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Epidemic modelling of monitoring public behavior
using surveys during pandemic-induced lockdowns
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Abstract

Background Implementing a lockdown for disease mitigation is a balancing act: Non-

pharmaceutical interventions can reduce disease transmission significantly, but interventions

also have considerable societal costs. Therefore, decision-makers need near real-time

information to calibrate the level of restrictions.

Methods We fielded daily surveys in Denmark during the second wave of the COVID-19

pandemic to monitor public response to the announced lockdown. A key question asked

respondents to state their number of close contacts within the past 24 hours. Here, we

establish a link between survey data, mobility data, and hospitalizations via epidemic mod-

elling of a short time-interval around Denmark’s December 2020 lockdown. Using Bayesian

analysis, we then evaluate the usefulness of survey responses as a tool to monitor the effects

of lockdown and then compare the predictive performance to that of mobility data.

Results We find that, unlike mobility, self-reported contacts decreased significantly in all

regions before the nation-wide implementation of non-pharmaceutical interventions and

improved predicting future hospitalizations compared to mobility data. A detailed analysis of

contact types indicates that contact with friends and strangers outperforms contact with

colleagues and family members (outside the household) on the same prediction task.

Conclusions Representative surveys thus qualify as a reliable, non-privacy invasive mon-

itoring tool to track the implementation of non-pharmaceutical interventions and study

potential transmission paths.
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Plain language summary
Mobile phone data obtained from

companies such as Google and Apple

have often been used to monitor

public compliance with pandemic

lockdowns and make predictions of

future disease spread. Survey data

obtained by asking people a series of

questions can provide an alternative

source of information. We undertook

daily surveys of a representative

subset of the Danish population

immediately before, and during, a

lockdown during the COVID19 pan-

demic. We compared the modeling

results obtained from the surveys

with data derived from the movement

of mobile phones. The self-reported

survey data was more predictive of

future hospitalizations due to COVID

than mobility data. Our data suggest

that surveys can be used to monitor

compliance during lockdowns.
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Pandemic management is a balancing act. When an outbreak
of infections flares up, governments and authorities need to
impose restrictions and recommendations on society that

are carefully calibrated to the situation. On the one hand, during
the COVID-19 pandemic, such non-pharmaceutical interventions
have considerable benefits by changing the dominant transmis-
sion route—close contacts between individuals—via the incen-
tives and information they provide1,2. On the other hand, these
interventions have considerable costs in the form of negative
externalities relating to the economy and mental health3–5.

This balancing act puts authorities and governments in need of
information to continuously calibrate the level of restrictions. It is
not a matter of simply sending out a single set of instructions
regarding restrictions and recommendations. Rather, authorities
need to continuously receive information about the effectiveness
of those restrictions and recommendations and adjust accord-
ingly. An obvious source of information is directly related to the
epidemic and includes the number of infection cases, hospitali-
zations, and deaths. Yet cases of infection are difficult to monitor
and, for example, changes in the public’s motivation to participate
in testing programs may create problems with respect to com-
parisons over time6. Furthermore, there is a significant lag
between the onset of interventions and hospitalizations and death
counts, which imply that it is difficult to calibrate interventions
on the basis of such information. Consequently, researchers,
authorities and governments worldwide have complemented
epidemiological information with information on the direct target
of the interventions: Behaviour7,8.

In this manuscript, we assess the predictive performance of a
particular source of information about behavior during lock-
downs: Population-based surveys on social contacts, fielded daily
to representative samples of the Danish population during the
COVID-19 pandemic (see Methods for details on this dataset).
This assessment aligns with recommendations about the use of
surveys as epidemic monitoring tools on the basis of experiences
during the SARS epidemic in Hong Kong9 and recommendations
from the World Health Organization during the COVID-19
pandemic10. From a public health policy perspective, this parti-
cular dataset is a unique test case as it was, in fact, reported to the
Danish government for this purpose on a twice-weekly basis
during the second wave of COVID-19 infections in December
2020.

