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Abstract

Background Point-of-care diagnostic devices, such as lateral-flow assays, are becoming

widely used by the public. However, efforts to ensure correct assay operation and result

interpretation rely on hardware that cannot be easily scaled or image processing approaches

requiring large training datasets, necessitating large numbers of tests and expert labeling with

validated specimens for every new test kit format.

Methods We developed a software architecture called AutoAdapt POC that integrates

automated membrane extraction, self-supervised learning, and few-shot learning to automate

the interpretation of POC diagnostic tests using smartphone cameras in a scalable manner. A

base model pre-trained on a single LFA kit is adapted to five different COVID-19 tests (three

antigen, two antibody) using just 20 labeled images.

Results Here we show AutoAdapt POC to yield 99% to 100% accuracy over 726 tests (350

positive, 376 negative). In a COVID-19 drive-through study with 74 untrained users self-

testing, 98% found image collection easy, and the rapidly adapted models achieved classi-

fication accuracies of 100% on both COVID-19 antigen and antibody test kits. Compared with

traditional visual interpretation on 105 test kit results, the algorithm correctly identified 100%

of images; without a false negative as interpreted by experts. Finally, compared to a tradi-

tional convolutional neural network trained on an HIV test kit, the algorithm showed high

accuracy while requiring only 1/50th of the training images.

Conclusions The study demonstrates how rapid domain adaptation in machine learning can

provide quality assurance, linkage to care, and public health tracking for untrained users

across diverse POC diagnostic tests.
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Plain language summary
It can be difficult to correctly inter-

pret the results of rapid diagnostic

tests that give a visual readout, such

as COVID rapid tests. We developed

a computational algorithm to inter-

pret rapid test results using an image

taken by a smartphone camera. This

algorithm can easily be adapted for

use on results from different test kits.

The algorithm was accurate at inter-

preting results obtained by members

of the public using various COVID

rapid tests and diagnostic tests with

similar outputs used for other infec-

tions. The use of this algorithm

should enable accurate interpretation

of rapid diagnostic tests by members

of the public and hence enable

improved medical care.
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A large and diverse number of POC diagnostics, including
lateral-flow assays (LFAs), are becoming widely used by
the public and endorsed by policymakers, but to ensure

patient safety and enable public health monitoring, assurance of
correct assay operation and interpretation of results—two stan-
dardized quality-controlled processes for diagnostic tests in a
centralized laboratory—are critical but not currently performed
in decentralized settings. Specifically, errors in these steps hinder
their deployment in primary care clinics and homes1–5 in chal-
lenging cases, especially those involving assays with absent con-
trol bands, failure to recognize faint bands, or inability to identify
control vs. test bands6,7. With the introduction of SARS-CoV-2
antigen LFAs, these errors with test interpretation have been
confirmed with community health workers8, with considerable
uncertainties about how to perform and interpret different rapid
tests reported widely by the general public9,10, and the FDA
requiring rapid test makers to “facilitate results reporting by both
the healthcare provider and the individual”11,12. A recent study
demonstrated low interpretation accuracies with untrained
workers necessitating modified instruction guides13. With the
popularity of LFAs rising among the public14,15, user errors that
jeopardize interpretation of results, as well as incorrect and
unreliable public health monitoring (e.g., based on self-reporting
of results16–19), could become increasingly widespread in the
coming age of digital health20–23.

Mobile apps that automatically interpret results from point-of-
care diagnostic tests present an opportunity to address these
challenges2,24–26, with high acceptability among healthcare
workers27 for HIV and sexually transmitted infections28,29, but
current approaches are not scalable. Specifically, current
approaches require either images to be collected by custom
smartphone hardware attachments5,30–38, complex custom
calibrations39,40, or are designed to work retrospectively with a
large library of pre-collected images41,42/expert-labeled training
images ranging in the hundreds28,29,43–45 to thousands8,46 spe-
cific to a test kit format (Supplementary Table 1 and Supple-
mentary Table 2 show side-by-side comparisons of different ML
approaches for analyzing diagnostic images and smartphone-
based diagnostic tests, respectively), including SARS-CoV-2 rapid
tests46. Without an adequate number of images for training, these
algorithms may fail to accurately interpret the signal from test kits
due to the large domain gap caused by different kit designs and
environmental factors (e.g., lighting and angle of image capture).
These requirements necessitate, in the midst of a fast-moving
pandemic, the procurement of large numbers of rapid tests and
validated clinical specimens and the availability of experts for
labeling, for every new test kit format.

Here, we demonstrate an approach that can rapidly adapt to
interpreting new POC diagnostic tests (Fig. 1a), such that large,
diverse, and dynamic sets of rapid tests can be interpreted
accurately without extensive procurement of specific test kits,
validated specimens, and experts for labeling. This approach,
called AutoAdapt POC, achieves the goal of rapid adaptation with
the development of three components, automated membrane
extraction, self-supervised learning specifically designed to pre-
serve image edges that are critical for recognizing faint test kit
images, and few-shot learning to adapt a pre-trained model to
different test kits. Few-shot learning has been employed in
applications ranging from computer vision to robotics47–49 to
adapt a classifier originally trained on data from different
domains50–54 with only a few labeled images in the new target
domain. (Domain adaptation55,56 using adversarial learning57 still
requires a large number of unlabeled images from the target
domain.) In AutoAdapt POC, we exploit the domain-invariant
patterns within the edge area of bands. We optimize the feature
extraction module so that the extracted feature can be used to

reconstruct the edge image with minimal deviation from the
original edge image. Preserving the edge patterns in an image is
important since distinct edge patterns carry unique attributes.
With our feature extractor made sensitive to edge patterns, it can
recognize faint test kit images and be robust to the domain gap,
removing the need for complex pre-processing calibration (such
as white balance or shadow removal). Since the edge-filtered
image can be produced by automatic edge detection tools, they
can be used to train the model in a self-supervised way without
needing a time-consuming process to collect manual labels. Note
that compared to conventional approaches that use edge detectors
(e.g., Sobel58, SIFT39,59, or canny edge detector40,60) to directly
extract features, our approach uses edge detection to generate the
label for the self-supervision task to enforce the knowledge of
edge sensitivity into the feature extractor.

