
ARTICLE

Construction and validation of a gene expression
classifier to predict immunotherapy response in
primary triple-negative breast cancer
Miquel Ensenyat-Mendez1, Javier I. J. Orozco 2, Pere Llinàs-Arias1, Sandra Íñiguez-Muñoz1, Jennifer L. Baker3,

Matthew P. Salomon4, Mercè Martí5,6, Maggie L. DiNome 7, Javier Cortés8,9,10 & Diego M. Marzese 1✉

Abstract

Background Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative

breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment.

Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1

and the tumor mutational burden, among others, show a modest predictive performance in

patients with TNBC.

Methods We built machine learning models based on pre-ICI treatment gene expression

profiles to construct gene expression classifiers to identify primary TNBC ICI-responder

patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus che-

motherapy, including TNBC tumors, HR+/HER2− breast tumors, and other solid non-breast

tumors.

Results The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting

pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC

validation cohort (AUC= 0.86). The TNBC-ICI classifier shows better performance than

other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression

(AUC= 0.67). Integrating TNBC-ICI with molecular signatures does not improve the effi-

ciency of the classifier (AUC= 0.75). TNBC-ICI displays a modest accuracy in predicting ICI

response in two different cohorts of patients with HR+ /HER2- breast cancer (AUC= 0.72

to pembrolizumab and AUC= 0.75 to durvalumab). Evaluation of six cohorts of patients with

non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance

(median AUC= 0.67).

Conclusion TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC.

The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further

validations will consolidate a novel predictive panel to improve the treatment decision-

making for patients with TNBC.
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Plain language summary
Triple-Negative Breast Cancer

(TNBC) is an aggressive type of

breast cancer, responsible for a sub-

stantial burden of breast cancer-

related deaths. In recent years,

immunotherapy, a therapy that trig-

gers the patient’s immune system to

attack the tumor, has arisen as a

promising treatment in various can-

cers, including TNBC. However, a

subset of patients with TNBC does

not respond to this treatment. Here,

we employed advanced computa-

tional techniques to predict response

to immunotherapy plus chemother-

apy in patients with primary TNBC.

Our method is more accurate than

using other existing markers, such as

PD-L1, but is not very accurate in

patients with non-TNBC breast can-

cers or non-breast cancers. This

method could potentially be used to

better select patients for immu-

notherapy, upfront, avoiding the side

effects and costs of treating patients

in which immunotherapy might

not work.
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Triple-Negative Breast Cancer (TNBC) is a highly hetero-
geneous disease defined by the absence of estrogen receptor
(ER), progesterone receptor (PR), and the lack of over-

expression of human epidermal growth factor receptor 2
(HER2)1–3. Due to the absence of effective therapeutic targets,
chemotherapy has been the primary systemic treatment for early
and advanced TNBC for decades4. This scenario has encouraged
the search for new therapeutic agents, such as PARP inhibitors
for patients with germline mutations on the BRCA1/2 genes and,
more recently, immune checkpoint inhibitors (ICI)5,6. Imple-
mentation of ICI has shown significant improvements in the
survival and clinical management of patients with different solid
tumors. The phase 3 clinical trial IMpassion130 showed that the
combination of nab-paclitaxel with atezolizumab — a humanized
antibody that restores the antitumoral immune response blocking
PD-L1 expressed by tumoral cells— increases the progression-
free survival (PFS) of patients with unresectable locally advanced
or metastatic TNBC (mTNBC), with a greater improvement
noted in patients with PD-L1-positive tumors7. While atezolizu-
mab failed to demonstrate a statistically significant improvement
in overall survival (OS) in the complete cohort, it showed a
clinically meaningful improvement in OS in the PD-L1-positive
patients8,9. On the other hand, the phase 3 clinical trial KEY-
NOTE-355, demonstrated that adding pembrolizumab — a
humanized anti-PD-1 antibody that activates exhausted PD-1+
T-cells by preventing interaction with PD-L1— to chemotherapy
(including paclitaxel; nab-paclitaxel, or gemcitabine plus carbo-
platin) improves PFS and OS in patients with PD-L1-positive
untreated, locally recurrent, inoperable, or mTNBC10. Thus, solid
evidence shows that beneficial results are limited to a subset of
patients with high PD-L1 levels in mTNBC11.