Furthermore, these data are unique in another respect: They
constitute an open and ‘citizen science’11 alternative to the most
used source of information on pandemic behavior: Mobility data.
As we detail below, mobility data as a source of information may
be problematic from both a methodological and policy perspec-
tive. Mobility data provides a proxy for close contacts between
people and has been heavily utilized by researchers and public
health institutions8,12–14. Mobility data quantifies the popula-
tion’s movement patterns and is unobtrusively obtained in a
number of ways, for example, via people’s smart phones and
provided to researchers and governments via private companies
such as Google15. This reliance, however, can and has raised
concerns. First, in many cases, it implies that pandemic man-
agement and research relies on the willingness of private com-
panies to share information during a critical crisis. Second,
citizens themselves may be concerned about real or perceived
privacy issues related to the sharing of data with authorities16,17.
Given the importance of public trust for successful pandemic
management18, such concerns—if widespread—can complicate
pandemic control. Third, data from companies such as Google,
Facebook and local phone companies may not be representative
of the population of interest: The entire population of the
country. Rather than being invited on the basis of traditional
sampling methods, people opt-in to the services of different

companies and, hence, the data from any single company is likely
a biased sample. In this sense, we argue that the known unknowns
of survey data (e.g. we know we do not observe anyone under the
age of 18) is preferable to the unknown unknowns of large-scale
passive surveillance data. Fourth, the movements of people in
society as captured by mobility data is only a proxy of the
quantity of interest: Actual close encounters between individuals
that drive the pandemic.

For these reasons, it is key to assess alternative sources of
information about public behavior such as nationally repre-
sentative surveys of the adult population. In principle, surveys
could alleviate the problems relating to the collection and validity
of mobility data. Survey research is a centuries old low-cost
methodology that can be utilized by public actors and that relies
on well-established procedures for obtaining representative
information on private behaviours in voluntary and anonymous
ways19.

At the same time, data from surveys come with their own
methodological complications. As documented by decades of
research, people may not accurately report on their own
behaviour20. Survey answers during the pandemic may be biased
by, for example, self-presentational concerns and inaccurate
memory. While research on survey reports of behaviour during
the pandemic suggests that self-presentational concerns may not
affect survey estimates21, memory biases may (although such
biases are likely small for salient social behavior)22. Even with
such biases, however, surveys may be fully capable to serve as an
informative monitoring tool. The key quantity to monitor is
change in aggregate behaviour over time. If reporting biases are
randomly distributed within the population, aggregation will
provide an unbiased estimate. Even if this is not the case, changes
in the survey data will still accurately reflect changes in popula-
tion behaviour as long as reporting biases are stable within the
relevant time period.

On this basis, the purpose of the present manuscript is, first, to
examine the degree to which survey data provide useful diag-
nostic information about the trajectory of behavior during a
lockdown and, second, to compare its usefulness to information
arising from mobility data. To this end, we focus on a narrow
period around Denmark’s lockdown during the second wave of
the COVID-19 epidemic in the Fall of 2020, i.e., prior to vaccine
roll-out when it was crucial for authorities to closely monitor
public behavior. We illustrate the usefulness of survey data on a
narrow window of time because the changing nature of factors
such as seasonal effects, new variants, vaccines, changing masking
efforts, etc., make it difficult to model COVID-19 transmission
across long periods without making a large number of
assumptions6. See also Sec. 3 for a discussion on the limitations of
our survey data. In spite of the limited scope, we believe that the
study remains relevant for policy makers because it allows to
monitor public behaviour at a crucial moment, when policy
makers should not be forced to rely on proximity or mobility data
from private companies in the absence of timely incidence data.