To adapt to a new POC kit, zone areas from 10 to 20 images of
a new assay kit are automatically cropped, and the pre-trained
model, i.e., base model, adjusts its weights using supervised
contrastive learning over a mixture of data from the original test
kit and a small set of new data from the target test kit. The
automated and modular analysis of bands (instead of entire test
kits), along with encoding and decoding of edge-filtered images
for self-supervised learning, are crucial to the universality and
accuracy of the approach. We pre-trained a base model using
expert-labeled images from one test kit (i.e., base kit) and adapted
the model to five other commercial COVID-19 LFAs (detecting
either antigen or antibody, Fig. 1b) and a non-COVID-19 LFA kit
(i.e., HIV test kit). Compared to traditional methods, only a
fraction of training images is required for each new test kit (actual
images shown in Fig. 1c). The approach was further validated
with untrained users in a drive-through tent for COVID-19
testing, with the algorithm correctly identifying 100% of antigen
and antibody tests. In comparison to visual interpretation by
experts, the algorithm correctly identified 100% of COVID-19
antigen test kits run at specified virus titers (low, medium, and
high). AutoAdapt POC provides quality assurance, linkage to
care, and public health tracking to untrained users operating a
diverse and dynamic set of POC diagnostic tests.

Methods
In “Model architecture”, we provide an overview of the archi-
tecture for the AutoAdapt POC model, followed by a detailed
explanation of each module. In “Data acquisition”, we overview
methods to collect the images used to train the base model as well
as adapted models for five additional COVID-19 test kits. In
“Model evaluation”, we overview methods for evaluating the
model’s performance on (1) COVID-19 drive-through study with
untrained users, (2) comparative assessment with contrived
samples, and (3) HIV rapid test kits.

Model architecture
Overview of pipeline. In the overall pipeline, a user-taken image of
the POC test is first processed by a custom instance-segmentation
model that automatically corrects orientation and perspective,
segments the membrane region from the housing and back-
ground, and extracts individual zones (which contain domain-
invariant test and control bands) (Fig. 2a). (To assess the accuracy
of automated membrane segmentation, we measured the inter-
section over union scores, i.e., IoU, between the segmented
membrane and the manually annotated ground-truth membrane
region, with high scores of 0.89 to 0.93, Supplementary Figs. 1
and 2, and Table 1) Images of zone crops enter a feature-
extraction network, which is learned to generate robust feature
representation to indicate colored rectangular bands (the form
factor seen in the vast majority of LFAs61,62), such that the
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positive can be discriminated from negative cases under diverse
conditions (including color, intensity, and width of bands). Then,
a classifier is learned to determine the presence or absence of a
band in each zone. Finally, the output of the binary classifier is
compared to a lookup table containing all combinations of pos-
sible zone-level classification results to produce a binary classifi-
cation at the level of the overall test kit, which is displayed as the

interpreted result of the LFA (positive or negative) on the user’s
smartphone. In this way, the pipeline is agnostic to any kits with
lines. Starting with the input of the arbitrary user image, on 1911
images of test kits, this server-hosted pipeline ran with a mean
execution time of 3.55 ± 2.28 s (see “Methods” for details).

Unlike methods that require de novo training on a new LFA
kit, we developed two methods to achieve adaptation requiring
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only a small number of images of new kits. First, based on the
observation that edges associated with bands tend to remain
invariant in diverse LFA images, the feature-extraction network is
trained to preserve the edge patterns in an image to ensure the
underlying feature representation is robust against variations in
LFA images. Thus, the latent representations are trained in a
manner that such edges can be reconstructed (decoded) (Fig. 2b).
This reconstruction objective supplements the standard classifi-
cation objective and helps the learning of feature representation
for effective adaptation. With the assistance of an automatic edge-
detection algorithm, the label can be easily obtained (i.e., not
requiring manually-assigned labels by experts on validated
specimens), and the edge-preservation character can be learned
in a self-supervised manner. During training, we use the output of
an automatic edge detection algorithm as the ground truth for
decoding. Second, during rapid model adaptation, both the
feature-extraction network and classifier are updated with a small
number of samples. Here, we regularize the feature-extraction
network by performing supervised contrastive learning among
the mixture of images from the new LFA kit and the base LFA kit
while the classification objective helps update the classifier. In this
way, the whole model avoids overfitting to the limited images of
the new LFA kit (only 10 to 20) (Fig. 2c).