Recent studies have shown the efficacy of this approach in
primary TNBC12,13. Consequently, in 2021, following the results
from KEYNOTE-52214,15, the FDA approved the use of pem-
brolizumab in combination with chemotherapy as neoadjuvant
treatment for high-risk primary TNBC. Unlike in the metastatic
setting, the addition of pembrolizumab to current treatments
resulted in higher rates of pathological complete response (pCR)
regardless of PD-L1 levels, although patients with PD-L1-positive
tumors did show higher rates (68.9%) than those with PD-L1-
negative tumors (45.3%)15. Nevertheless, a significant number of
patients still do not achieve a pCR in the primary TNBC
setting16,17. This evidence highlights the need for precision bio-
markers that can identify patients with primary TNBC who will
benefit from the addition of ICI to chemotherapy.

Beyond PD-L1, other biomarkers that have shown predictive
potential in other solid tumors18,19 may partially explain the benefit
of ICI in patients with TNBC. The presumption that ‘more genomic
alterations generate more neo-antigens’ supports the idea that the
higher the tumor mutational burden (TMB), the better the
response to ICI treatment. However, recent clinical trials show a
modest predictive potential of TMB for ICI response in patients
with TNBC, and controversy over the methods to test TMB and
PD-L1 and the optimal cutoffs for these variables still remains20,21.

The development and adaptation of machine learning methods,
such as deep learning, allow for the extraction of informative features
within the layers of a neural network, and deep learners, among
other machine learning methods, allow for the integration of diverse
data sources from imaging, clinical covariates, histology, and mole-
cular profiling. These agnostic approaches generate robust classifiers
from diverse and complex data types, such as imaging, clinical,
histology, and molecular profiling22,23. Here, we employed machine
learning to construct and evaluate gene expression-based signatures
that efficiently predict pCR to ICI plus chemotherapy in patients
with primary TNBC treated in the phase II/III I-SPY2 clinical
trial24,25. Thus, we constructed and tested a TNBC ICI response

(TNBC-ICI) predictive classifier that involves 37 genes. The efficacy
of TNBC-ICI was compared against other recognized biomarkers
and molecular features that have shown modest to good ICI pre-
dictive performance. TNBC-ICI has a significant performance in
identifying patients with TNBC that are likely to reach pCR to the
treatment combining ICI and chemotherapy. This classifier was
further tested in ICI-treated cohorts including hormone receptor
(HR)-positive/HER2-negative breast cancer (BC) patients, other
immune hot and cold non-BC solid tumors (bladder, esophageal,
melanoma, and renal), and in an ICI-naïve cohort of patients with
TNBC treated with chemotherapy. Here, we provide the details to
replicate the TNBC-ICI classifier and a comparison of this resource
with other gene expression signatures, molecular features, and clas-
sifiers that can predict response to ICI. The validation of this clas-
sifier in additional ICI-treated cohorts opens an avenue to improve
the management of patients with primary TNBC by identifying
upfront cases that are likely going to reach pCR.

Methods
Patient selection and data inclusion. Clinical and gene expres-
sion data from a cohort of 759 pretreatment specimens from
breast cancer stage II/III patients included in the phase II I-SPY2
clinical trial24,25 were obtained from the Gene Expression
Omnibus (GEO; GSE173839 and GSE194040). We selected gene
expression profiling from 50 patients with confirmed TNBC and
90 patients with HR+/HER2– disease before neoadjuvant therapy
with durvalumab (anti-PD-L1 antibody) combined with olaparib
(PARP inhibitor) and paclitaxel, or with pembrolizumab (anti-
PD-1 antibody) combined with paclitaxel. An additional cohort
of 56 patients with TNBC treated with paclitaxel from the I-SPY2
cohort was employed to validate the accuracy of the classifier.
During the classifier construction, patients who achieved a pCR
(ypT0/is, ypN0)26, defined as the absence of invasive cancer in the
breast and regional nodes at the time of surgery, were classified as
‘responders’; whereas those who had residual disease were con-
sidered ‘non-responders’. An additional ICI-naïve TNBC tumor
cohort (n= 132) from The Cancer Genome Atlas (TCGA) of
chemotherapy-treated patients was obtained from the National
Cancer Institute Genomic Data Commons in June 2020 using
R/TCGABiolinks (v.2.16.4). Clinical annotations were manually
curated using the scanned clinical reports according to ASCO/
CAP guidelines to solve issues for samples with missing or dis-
crepant clinical or pathological data. Furthermore, gene expres-
sion profiles from 581 non-BC ICI-treated solid tumors were
obtained from different clinical studies. A complete list of the
clinical studies employed in the study can be found in Supple-
mentary Table 1. Data included in all publicly available cohorts
were collected according to the respective institutional review
board approvals following the human subject protection and data
access policies. Written informed consent was obtained from each
patient included by the original institutions, and this study was
performed following the Declaration of Helsinki. All samples
were deidentified and coded following the Health Insurance
Portability and Accountability Act (HIPAA) guidelines. No
additional ethical approval was needed for this study because all
data were obtained from publicly available data.