Specifically, we ask whether (a) daily representative surveys
regarding the number of close social contacts and (b) mobility
data allow us to track changes in the observed number of hos-
pitalizations in response to the lockdown. In addition, to further
probe the usefulness of survey data, we provide a fine-grained
analysis of how different types of social contacts relate to hos-
pitalizations. Our results shed new light on the usefulness of
survey data. Previous studies during the COVID-19 pandemic
have documented high degrees of overlap between self-reported
survey data on social behavior and mobility data, but have not
assessed whether these data sources contain useful information
for predicting transmission dynamics23,24. One study did com-
pare the predictive power of mobility data to survey data on the
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psychosocial antecedents of behavior25 and found that mobility
data was more predictive than the survey data of COVID-19
transmission dynamics. Here, we provide a more balanced test by
comparing the predictive value of mobility data and survey data
when directly focused on self-reported behavior rather than
simply its psychosocial antecedents.

We find that, unlike mobility, self-reported contacts decreased
significantly in all regions of Denmark before the nation-wide
implementation of non-pharmaceutical interventions. This
change in behaviour corresponds well to the inferred reproduc-
tion number suggesting that self-reported survey data can be used
to monitor compliance during lockdowns and improve short-
term predictions of future hospitalizations. Further analyses of
contact type show that contacts to friends and strangers outper-
form contacts with colleagues and family members (outside the
household) as predictors for future hospitalization.

Methods
Data. We use survey data from the HOPE (‘How Democracies
Cope With COVID-19’) research project (www.hope-project.dk).
Specifically, the HOPE-project fielded daily nationally repre-
sentative survey in Denmark starting from mid-May 2020. Kantar
Gallup, a private company, conducted the data collection until
March 2022. Each day a nationally representative sample (with a
daily target of 500 complete interviews) reports on their protec-
tive behaviour and perceptions of the COVID-19 pandemic.
Participants are Danish citizens aged 18 years or older. They are
recruited using stratified random sampling—on age, sex and
geographical location—based on the database of Danish civil
registration number. The data collection fully complies with
Aarhus University’s Code of Conduct and with the ethical stan-
dards set by the Danish Code of Conduct for Research Integrity.
The legal aspects of the data collection was approved by Aarhus
University’s Technology Transfer Office. As per section 14(2) of
the Act on Research Ethics Review of Health Research Projects,
“notification of questionnaire surveys… to the system of research
ethics committee system is only required if the project involves
human biological material.” All participants provided informed
consent. The mobility data comes from Apple26, Google27 and
major Danish mobile phone network operators28. For further
details on the data, see Supplementary Note 1 and Supplementary
Note 2.

Model description. We observe regional COVID-19 related
hospitalizations, which derive from an initial number of infected
and the time-varying reproduction number. We parametrize the
latter using behavioural survey data and mobility time series. Our
approach is a variant of the semi-mechanistic hierarchical Baye-
sian model of Flaxman et al.29 and Unwin et al.30, with the key
difference that we use daily COVID-19 related hospitalizations. In
Denmark, hospitalizations are a reliable proxy for pandemic
activity available. Unlike death counts, hospitalizations are
recorded with a significantly smaller delay and give a better
signal-to-noise ratio for regions with little epidemic activity. The
number of positive PCR-cases, on the other hand, suffers from
confounding through varying test intensity during the Christmas
holidays and more importantly, we can rely on a well-studied
infection-to-hospitalization delay distribution, which is less sen-
sitive to country-specific testing protocols.

The code is written in the Julia programming language31 using
the Turing.jl package32 for Bayesian inference. The source code is
fully accessible on GitHub33 and we summarize sampling details
in Supplementary Note 3. In the following, we provide the
mathematical details of the epidemiological model.