Automated extraction of region of interest from raw user images.
The instance segmentation module corrected for skew and
extracted the zones from the images of the POC LFA kit. This
module first detected the orientation of the kit and carried out
perspective correction using the predicted segmentation mask of
the LFA kit (Supplementary Fig. 1). This mask was generated by
using Mask R-CNN63, an instance segmentation model. The kit
membrane from the perspective-corrected image was then loca-
lized, and individual test zones were cropped out using the kit-
specific dimensions listed in a JSON file. For this study, the test-
specific dimensions, such as kit height, kit width, membrane
width, membrane height, and zone dimensions, were measured
from images of LFA kits using Adobe Photoshop v21.0.2 and
saved as a JSON file. These dimensions could be directly provided
by the kit manufacturers in the future. Further details on image
acquisition and processing based on Mask R-CNN are provided
in Supplementary Methods.

Pre-training of feature extractor with self-supervised learning. The
cropped zones of the base LFA kit were used to pre-train a deep
neural network feature extractor. The model uses the Mean
Squared Error (MSE) between the decoder output (the recon-
structed image) and the automatically generated ground truth
edge-enhanced image, and the Cross-Entropy (CE) between the
classifier output and the ground truth class label as the losses. For
the base kit, the number of labeled images was sufficient so that
both the classification and the edge-enhanced image reconstruc-
tion tasks were carried out to learn a good feature extractor. Thus,
as shown in Fig. 2b, output features of each cropped zone are sent
to both the classifier and the decoder. For the binary classifier,
two specific prototypes are learned and associated with the
positive and negative classes using CE loss. In this way, the binary

classifier outputs ‘0’ or ‘1’ to denote the absence or presence of the
band in the cropped zone, respectively. The decoder is a stack of
convolution layers with learnable convolution kernels. The model
uses the CE loss for the classification task and the MSE between
the reconstruction and the automatically reconstructed edge-
filtered image to learn the optimal convolution kernel in the
decoder for the self-supervised edge reconstruction task. By using
the edge-enhanced features, the feature extractor was able to
generalize well on new assay kit images, even if the zones were
faint.

To generate the ground-truth of the self-supervision task, the
model first converted the RGB image into a grayscale image, and
then used an edge filter, e.g., Sobel filter64, to highlight the pixels
in the edge region (if an edge exists) and obtain edge-enhanced
image (Sobel filter is a basic image processing algorithm that
generates an image emphasizing edges). The edge-filtered images
are then normalized between 0 and 1 and set as labels for the self-
supervision task.

With the annotated classification label and the self-generated
edge detection label, the equally weighted CE loss and MSE were
summed up and used as the objective, allowing the feature
extractor, classifier, and decoder to be optimized jointly. In this
manner, the extracted features were made discriminative and
sensitive to the edge region, and the encoded edge information
was used for the classification of cropped zone images, including
those with faint bands.

Details on selection of hyperparameters and determination of
ambiguity using thresholds are provided in Supplementary
Methods.

Self-supervision to learn domain-invariant representations (edge
detection). The feature extractor is used as a function to obtain the
latent representation of cropped test zones. Conventionally, the
feature extractor is only learned with CE loss to new LFA kits;
however, directly applying such a model trained to new LFA kits
will result in low classification accuracy. For example, the model
still cannot recognize faint bands (false negatives) but can be
confused by the stained membranes and lighting artifacts (false
positives) on the new kits (Fig. 3b).

Even though such failure cases can be reduced by training on a
large number of relevant examples, acquiring sufficient images on
a new LFA kit present a logistical challenge. Hence, in addition to
the classification objective, we designed an edge-enhanced image
reconstruction task to improve the generalizability of the feature
extractor (Fig. 2b). The network was trained to detect the edges of
the image pattern (pixels at the junction between the membrane
background and the band in the zone) by reconstructing the
corresponding edge-enhanced image. Since the edge-enhanced
image is normalized, the edges of weak bands can still be
highlighted. By using the edge detection algorithm to train the
feature extractor in a self-supervised manner, the edge patterns in
the image are preserved through the feature extraction process,
and the feature-extraction network is trained to capture unique
attributes that can be used to recognize faint test kit images and
be robust to large domain gaps. In this way, the self-supervision
removes the need for complex image calibration pre-processing.

Fig. 1 Overall approach of a rapidly adaptable model for interpreting images of rapid tests that require few training images. a Overall process of
automatically interpreting images from a diverse set of LFAs that span analytical targets, number of test and control bands, and housing and form factor.
From a raw image of a LFA, a smartphone can automatically and accurately interpret the result within seconds, using a pre-trained machine-learning model
that has been adapted to a specific test kit requiring only 20 images of each new rapid test kit. The considerable reduction in training images can bypass
the procurement of large numbers of different types of rapid test kits and expert labeling with thousands of validated specimens per test kit, which is
challenging during a pandemic, while ensuring patient health and safety and enabling public health monitoring of results. b Images of a base LFA kit
(EcoTest) for pre-training the model, and five new COVID-19 LFA kits (including both antigen and antibody tests) that are interpreted using a rapidly
adapted model. c Actual images used for training of a base model, and for rapid model adaptation for a specific new LFA test kit.
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Model adaptation to new LFA kits by few-shot domain adaptation.
The pre-trained model from a base LFA kit was adapted to a new
LFA kit via few-shot adaptation (Fig. 2c). To avoid overfitting to
the small number of images of the new kit, we perform pair-wise
comparison using supervised contrastive (SupCT) learning65 on a
mixture of labeled data from the base LFA kit and the new LFA

kit. In this way, the positive samples of new kits are trained to be
aligned with the positive samples of base kits.