Selection of pan-cancer response genes. Differential gene
expression between responder and non-responder patients was
computed in nine cohorts of non-BC chemotherapy plus ICI-
treated patients (Supplementary Table 1) using the Student’s t-test.
Then, a score was created by multiplying the –log10(p-value) by the
log2(n), where n represents the number of patients per cohort. The
score value was converted to negative for downregulated genes.
Then, a final score was created by summing the score of each gene
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in all datasets, and the 500 genes with the highest absolute score
were selected and used as the initial input for the creation of the
machine learning classifiers (Supplementary Data 1).

Construction of a random forest-based classifier. First, the
batch effect between the durvalumab and pembrolizumab I-SPY2
cohorts was checked and corrected using the R/sva package
v3.38.027. Gene expression data were normalized to Z-score using
R v.4.0.2. The cohort was split into training (60%) and validation
(40%) sets. The R/VarSelRF v0.7-828 package was used to identify
the best gene signatures to stratify responder and non-responder
patients in the training cohort. We employed VarSelRF to remove
the least important features in each iteration, selecting the com-
bination of features with the highest predictive potential, as we
have previously shown29–31. This process was iterated 1,000 times
to improve the classifiers, and, in each iteration, the combination
of genes with the highest Area Under the Curve (AUC) was
selected. Then, the number of iterations in which each gene was
included in the best signature was computed to determine the
importance of each gene. Finally, the AUC of each combination
of the most-repeated genes was calculated. The AUC of the
classifier was computed initially in the training cohorts and then
validated in independent cohorts using the R/pROC v1.16.232

package. The classifier generates a confidence score that can be
used to assess the probability of response to ICI in patients with
TNBC using a quantifiable measure instead of a dichotomic value
of response/no response. Additional molecular signatures known
to influence ICI response such as PD-L1 or PD-1 expression and
mitotic rate, T-cell, or B-cell signatures were included in the
analysis to identify potential improvements in the gene
expression-based classifier. These features were merged with the
gene expression data and used as input for the RF algorithms to
construct hybrid classifiers. The AUC of the hybrid classifiers was
computed in the validation cohort. The plots were represented
using the R/ggplot2 v3.3.6 and UpSetR v1.4.0 packages.

Statistics and reproducibility. All genes with a student’s t-test p-
value below 0.05 and an absolute Z-Ratio over 1.5 between
responders and non-responders were considered differentially
expressed. Overall survival (OS) and disease-free survival (DFS)
intervals, the log-rank test p-value, and the risk associated with
increments in the gene expression classifier-based scores expres-
sed as the Hazard Ratio were evaluated using the R/survival v.3.2-
13 package. OS and DFS intervals could not be computed in the
I-SPY2 cohort due to the short follow-up of the patients. The
Odds Ratio (OR) for the response probability was calculated
using the R/questionr v0.7.2 package for all available clinical and
molecular data, including each signature. The significance of the
risk was computed using the Fisher Exact Test (FET). All results
were expressed as the OR including the 95% CI.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Pretreatment differential gene expression profiles in primary
TNBC from responder patients. From the 558 differentially
expressed genes, 211 were found upregulated and 347 down-
regulated in tumors from ICI plus chemotherapy responder
patients (Fig. 1a). These genes showed a good stratification effi-
ciency of patients with TNBC according to the ICI pCR rates
(Fig. 1b). This observation indicates the potential of gene
expression patterns in predicting ICI response. However, the
implementation of the differentially expressed gene signature in a

validation cohort showed a poor performance in discriminating
patients based on the response to ICI plus chemotherapy
(Fig. 1c). This indicates an overfitting to the discovery cohort and
a need for a more complex construction of efficient gene
expression-based predictive models.

