 class, the three models (DistilBERT, BERT, ROBERTA)
have comparable performance. For option 6 class, BERT slightly
outperformed the other two models, whereas ROBERTA had a
smaller variation in AUC values in tenfold cross validation when

Fig. 1 Schematic representation of predicting COVID-19 based on text. A COVID-19 affects the perceptual abilities of humans, including smell, taste and
chemesthesis. We studied a large dataset of 1653 participants in the Global Consortium for Chemosensory Research (GCCR). In the data described here,
all participants reported their COVID-19 lab test result and provided text answers about changes in perceptual ability during COVID-19. We then built NLP
models to analyze these text answers and distinguish COVID-19 positive from COVID-19 negative participants. The predictive performance of our method
was evaluated by the Area Under Curve of the receiver operating characteristic (AUC-ROC). To dissect the importance of each word in detecting COVID-
19, we further performed the SHAP analysis and highlighted the top contributing words to the classification. B Question relative to COVID-19 test results
and symptoms. C The four questions relative to changes in smell, taste, and chemesthesis.

Fig. 2 NLP model and predictive performance. A. The DistilBERT model used for text analysis. Input text responses were first converted into tokens by the
tokenizer. Then the relationship and interactions among tokens were learned by the transformer encoder. The final output is a single value between 0 and 1
in this binary classification task. B. The AUC-ROCs of tenfold cross-validations experiments are shown as boxplots for option 5 class and option 6 class
predictions. Horizontal lines represent medians and the mean values are labeled. The whiskers represent the maximum and minimum values, whereas the
bottom and top of boxes represent the first (25%) and third (75%) quartile.
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compared to DistilBERT. Given the small differences between
models and the lighter and faster usage of DistilBERT, we hereafter
provide further analysis using this model.

Our NLP models and DistilBERT in particular, is indeed able
to capture pertinent information to make valid predictions. For
context, analysis of the same overall dataset, using a previously
published logistic regression model19 based on 0–100 visual
analog scales changes in rating of smell yielded AUC-ROC of 0.72
(option 5 class) and 0.79 (option 6 class).

Feature importance analysis reveals key words in describing
perception changes in COVID-19. To further understand how
the NLP model established its predictions and reveal key words
used for detecting COVID-19 positive patients, we used SHAP
analysis, a popular method for explainable AI, the field of
machine learning which aims to understand and explain pre-
dictions made from “black-box” models. The SHAP (SHapley
Additive exPlanations) analysis is based on a game theory
approach that calculates the contribution of each feature in the
predictions30. SHAP approximates the complex non-linear deci-
sion boundary of the LLM by a linear model fit locally at the post-
prediction step to understand the relative importance of the
features. For each testing sample, we performed the SHAP ana-
lysis and the contributions from each word in the text descrip-
tions were summarized. SHAP serves as a useful tool to reveal
which words in the sentence led to the predicted class. We
focused on the top 10% words that occur with high frequencies in
the text responses. Specifically, the frequency of each word is
shown as a word cloud in Fig. 3A and Supplemental Fig. 2A. In
general, words related to perception as well as positive and
negative sentiments have higher frequencies, including “smell”,
“taste”, “sense”, “can”, “cannot”, “not”, “completely” and “any-
thing”. Interestingly, feature importance was lowly correlated to
word frequency (ρ < 0.11 Supplementary Data) but these senti-
ment words with higher frequencies also had stronger contribu-
tions (Fig. 3B and Supplementary Fig. 2B). In addition, adjective
words that describe chemosensory perceptions denoting changes
in taste also considerably contribute to COVID-19 positivity
predictions, such as “salty”, “sweet”, “spicy”, and “sour”. These
results are consistent with previous reports showing that changes
in chemosensory perception are closely related to COVID-1919.
Interestingly, the SHAP values for the top 10% words for the two
classification tasks, option 5 with respiratory symptoms and
option 6 no respiratory symptoms, had a Pearson correlation
~0.7, denoting the stability of the selected features across different
COVID-19 negative cohorts.

To have a numeric overview of the composition of text responses,
we calculated the number of sentences per subject, the number of
words per subject, and the number of words per sentence for both
the COVID-19 positive (option 2/3) and negative (option 5/6)
participants. The average, median, and standard deviation (SD)
values are listed in Supplementary Data and the overall density
distributions are shown in Supplementary Fig. 3. In general, COVID-
19 negative subjects without symptoms used less sentences
(5.9 sentences on average) than subjects with symptoms (6.3 sentences
on average) in describing their perception changes, yet the difference
is relatively small. Intriguingly, COVID-19 positive subjects also used
in average 6.3 sentences just like COVID-19 negative option
5 subjects in the text response, rendering the predictive task difficult.
As we expected, the average numbers of words per subject (44.7) and
per sentence (10.0) are smaller for subjects without symptoms
compared to the other categories. We also find that COVID-19
negative subjects with symptoms used a slightly higher number of
words (58.6) than COVID-19 positive subjects (55.8).

Case studies of words used to classify COVID-19 positive and
negative participants. To further understand—at the individual
level—how machine learning models capture key words and
expressions to determine COVID-19 positivity, we dissected the
text responses from participants with positive (red) and negative
(blue) COVID-19 test results, as shown in Fig. 4 (option 6 class)
and Supplemental Fig. 4 (option 5 class). Specifically, for each
participant, we calculated the absolute SHAP value from each
word in the text describing perceptual changes (Supplementary
Data). The SHAP value is shown as a bar plot under each word.
Words with darker colors correspond to their stronger con-
tributions in predicting COVID-19. The first two examples in
Fig. 2 are COVID-19 positives and the confidence prediction
scores from our model are 0.974 and 0.895 respectively (Fig. 4A,
B). In this case, general comments regarding loss of taste or smell
moderately indicate COVID-19 positivity.