First, we extracted features of the base kit cropped zone images
for both positive and negative classes and considered them as
anchors. Next, we extracted features from the cropped zone
images of the new kit and compared them with all of the anchors
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using cosine similarity. The feature extractor was then trained to
maximize the cosine similarity between features of the same class.
For the implementation, we resampled the cropped zone images
from the mixed dataset to build episodes and then computed
SupCT loss within each episode. Besides minimizing the SupCT
loss to refine the feature extractor, a CE loss is used to train the
binary classifier on top of the aligned latent features for the new
LFA kit. As a comparison to the adaptation strategy, we also
performed fine-tuning, which only calculated the CE loss among
samples within the episodes for network updating.

Data acquisition
Base model. For base model pre-training, we used expert-labeled
images from the AssureTech EcoTest COVID-19 IgG/IgM
Antibody Test (base kit), an assay authorized by FDA. For these
test kits, serum samples were collected under Mayo Clinic IRB
20-004544 (with informed consent) or shared by the Department
of Laboratory Medicine at the University of Washington School
of Medicine (Seattle, WA) (informed consent waived due to
the use of discarded samples)66. All assay kits were imaged within
10 min of running the test.

Base kit train and validation datasets were gathered using
iPhone X at the Mayo Clinic Hospital, Phoenix, AZ. The
evaluation dataset images were gathered using three phones by
two users: iPhone X, iPhone 7, and Samsung Galaxy J3 (SM-
J337V). Care was taken to ensure the kits were imaged under
three different ambient lighting conditions (warm white, cool
white, and daylight). The training dataset from the base kit
consisted of 383 membrane images (674 positive zones and 475
negative zones). An additional 254 membrane images (441
positive zones and 321 negative zones) were used as the validation
set for model selection under the fully-supervised classification
task. In addition, we used a variational autoencoder67 to generate
a synthetic dataset composed of 600 zones each of faint positive
and negative zones68. The synthetic data was mixed with the

training dataset for the self-supervised edge-reconstruction task.
The performance of the base model is reported on an evaluation
set consisting of 102 membrane images (168 positive zones and
138 negative zones) of the base kit.

Adapted model. To demonstrate model adaption, we adapted the
model to interpret LFAs from five other commercial COVID-19
LFAs. The five LFAs include three antigen tests (ACON Flowflex
SARS-CoV-2 Antigen Rapid Test, Anhui DeepBlue SARS-CoV-2
Antigen Test, and Jinwofu SARS-CoV-2 Antigen Rapid Test), one
antibody test (ACON SARS-CoV-2 IgG/IgM Antibody Test), and
an AssureTech EcoTest COVID-19 IgG/IgM Antibody Test kit
that uses a different housing (denoted in the paper as ‘EcoTest
(housing 2)’) but retains use of the same LFA membrane. Of the
five test kits, the ACON Flowflex antigen test and the AssureTech
EcoTest antibody test have been authorized by the FDA. Like
almost all commercial LFAs, these kits share rectangular control
and test bands, but differ in kit housing dimensions and mem-
brane dimensions, as well as number, spacing, and color of bands
(kit-specific dimensions shown in Supplementary Table 3). For
these test kits, nasopharyngeal swabs from Mayo Clinic Hospital
patients were heat fixed and run for the antigen tests (Mayo
Clinic IRB 20-010688). All assay kits were imaged within 10 min
of running the test.

New test kit training and evaluation sets were gathered using
iPhone X at the Mayo Clinic Hospital, Phoenix, AZ. For the
ACON Flowflex SARS-CoV-2 Antigen Rapid Test and the ACON
SARS-CoV-2 IgG/IgM Antibody Test specifically, a subset of
images taken by untrained users as part of a COVID-19 drive-
through study conducted by the Mayo Clinic Hospital (see
“COVID-19 drive-through study” for study details) were added to
the training dataset. Details regarding the dataset for the five new
kits for evaluation are provided in Supplementary Table 4.

Model evaluation
COVID-19 drive-through study. Individuals undergoing standard
of care SARS-CoV-2 testing (n= 74) were recruited for a drive-
through study in the parking lot of the Mayo Clinic in Arizona
for additional antigen or antibody self-testing using rapid test kits
and a SafeSwab collection device. Participants spanned a range of
ages, and education levels (Supplementary Table 5). Two tents
were set up, one for check-in, and one for testing. Specimens from
study participants were tested by PCR using either the Abbott
m2000 or the Abbott Alinity m systems.

SafeSwab system: Errors in collecting insufficient or excess biolo-
gical sample and incorrect sample transfer can lead to invalid or
incorrect test results69. In order to address this, we have developed
the SafeSwab system. SafeSwab is a collection device that allows for
integrated sample collection and dispensing. After using a standard

Fig. 2 Overview of AutoAdapt POC machine-learning pipeline. a From a raw input image of an assay kit, a correction of orientation and perspective is
applied to segment an image of an assay kit. From the assay kit image, a segmentation model based on Mask R-CNN is used to extract the membrane
region of interest (RoI). Based on measured kit-specific parameters (details in Supplementary Table 3), individual zones are cropped, and passed through a
software pipeline consisting of a feature extractor followed by a binary classifier. Classification of each zone allows, via a kit-specific lookup table, for a final
classification of assay result (kit-level classification or result) as positive, negative, or invalid. b The feature extractor is pre-trained on the base kit using
self-supervised learning task over edge-filtered patterns and fully-supervised binary classification task. For each zone, fully-supervised binary classification
is carried out with cross-entropy loss with the annotated binary labels. Sobel filter is used to highlight the edge pixels between the band and the
background of the membrane. The edge image after normalization is used as ground truth and the learning process is used to reconstruct an image that
resembles the ground truth edge image, with the quality measured in MSE (Mean Square Error). The solid and dashed arrows indicate forward processing
and gradient backpropagation, respectively, during the learning process. c Model adaptation is carried out by supervised contrastive learning to regularize
the feature extractor and fully-supervised learning to learn an adapted classifier for the new kit. A sampling strategy to build an episode with Q (e.g., 32)
images per class is used: for each class (positive or negative), given K (e.g., 10) images available, P (e.g., 4) images are subsampled from the new kit and
mixed with Q-P images of the base kit.