A gene expression-based classifier efficiently predicts pCR to
ICI in primary TNBC. To increase the stratification ability of
gene expression profiles, we employed random forest, a machine
learning algorithm, to select the most informative gene combi-
nations to predict response to ICI in primary TNBC tumors. As
expected, the predictive performance in the training cohort for
multiple gene combinations was high, even when adding up to
100 genes (AUCval > 0.85; Fig. 2a). Interestingly, we observed an
overall good predictive performance in a validation cohort of
different classifiers (Fig. 2a). The optimal performance of the
signatures was established at 37 genes (Supplementary Table 2).
Importantly, a large proportion of these genes is involved in
molecular pathways with a potential role in immune response,
such as CD8A and CXCL9, cytoskeleton, cell adhesion, metabo-
lism, and transcription regulation (Supplementary Fig. 1). The
TNBC ICI response predictive classifier (TNBC-ICI) exhibited
a very good efficiency in the validation cohort (AUC= 0.86, CI:
0.65–1, p= 0.005; Fig. 2b) and, consequently, in the whole cohort
(AUC= 0.89, CI: 0.80–0.98, p < 0.001; Fig. 2c, d). Interestingly, in
the whole cohort, only one out of nine patients with a score equal
to or below 0.4 (reliable non-responders) reached a pCR, while 19
out of 20 patients with a score equal to or over 0.65 (reliable
responders) achieved a pCR, highlighting the relevance of this
quantifiable score. However, patients with levels between 0.4 and
0.65 (uncertain) showed mixed responses with 38% of the cases
reaching pCR. None of the individual genes included in this
signature had higher predictive accuracy than the TNBC-ICI
classifier (AUC range: 0.5–0.76; Supplementary Fig. 2). This
indicates the importance of assessing the expression levels of
these genes in the context of the signature constructed by
machine learning, in which even genes with individually low to
null predictive potential contribute to an efficient predictive sig-
nature. In the whole I-SPY2 cohort of ICI-treated patients with
TNBC, TNBC-ICI shows a non-significantly superior predictive
performance (AUC= 0.89) than the 27-gene signature described
by Iwase (AUC= 0.76, p < 0.1)33.

To evaluate whether the TNBC-ICI classifier could be widely
employed to predict response to ICI plus chemotherapy in other
patients with non-TNBC breast cancer, we evaluated two cohorts
of HR+ /HER2− tumors from the I-SPY2 trial, one treated with
Durvalumab plus olaparib (n= 50) and the other treated with
Pembrolizumab (n= 40). In both cases, we observed a significant
but modest predictive performance of the TNBC-ICI classifier
(AUC= 0.75, p < 0.001 and AUC= 0.72, p= 0.01, respectively;
Fig. 2e, f).

The accuracy of TNBC-ICI does not improve by integrating
other molecular signatures. The predictive potential of the sig-
nature was compared with other molecular signatures associated
with ICI response. These included the T-cells, B-cells, mast cells,
dendritic cells, mitotic rate, PD-L1, and PD1, among other sig-
natures. In all the cases, the TNBC-ICI classifier displayed a
higher predictive potential than all specific molecular signatures
(Supplementary Fig. 3). We, therefore, employed a similar
machine learning-based strategy to combine the ICI-related
molecular signatures and generate an accurate predictive classi-
fier. However, the resulting classifiers showed poor predictive
performance for the validation cohort (AUC= 0.67 CI: 0.4–0.95,
p= 0.1; Fig. 3a, b). Thus, to identify potential synergism between
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the TNBC-ICI classifier and ICI-related molecular signatures, we
generated hybrid nomograms using machine learning to combine
the signatures with our classifier. The hybrid nomogram showed
a modest performance in identifying responder patients
(AUC= 0.75, CI: 0.51–0.99, p= 0.04), still below the