Ideally, these text descriptions should be strong indicators or
flags for COVID-19 positive results. However, COVID-19
negative participants may also have respiratory symptoms (due
to rhinoviruses or other respiratory viruses), largely complicating
the task. For example, two COVID-19 negative participants
mentioned that “cannot taste anything” and “my lack of smell has
been consistent” (Supplementary Fig. 5), rendering the classifica-
tion task substantially difficult and leading to relatively high
prediction scores (0.390 and 0.522) for negative cases.

Notably, we find that comments describing specific sensations
have strong contributions, such as “carbonated drinks I cannot
feel the tingling at all” and “I can slightly taste salt on food like

Fig. 3 Feature importance analysis of key words in predicting COVID-19. A The frequency of highly occurring words is shown as a word cloud for the
option 6 class (no respiratory symptoms) model. The occurrence frequency is scaled to the size of the word. B The contributions of highly occurring words
in predicting COVID-19 is shown as a word cloud for the option 6 class model. The feature importance, or absolute SHAP value, is scaled to the size of the
word.
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crackers” relative to chemesthesis and taste, which would not
typically be affected with a classic cold virus. Finally, we analyzed
two COVID-19 negative examples with prediction scores close to
zero, 0.018 and 0.035. These two cases clearly mentioned that
“haven’t noticed anything specific” and “no changes in smell”,
which contributed to the predictions.

Discussion
Here, we found DistilBERT, an LLM fine-tuned using text
descriptions of changes in chemosensation, performs well at
differentiating COVID-19 positive subjects from COVID-19
negative subjects without respiratory symptoms (AUC-ROC=
0.65) and subjects with respiratory symptoms but without

Fig. 4 Feature importance analysis of input text responses in predicting COVID-19 positive and negative examples. The height of the bar plot under
each word as well as the color transparency correspond to the absolute SHAP value in predicting COVID-19. The SHAP values were calculated from the
option 6 class model on the testing dataset. A, B The text responses of two COVID-19 positive examples are shown in red. C, D The text responses of two
COVID-19 negative examples are shown in blue.
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COVID-19 (AUC-ROC= 0.62). This is, to our knowledge, the
first time that an LLM has been implemented using descriptions
of changes in chemosensory perceptions to specifically predict the
diagnostic status of a disease, in our case, COVID-19. Although
the performance of the model is not ideal, it is thought that for
complex clinical settings31,32, such performance is sufficient to
obtain clinical relevance from including chemosensory informa-
tion in the diagnostic process.

Unlike other models trained using ratings obtained from long
surveys, specific tasks such as smelling or tasting a specific
object9,19, our LLM classifier used free text descriptions of
changes in chemosensory sensations. Importantly, although the
NLP-based model underperformed the ratings model with an
AUC-ROC of 0.62 versus 0.72 for the ratings (option 5 class,
subjects with symptoms) and 0.65 vs 0.79 (option 6 class, sub-
jects without symptoms), its performance was comparable.
While it is now clear that COVID-19 affects chemosensory
perception, the difficulty in using text-based predictions stems in
part from the ambiguous descriptions of symptoms, which is
rooted in the inherent openness of such responses (see Fig. 4 and
Supplementary Figs. 2, 3). Ambiguous description of symptoms
is probably the principal obstacle to clearly distinguish between
COVID-19 positive and negative cases and may derive from the
fact that upper respiratory tract infections caused by common
colds and flu have similar symptoms and may also compromise
olfaction, albeit only temporarily29. This symptom overlap has
also been shown to affect chemosensory ability ratings, which led
COVID-19 negative participants reporting significantly lower
chemosensory abilities after then before their non-COVID illness
as compared to pre-illness8.

Apart from the simplicity of the unstructured data collection,
the LLM has the advantage of allowing the analysis and selection
of features that differentiate and help define characteristics of
COVID-19 negative and positive subjects. Notably, the top
selected features were not the most frequently used words and
consisted of words such as “taste” or “smell” or sentiment-related
and chemosensory describing words such as “can”, “cannot”,
“anything”, “completely” and “salty”, “sweet”, “spicy”, “sour”,
“mint”, “bitter”.

The widespread view is that humans’ capacity to characterize
perceptions using language is poor and hence an unreliable
source of information33–37. We think that our results should at
least moderate this assumption as an LLM can be used to effec-
tively classify and interpret a disease whose main symptoms are
chemosensorial, using text descriptions of changes in chemo-
sensory perceptions. This follows up previous work where we had
shown that the olfactory and linguistic space have enough simi-
larity that NLP tools can be used to predict a large set of olfactory
descriptors of pure molecules38. We propose that similar
approaches can be used to characterize and diagnose other dis-
eases where changes in chemosensation are known to occur such
as in neuropsychiatric and neurodegenerative diseases39,40.

Data availability
Data reported here were collected from the Global Consortium for Chemosensory
Research (GCCR) core questionnaire (Appendix 1 and https://gcchemosensr.org; Parma,
Ohla, et al. 2020). The numerical data underlying Figs. 2 and 4 are available
in Supplementary Data.

Code availability
The processed data code are available at: https://github.com/Hongyang449/covid19_
perception/tree/main/data The code of this study is available in the GitHub repository:
https://github.com/Hongyang449/covid19_perception and also in a public repository41
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