Table 1 Intersection over Union scores for membrane
segmentation.

Kit name IoU score

Flowflex 0.92
DeepBlue 0.89
Jinwofu 0.90
ACON IgG/IgM 0.93
EcoTest housing 2 0.93

The IoU scores for each of the new kit images was obtained by selecting ten images at random
from a labeled pool of 30 images for training and evaluating the performance on a fixed
evaluation set of ten images.
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lancet, the absorbent tip of the SafeSwab can be used to collect a
fingerstick blood sample. Or, the swab tip can be extended to reveal
~1 cm of swab surface to collect a nasal sample. Distal to the tip is a
reservoir, which can be filled with any buffer to suit the test being
performed. Twisting the reservoir releases the buffer to flow down
the barrel, carrying the sample out of the absorbent tip. When held
over a rapid testing device, the sample can be placed directly into
the sample inlet. This device simplifies the sample collection and
transfer process and could greatly reduce incidences of operation-
related error. The user acceptability of the SafeSwab device was
ascertained by asking participants of the drive-through testing
study to fill out a user survey after testing themselves using either
the ACON Flowflex SARS-CoV-2 Antigen Rapid Test or the
ACON SARS-CoV-2 IgG/IgM Antibody Test.

Antigen testing population: Participants in the antigen testing arm
were recruited via the drive-through COVID-19 testing site at an
academic hospital campus. After providing informed consent (IRB
protocol 20-010688), participants were asked to remain in their

vehicle and were provided with a small tray containing a Flowflex™
SARS-CoV-2 Antigen Rapid Test cartridge (ACON Laboratories),
a SafeSwab pre-filled with Flowflex™ SARS-CoV-2 Antigen Rapid
Test buffer (ACON), and a mobile phone with the Safe Health
Systems HealthCheck application installed.

Antibody testing population: Participants in the antibody testing
arm were contacted 2 weeks after a positive PCR result and
invited to return ≥3 weeks from their positive PCR result and
≥2 weeks from symptom resolution. After informed consent (IRB
protocol 20-004544), participants were asked to remain in their
vehicle (to simulate a home environment) and were provided
with a small tray containing an ACON SARS-CoV-2 IgG/IgM
Rapid Test cartridge (ACON), a custom sample collector pre-
filled with ACON SARS-CoV-2 IgG/IgM Rapid Test buffer,
alcohol prep pad, lancet, bandage, and mobile phone.

Self-testing: Participants in both studies used the Safe Health-
Check phone application to complete the testing process. First,

Fig. 3 Comparison of kit-level classification accuracy without adaptation (direct testing) and with adaptation. a For the direct testing case, the model
pre-trained on the base kit was directly applied on each of the new kit’s evaluation dataset. For the adaptation approach, the pre-trained model was adapted
to each of the new kits, except for EcoTest housing 2 kit, using 10-shot adaptation (20 zone images) and the performance on their respective evaluation
datasets is listed here. (The EcoTest housing 2 kit was identical in all aspects to the base kit expect for the housing, so the direct application of the base
model without any adaptation was able to achieve 100% kit-level accuracies.) (n= 1 replicate per condition). b Images illustrating the challenge for few-
shot learning. Sample images of challenging cases that were not classified correctly when using the base model without adaptation and were correctly
classified using the adapted models. Shown are both false positives and false negatives (likely due to variations in colors and intensities of membrane
background and bands).
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the app prompts the user to scan a QR code on the test cartridge
pouch, initiating the cognate animated instructional video
(motion504, Minneapolis, MN). The video shows the user the
entire testing process. After the video, still images from the video
instructions with accompanying text take the user through the
testing process step by step on subsequent screens. The app
includes a built-in timer and subsequent prompt for the user to
take a picture of the cartridge (also via the app). The test image is
sent to an Amazon Web Server where it is processed by the
AutoAdapt POC image analysis algorithm. During the study, the
result was not returned to the user but was stored in a de-
identified database for documentation purposes.

Survey: Each participant was asked to complete a usability study
at the end of their experience. During the survey, participants
were asked to provide their age and maximum educational level
and to answer questions anonymously.

Training set: The training set for rapid model adaption consisted
of 14 randomly selected test kits (11 Flowflex antigen, 3 ACON
antibody tests) imaged by staff during study training.

Comparative assessment study. In this comparative assessment
study, we compared the interpretation accuracy of the AutoAdapt
POC with untrained users and an expert user. 25 untrained users
were recruited through word of mouth and via signs posted
outside a Mayo Clinic collaborative laboratory at the Arizona
State University Health Futures Center. The participants spanned
a range of ages and education levels (Supplementary Table 6).