performance shown by the TNBC-ICI classifier alone (AUC=
0.86 CI: 0.65–1, p= 0.005; Fig. 3a). These findings were main-
tained in the whole cohort (AUCsignatures= 0.72, AUChybrid=
0.83, AUCTNBC-ICI= 0.89; Fig. 3B). We measured the association
of each molecular signature and the TNBC-ICI classifier with the
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likelihood of responding to ICI plus chemotherapy. Patients with
a high TNBC-ICI classifier score have a significantly higher
probability of achieving a pCR (OR 21.3, 95% CI: 4.3–151.5,
p < 0.001), outperforming all other molecular parameters
(Fig. 3c).

The TNBC-ICI classifier is specific for patients with TNBC
treated with ICI. We evaluated associations between the score of
the TNBC-ICI classifier and survival intervals for patients with
TNBC that have been treated with chemotherapy but not with
ICI. We found that the TNBC-ICI classifier score is not associated
with either DFS (Fig. 4a) or OS (Fig. 4b) in ICI-naïve patients.
Furthermore, it does not predict response to chemotherapy in the
I-SPY2 cohort (AUC= 0.53). This finding suggests that TNBC-
ICI identifies ICI-sensitive tumors and not a subset of patients
with TNBC with intrinsic less aggressive disease. We tested the
TNBC-ICI classifier in patients with other solid tumors treated
with ICI plus chemotherapy. The TNBC-ICI classifier showed a
poor overall predictive performance in non-TNBC tumors
(median AUC= 0.67; Supplementary Fig. 4). Yet, we observed: (i)
a significant performance in predicting ICI response in patients
with locally advanced, unresectable melanomas (AUC= 0.68;
n= 48; p= 0.01), metastatic melanoma (AUC= 0.73; n= 26;
p= 0.02), or early esophageal cancer (AUC= 0.73, n= 35,
p= 0.01); (ii) a significant, but potentially clinically irrelevant ICI

response predictive performance for patients with bladder cancer
(AUC= 0.62; n= 348; p < 0.001) and renal cancer (AUC= 0.65;
n= 56; p= 0.03); and (iii) a non-significant performance for
patients with locally advanced esophageal cancer (AUC= 0.53;
n= 37; p= 0.4). No significant differences were observed
between the classifier accuracy of cancer types considered
immune hot (melanoma, renal) or immune cold (bladder, eso-
phageal). This observation reflects the fact that most of the genes
in the TNBC-ICI classifier are involved in immunity, not only in
the TNBC context but different tissue types.

Discussion
Immunotherapy is altering the way TNBC is treated and
demonstrating long-lasting responses; nevertheless, many indi-
viduals do not respond and, despite being mild, there is still a
possibility for negative side effects. Importantly, response rates to
ICI in unselected patients with TNBC are still below those
achieved in other cancers such as melanoma or lung carcinoma.
Biomarkers relevant for the selection of patients with other
cancers who are likely to respond to ICI have shown poor or
modest performances in predicting response to ICI in patients
with TNBC34,35. Thus, there is a significant need to identify
TNBC-specific markers that predict response to ICI. Here, we
employed gene expression data of 721 patients treated with ICI
plus chemotherapy to construct and evaluate TNBC-ICI, a gene
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expression-based classifier that predicts pCR to ICI plus che-
motherapy in TNBC. This classifier includes 37 genes and shows
better predictive performance than other relevant molecular
parameters. For instance, patients with TNBC with a score in the
upper tertile were 21.3 more likely to achieve a pCR to ICI plus
chemotherapy than those with lower TNBC-ICI scores (lower
and middle tertile), while other studies show inferior perfor-
mances using other biomarkers such as PD-L17,15. However, an
important caveat to consider when interpreting these results is the
fact that the evaluation of the TNBC-ICI is limited to patients in
the current set that we have randomly split into independent
training and validation cohorts. Overall, these findings suggest
better performance of gene signature classifiers, especially those
selected by artificial intelligence algorithms than single bio-
markers. Our study shows that TNBC-ICI has a high accuracy in
predicting response in TNBC tumors with both high (≥0.65, 95%
accuracy) and low (≤0.4, 89% accuracy) scores, but this predictive
performance is lower in cases with scores between these cutoffs
(0.4 to 0.65; eight responders and 13 non-responders). Thus, we
propose that the outcomes can be categorized into three groups:
reliable responders, uncertain cases, and reliable non-responders,
with potential clinical relevance. It is worth noting that further
investigation is needed to refine and improve the TNBC-ICI
accuracy, particularly for cases with average scores. Our results
emphasize the importance of using TNBC-ICI in conjunction
with clinical judgment to make informed treatment decisions.
Yet, the relatively small number of cases in our study and the
consequent wide confidence intervals are limitations that require
validation in larger prospective studies to confirm the predictive
accuracy of the TNBC-ICI classifier. Thus, it is essential to vali-
date these findings in independent cohorts to ensure the relia-
bility and generalizability of the classifier.

Our study is not the first to generate ICI predictive models based
on gene expression. Yet, our approach, involving machine learning
to identify gene signatures for ICI response, is different from other
studies. Other complementary ICI predictive markers have been
established based on predetermined immune-related tumor func-
tions or using non-supervised algorithms to create subgroups with
differential responses to ICI35. While some of these studies inclu-
ded genes in the classifier according to previous knowledge about
the molecular function of each gene, we employed machine
learning methods to systemically select the features with the highest
predictive value regardless of the gene function. However, a sig-
nificant proportion of the genes in the classifier were involved in

immunity, highlighting the relevance of the immune micro-
environment in the response to ICI. Other genes were related to cell
adhesion, metabolism, cell cycle, and transcription regulation
(Supplementary Table 2). Additionally, we have used data from
nine non-BC datasets (Supplementary Table 1) to identify pan-
cancer differentially expressed genes in responder and non-
responder patients to increase the accuracy of the classifier. Fur-
thermore, the random forest algorithm assesses the feature
importance of each gene alone and in the context of a signature,
reducing information redundancy, and thus increasing the classi-
fiers’ accuracy above previous studies (OR: 21.3 vs 1.6–1.7)35.

Therefore, for patients with TNBC, the TNBC-ICI signature dis-
plays a higher accuracy than pan-cancer subtyping methodologies and
classifiers created using genes with potentially relevant functions. In
their study, Bagaev et al. showed four pan-cancer conserved micro-
environment subtypes (Immune-Enriched Fibrotic, Immune-
Enriched Non-Fibrotic, Fibrotic, and Desert) with a significant pre-
dictive value for immunotherapy response on different tumor types
(melanoma, bladder, and lung cancer)34. Yet, due to the lack of breast
cancer specimens and variations in the feature selection methodology,
a direct comparison with the TNBC-ICI cannot be performed. In
another study of the same group, machine learning was applied to
reconstruct the tumor microenvironment using bulk RNA-seq data.
This model, combined with the TMB and PD-L1 levels predicts
response to immunotherapy in non-breast cancer tumors (bladder,
gastric, kidney, and melanoma; AUC= 0.75). This is similar to the
observed accuracy when applying TNBC-ICI to patients with HR+
breast cancer treated with pembrolizumab and durvalumab (AUC=
0.72, p= 0.01 and AUC= 0.75, p < 0.001, respectively) and to
patients with non-breast cancer (median AUC= 0.67). Other
subtype-based signatures have revealed similar results in TNBC (OR:
2.9–5.9) and HR+ (OR= 5.4) patients treated with ICI36, while sig-
natures based solely on chemokines displayed significant, but more
modest results in ICI-treated patients with TNBC (OR: 2.5–4)37. The
ImPrint immune signature, developed by Mittempergher et al., dis-
plays a comparable accuracy to TNBC-ICI in ICI-treated BC patients,
including TNBC, showing 89% sensitivity and 58% specificity in these
patients38. A recent study shows the significant power of a model
combining gene expression of immune-related genes, including
CD274 and PDCD1, and the TMB to identify pan-cancer ICI-treated
patients that will have a longer PFS and OS39.