After obtaining consent, participants were led to a room where
they perused the ACON FlowFlex Antigen test kit IFU
(Instructions for Use) (Supplementary Fig. 3). They were then
provided a set of tests that had been run with known titers
(categorized in this study as high, medium, and low, based on kit
reported limit of detection and corresponding to virus titers of
25,000, 17,500, and <7500 TCID50/mL, respectively (Supplemen-
tary Table 7)) that correspond to a range of band intensities on
the ACON FlowFlex test. Participants were asked, referring to the
IFU, to interpret the bands as a test result. All participants were
asked to observe the IFU for reference. Participants then verbally
declared the results, which were recorded by study staff.
Participants then took an image of the kit using a study phone.
The image was sent to the cloud server for interpretation using
AutoAdapt POC (results from AutoAdapt POC were stored only
in the server and were not available to both the participants or the
expert). Each participant interpreted up to eight tests (details in
Supplementary Table 8). In the final analysis, two users were
determined to not pass the English-speaking criteria.

Independently, a trained member of the study staff (a registered
nurse) also interpreted each rapid test. When making the
interpretation, the study staff was not aware of the titers on each
rapid test or interpretations by the machine-learning algorithm.

HIV rapid test kit images. In a previously published study8, 60
fieldworkers in rural South Africa took 4443 images of a HIV
rapid test kit (ABON HIV 1/2/O Tri-Line Human Immunodefi-
ciency Virus Rapid Test Device). This dataset was utilized to
validate our approach on an application besides COVID-19.
Using this dataset, we rapidly adapted both the pre-trained
instance segmentation model and the classifier to the ABON test
kits using 75 images and 40 images (i.e., 20-shot), respectively.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Accuracy of prediction for five new COVID-19 tests. We
assessed the performance of this few-shot adaptation strategy on
five COVID-19 LFA kits that exhibited different numbers of test
lines and form factors. The performance using only the base
model (i.e., the pre-trained feature extractor) was assessed on the
new kits, compared to the rapid adaptation method using
10 shots (20 zone images). On a similar LFA kit where the
membrane region stayed the same but only the housing was
changed, our pipeline with flexible image pre-processing (i.e.,
automatically extracting zones) and a pre-trained base model
supplemented with edge reconstruction produced perfect accu-
racy (i.e., the EcoTest alternative housing, Fig. 3a). On four
additional COVID-19 diverse test kits, the few-shot adaptation
strategy consistently resulted in a substantial improvement in
performance (i.e., 99 to 100% accuracy in interpreting the overall
test kit, compared to 86 to 93%) by including only a few training
images of the new LFA kits (Fig. 3a), with no loss in accuracy.

Moreover, we looked at images from new LFA kits that were
classified incorrectly when directly applying the base model.
These images included kits interpreted incorrectly as positive and
incorrectly as negative, for both COVID-19 antigen and antibody
tests. Examples included faint lines, shadows, missing control
lines, and blurred images (Fig. 3b). With only a few training
images of a new LFA kit, the rapidly adapted model correctly
interpreted these new LFA kits compared to ground truth
(Fig. 3b).

We examined further how many training images of a new LFA
kit were required in order to achieve high accuracy. Moreover, we
performed this assessment with an ablation study that eliminated
one or both of two components in the pipeline: self-supervised
pre-training of feature extractor (i.e., edge reconstruction) and
supervised contrastive learning during rapid model adaptation.
Meanwhile, the approach with self-supervised pre-training but
without supervised contrastive learning can be considered a fine-
tuning process that uses a standard classification objective. For all
approaches, images from the base and new kits were combined
for training, with the same data sampling strategy used to ensure
a fair comparison. For each new kit, a random set of images were
selected from the training dataset for model adaptation, and
the performance of the trained model was validated against a
separate evaluation dataset; we compared the accuracy against
that achieved by using the entire dataset of available training
images, which was the upper bound of performance. (We didn’t
select weak images as we wanted the training process to be truly
random. Sampling different sets of images yielded consistent
results, as evidenced in Supplementary Table 9). The results
showed that for each of four new COVID-19 kits (Flowflex,
DeepBlue, Jinwofu, and ACON IgG/IgM), the model achieved
maximum classification accuracy using just 16, 14, 10, and 18
zone images, respectively (Fig. 4). For example, for Flowflex, the
model required only eight zone images per class (16 zone images)
to reach the same performance (99.6%) as a model trained from
scratch using all available training data (200 zone images).

Importantly, the results illustrated the importance of both self-
supervised pre-training component and supervised contrastive
(SupCT) loss component, with the combination of both
components producing high accuracy requiring the smallest
number of training images of a new test kit (Fig. 4). First, under
our procedure for self-supervised pre-training of the feature
extractor, the extracted features are sensitive to domain-invariant
edges even as they are presented in the new rapid tests. For
example, the ACON IgG/IgM kit exhibited the highest frequency
of faint bands of all the new COVID-19 LFAs, but our approach
by training with only nine images of each class (18 zone images)
exhibited the same accuracy as by using the entire training dataset
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(Fig. 4). (Without self-supervised pre-training, 140 images, with
SupCT loss, and 200 images, without SupCT loss, of each class
were required comparable performance.) Second, supervised
contrastive learning greatly reduced the number of images
required. For example, adaptation without this component
required at least 80 images for similar performance. Finally,
direct testing of the model pre-trained on the base kit (i.e., zero-
shot adaptation) was higher when trained using self-supervision
than when trained using only the classification objective. The
confusion matrices that summarize the overall performance for
interpreting the new test kits using n= 20 images of new test kits
are shown in Fig. 5. (Also, the results were improved by
calculating a probability score for predicting the ground truth and
classifying images with scores below a threshold to be ambiguous
rather than positive or negative, see “Methods” for details.)

Validation on images taken by users in a COVID-19 drive-
through study. We evaluated the AutoAdapt POC algorithm on
images of rapid antigen and antibody tests taken by 74 untrained
users during a COVID-19 drive-through study (Fig. 6a). In their
cars, participants performed and took an image of either the

Flowflex™ SARS-CoV-2 Antigen Rapid Test or the ACON®
COVID-19 IgG/IgM Rapid Test using a smartphone. In total, 44
images were collected of the Flowflex Antigen test, and 30 images
of the ACON antibody test. Two test kits produced invalid results
(i.e., no control band present). The rapidly adapted model iden-
tified with 100% accuracy the results for all 42 Flowflex antigen
tests and all 30 ACON antibody tests in the evaluation set
(Fig. 6b). Moreover, in a usability survey of the untrained users,
while only 36% reported as having prior laboratory or medical
training, 98% of participants (45 out of 46) reported they were
able to successfully take an image of the test kit (Fig. 6c).

Comparison of visual interpretation with AutoAdapt POC.
Next, we performed a comparative assessment of the AutoAdapt
POC algorithm with traditional visual interpretation by experts
and non-experts. 23 non-experts interpreted ACON Flowflex test
kits pre-run using contrived samples (87 contrived positive and
18 contrived negative).

Over the 105 test kits (Table 2), the AutoAdapt POC algorithm
correctly interpreted all 105 kits (100% accuracy), which matched
visual interpretation by an expert. Compared to non-experts, the

Fig. 4 Classification accuracies for four new COVID-19 LFA kits with different numbers of training images used and with ablated models. Ablation
studies were carried out to analyze the relative contributions of self-supervised learning for feature extraction and supervised contrastive learning for
adaptation. Each model was evaluated by varying the number of images used in the adaptation. Accuracy scores reported for four new assay kits, Flowflex
(a), DeepBlue (b), Jinwofu (c), and ACON IgG/IgM (d). (The EcoTest housing 2 kit was identical in all aspects to the base kit expect for the housing, so the
direct application of the base model without any adaptation was able to achieve 100% kit-level accuracies). The maximum accuracy indicates the upper
bound attained by training a model from scratch using all training images for each kit.
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algorithm had one false negative reading with a low positive test
visually interpreted by the participant as negative (99% accuracy)
(Supplementary Fig. 4).

Validation of approach on HIV rapid test kit images. Finally,
we tested the robustness of the AutoAdapt POC algorithm on a
LFA test kit designed for an application other than COVID-19
(Fig. 7). For model adaption and evaluation, we used images of a
HIV rapid test kit (ABON HIV 1/2/O Tri-Line Human Immu-
nodeficiency Virus Rapid Test Device) captured in a previously
published study8.

First, for automated membrane extraction, the adapted instance
segmentation model achieved a mean IoU score of 0.927 on 10
random test images of HIV test kits. Next, we carried out 10-fold
cross validation (as previously performed8), using 40 randomly
selected images (20 positive and 20 negative) for rapid adaptation
and all remaining images for the test set (262 positive and 4140
negative). With 75 training images and 4402 evaluation images, the
performances of each of the 10 folds of the adapter classifier in the
AutoAdapt POC algorithm were successively tabulated (Table 3),
with mean sensitivity and specificity of 98.2% ± 0.8% and
99.1% ± 0.2%. These values exceeded the mean values of
95.9% ± 5.1% and 99.0 ± 0.6%, respectively, in a previously tested
traditional convolution network8 that required 3998 training
images and assessed on 445 evaluation images. The AutoAdapt
POC algorithm also exhibited lower variance. This result highlights
the utility of the few-shot domain adaptation for achieving
classification performance exceeding a traditional convolution
neural network trained from scratch on ~4000 images, by using just
75 images for adaptation (Supplementary Table 10 shows the
confusion matrix of the best performing model, i.e., fold 6).

Discussion
We have described the development of AutoAdapt POC, an
approach for rapidly adapting machine-learning models for
interpreting POC LFAs that span diverse analytical targets,
number of test and control bands, and housing form factors. This
adaptation can be carried out using a much smaller subset of
images than required for training the base model. Compared to
de novo training on every new assay kit, this reduction in the
number of images was achieved by adopting a modular approach
to the machine-learning pipeline: starting from an image of the
kit, the perspective-corrected membrane and individual zones
were extracted, followed by the extraction of the features pre-
serving edge information, and finally a binary output which
indicated whether a band was present in the cropped zone. A
robust feature extractor was critical for handling challenging
images in LFA kits, like those with faint or partially formed lines,
with a self-supervised learning approach to reconstruct edge-
enhanced images. The algorithm was also shown to match the
accuracy of results interpreted visually by expert users and was
able to correctly interpret a kit that was misinterpreted by a non-
expert user, highlighting the utility of such an algorithm as testing
becomes more decentralized.

There are limitations to our current approach. Our current
workflow requires a user to take an image of an entire test kit to
properly orient it for analysis, which reduces the resolution of the
images used for classification of test bands. The current algorithm
does not specifically handle blood staining of antibody rapid tests.
Future work will focus on addressing these limitations as well as
validation on a wider variety of rapid tests, bands of multiple colors
as in some home urinalysis kits, and generalization to rapid kits
beyond rectangular bands (e.g., vertical flow assays). We will also

Fig. 5 Confusion matrices for the pipeline applied on the evaluation dataset. The model used both self-supervised pre-training of feature extractor
(incorporating edge detection) and supervised contrastive adaptation. Confusion matrices are shown for (a) base kit, and new kits (b–f).
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explore quantifying the intensity of the test band (based on pre-
vious studies70–72) to expand applications beyond binary detection.