Employing machine learning, other studies have identified
similar performances in different types of cancers such as mela-
noma or gastrointestinal cancer40–42. We also compared the
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performance of TNBC-ICI with the 27-gene signature from Iwase
et al. and we observed non-significant differences in the predictive
efficiency (AUC: 0.89 vs 0.76, respectively)33. Although different
data types have shown an increase in the stratification capacity in
other cancers43, we found that integrating other molecular sig-
natures has not shown an improvement in the performance of the
gene expression-based classifier. This event could be related to a
“plateau effect” of the prediction performance due to the high
efficacy of TNBC-ICI. Moreover, additional benefits could be
obtained from studying other facets of tumor response, such as
tumor shrinking. However, these parameters could not be ana-
lyzed due to the lack of available data in the studied datasets.

Showing that TNBC-ICI is specific to BC disease, it displayed a
high accuracy in TNBC (AUC= 0.86) and a modest, still sig-
nificant prediction of ICI response in HR+/HER2− BC patients
(AUC: 0.72–0.75), but poor accuracy in non-BC tumors (median
AUC= 0.67). These findings suggest that, while the classifier was
constructed and trained to predict ICI response in TNBC tumors,
the included gene list may be involved in ICI response in different
tissue contexts. The pursuit of a pan-ICI response predictive
system would require larger datasets to control for differences in
treatment, tissue types, and other clinical and demographic
variables. Unfortunately, due to the lack of accessibility to the
datasets, we could not test the classifier in tumors from lung or
head and neck carcinomas or additional TNBC cohorts. Fur-
thermore, the accuracy in HR+/HER2− BC patients is sub-
stantially lower than in patients with TNBC, limiting the effective
use of TNBC-ICI to patients with TNBC. However, the significant
but limited accuracy of the classifier in this group of patients
serves as a demonstration of the potential of TNBC-ICI to predict
response to ICI. Moreover, the TNBC-ICI classifier was not sig-
nificantly associated with survival intervals or higher rates of
response in patients with TNBC treated with chemotherapy
alone, suggesting the identification of tumor features involved in
response to ICI and not a sub-group of patients with intrinsic
extended survival.

While single biomarkers adapted to routine pathology assays
are still the gold standard for fast and cost-effective specimen
diagnosis, there is still significant room for improvement. One
advantage of the molecular signatures classifiers is the accuracy
and reproducibility of the methods. While other methods such as
immunohistochemistry can be biased by different factors,
including the antibody type, lots, reagents, and pathologists
reading the results, transcriptome analysis, while still having a
certain batch effect, reduces the “human effect” on the analysis of
the results44. However, each approach has applications in the
appropriate diagnostic setting.

In summary, integrating gene expression profiles of TNBC
specimens using artificial intelligence provides a robust gene
expression-based classifier that can predict pCR to ICI plus
chemotherapy treatment in TNBC. This classifier, called TNBC-
ICI, exhibits promising predictive potential based on our study
but must be tested in independent TNBC cohorts to ensure the
reproducibility of the results in patients with different demo-
graphical and clinical features to allow for a precise selection of
patients who will respond to ICI treatment. A limitation of the
application of the TNBC-ICI classifier is the scarcity of datasets
containing reliable transcriptome and outcome data from patients
with TNBC treated with ICI plus chemotherapy, which limits its
extended validity. Nonetheless, we have opened a simplified
version of the code at the GitHub repository that can be easily
employed and improved by other researchers. We plan to update
the TNBC-ICI model as new transcriptomic and clinical data
become available, to enhance its accuracy and its utility as a
predictive tool for treatment response. Updated versions of the

classifier will be made available in the GitHub repository (see
Code Availability section).

Data availability
All the data employed in the study has been obtained from publicly available
databases24,25,45–52, including the Gene Expression Omnibus (GEO), ArrayExpress, and
directly from the IMvigor210CoreBiologies R package. All the accession numbers are
available in Supplementary Table 1. Source data for the figures are available at the
Zenodo repository53.

Code availability
All the code employed in the study is available at GitHub (https://github.com/
mensenyat/TNBC-ICI) and Zenodo54 repositories. These files include a simplified
version of the code that can be employed to check the validity of the method and a
dataset and code that can be used to apply TNBC-ICI to new samples. This code will be
updated in GitHub with data from additional public datasets when they are released.
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