More broadly, the results here point to the potential of
applying few-shot learning (which is increasingly prevalent in a
host of non-medical imaging applications) to classifying medical
images in which requisition of validated training images poses

considerable clinical challenges when used in practice and at
scale. For diagnostics, this reduction in new training images to
achieve assured user interpretation of rapid test images is sub-
stantial given the ubiquity of home use of rapid diagnostic tests.
Most immediately, the COVID-19 pandemic has thrusted front
and forward the need for rapid testing and population

Fig. 6 Application of algorithm for interpreting rapid SARS-CoV-2 antigen and antibody tests from 74 untrained users in a COVID-19 drive-through
field study. a Setup of COVID-19 drive-through field tent, with users performing the tests and collecting the images in their cars. b Confusion matrices
showing performance of the rapidly adapted algorithm on both rapid antigen and antibody COVID-19 tests. c Results of surveying 45 untrained users on
usability of overall process. Graphics in (a) are from an open-source repository.

Table 2 Comparison of visually interpreted results and results predicted by the AutoAdapt POC algorithm.

Specimen
used on test
kit

Number of
tests

Visual
interpretation
by non-expert
(pos/neg)

Visual
interpretation by
expert (pos/neg)

Automated
interpretation by
AutoAdapt POC
algorithm (pos/neg)

Concordant
interpretation (Visual
non-expert vs.
AutoAdapt POC)

Discordant
interpretation (Visual
non-expert vs.
AutoAdapt POC)

Contrived
positive

87 86/1 87/0 87/0 86 1

High positive
titer

31 31/0 31/0 31/0 31 0

Medium
positive titer

27 27/0 27/0 27/0 27 0

Low positive
titer

29 28/1 29/0 29/0 28 1

Contrived
negative

18 0/18 0/18 0/18 18 0

Total 105 86/19 87/18 87/18 104 1

Contrived samples were provided by ACON. Titers of high, medium, and low, correspond to virus titers of 25,000, 17,500, and <7500 TCID50/mL, respectively. Tests with both visual interpretations and
digital reads were included in the analysis.
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surveillance to track and control the spread of the disease in a
scalable and timely manner. If effectively implemented, point-of-
care testing can vitally contribute to a rapid and effective public
health response—as well as patients’ individual safety, privacy,
physical health, and mental well-being—by enabling widespread

timely testing in a manner that does not overwhelm the limited
capacity of testing facilities or provoke social crowding at selected
testing sites.

By expediting the process of training a model to newly available
rapid diagnostic tests, the AutoAdapt POC approach could facil-
itate reliable decentralized testing and real-time monitoring of
disease prevalence. (We have also built a mockup of a sample
dashboard, using R shiny and leaflet libraries, to demonstrate the
potential real-time visualization of data generated by the algorithm
of this study as collected from smartphones; see Supplementary
Fig. 5 and Supplementary Video 1). Over time, scalable approaches
to achieve assured user operation and results interpretation as well
as reliable data monitoring will be increasingly vital, as patients and
consumers will monitor their health via increased self- and home-
testing for both infectious diseases and chronic conditions in the
oncoming age of digital and precision health.

Data availability
All test kits images used for base model training, adaptation, and for the drive-through
study are available to download from the following link upon request. https://drive.
google.com/drive/folders/1PJRmiCviniQShOJcBxmDFpOCkIscRGZ9?usp=sharing. The
dataset used for evaluating the algorithm on an HIV rapid test kits is available here:
https://data.ahri.org/index.php/catalog/923 8. Source data for Fig. 4 is available in

Fig. 7 Comparison of AutoAdapt POC base-trained with a COVID-19 test and rapidly adapted to HIV rapid tests, with a traditional convolutional
neural network trained to the HIV rapid tests. a Training dataset size comparison. The 10 images within the red border demonstrate the number of
training images needed by the AutoAdapt POC approach which is a fraction (1/50th) of the images needed by the conventional approach (500 images
shown enclosed with the black border). b Bar plot comparing the mean sensitivity and specificity scores across conventional training and AutoAdapt POC
(error bars represent standard deviation). Data for conventional convolution neural network is from Fig. 3b in a manuscript published in Nature Medicine8

(n= 10 replicates per condition).

Table 3 Performance of AutoAdapt POC approach across
10 folds on ABON HIV image dataset.

Fold Sensitivity (%) Specificity (%)

1 98.79 99.25
2 98.38 99.22
3 97.98 99.05
4 97.14 99.05
5 97.98 99.05
6 98.85 99.25
7 96.73 98.96
8 98.79 98.93
9 99.19 98.88
10 97.98 98.86
Average 98.18 ± 0.79 99.05 ± 0.15

Table listing the sensitivity and specificity values of 10 different folds on the evaluation dataset
of 4402 images.
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Supplementary Data 1. Source data for Fig. 7c is available in Supplementary Data 2. All
other data is available from the corresponding author on reasonable request (pending
protection of patient privacy).

Code availability
Custom code used in this study is available on this GitHub repo: https://github.com/
smartestapp/smart-ml/. The DOI is provided by Zenodo73.
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