Observation model. As observations, we take the daily number of
hospitalizations Ht,r at time t in region r and assume these are
drawn from a Negative Binomial distribution with mean ht,r and
over-dispersion factor ϕ:

Ht;r � NegBinom ht;r; ht;r þ
h2t;r
ϕ

 !
ð1Þ

ϕ � Gamma ðmean ¼ 50; std ¼ 20Þ ð2Þ
From the expected number of hospitalizations ht,r, we derive

the latent, i.e., unobserved number of new infections it,r. Two
factors link infections to hospitalizations: (a) The conditional
probability α of hospitalization following an infection and (b) the
corresponding delay distribution π:

ht;r ¼ α ∑
t�1

τ¼0
iτ;rπt�τ ð3Þ

α � Normalþð0:028; 0:002Þ ð4Þ
We estimate the infection hospitalization rate α in Eq. (4) from

a sero-prevalence study34. The results are, however, not sensitive
to this value as we don’t account for the depletion of susceptible.
The delay π is a sum of two independent random variables, i.e.
the incubation period and the time from onset of infection to
hospitalization35. We take the corresponding distributions from
previous studies and parametrize the incubation period by a
Gamma distribution with a mean of 5.1 days and a coefficient of
variation of 0.8636 and the infection to hospitalization delay by a
Weibull distribution with a mean of 5.506 days and a shape
parameter 0.84535, which corresponds to a standard deviation of
8.4 days:

π �Gamma ðmean ¼ 5:1;CV ¼ 0:86Þ
þ Weibull ðshape ¼ 0:845; scale ¼ 5:506Þ ð5Þ

We then discretize the continuous distribution π by πi ¼R iþ0:5
i�0:5 gðτÞdτ for i= 2, 3,… and π1 ¼

R 1:5
0 gðτÞdτ for application

in Eq. (3).

Infection model. The (unobserved) number of new infections, it,r,
evolves according to a discrete renewal process. This approach
has been widely used in epidemic modelling29,37–39, is related to
the classical susceptible-infected model40 and has a theoretical
foundation in age-dependent branching processes37,41. New
infections in region r at time t are a product of the time-varying
reproduction number Rt,r and the number of individuals that are
infectious at time t. The latter is a convolution of past infections
and the generation interval gτ:

it;r ¼ Rt;r ∑
t�1

τ¼0
iτ;rgt�τ ð6Þ

The generation interval g translates past infections to the
present number of infectious individuals and following previous
studies, we assume a Gamma distribution density g(τ) with mean
5.06 and SD 2.1142:

g � Gamma ðmean ¼ 5:06; SD ¼ 2:11Þ ð7Þ
Again, we discretize the continuous distribution by gi ¼R iþ0:5

i�0:5 gðτÞdτ for i= 2, 3,… and g1 ¼
R 1:5
0 gðτÞdτ to be used in Eq.

(6). The convolution in Eq. (6) requires a history of infectious
individuals for initialization, which we estimate prior to the
analysis as described below.

Transmission model. At the heart of the analysis is the instanta-
neous reproduction number Rt,r for region r at time t. It
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determines the number of secondary transmissions from the
current number of infectious individuals. We implement a
parametric and a non-parametric variant of the model akin to43.

The non-parametric model implements a latent random-walk,
i.e., a AR(1) process that allows to track daily changes of the
reproduction number:

Rt;r ¼ R0;r expðρt;rÞ ð8Þ

ρt;r � Normal ðρt�1;r; σÞ ð9Þ

σ � Normalþð0:3; :02Þ ð10Þ
Here, the latent variable ρt,r performs a random walk with a

typical step size of σ. Hence, the number of inferable parameters
ρt,r equals the number of observation days for each region r. The
step size σ determines the smoothness of the resulting reproduc-
tion number and we choose the same prior distribution as in
ref. 30. The non-parametric model allows us to infer the “ground
truth” that we use for visual comparison.

The parametric model, on the other hand, takes a data stream
Xt,r for every region r as a parametrization of the reproduction
number:

Rt;r ¼ R0;r expðerXt;rÞ ð11Þ

er � Normal ðe; sÞ ð12Þ

e � SkewedLaplace ðμ ¼ 0; σ ¼ 0:7; α ¼ 0:2Þ ð13Þ

s � Gamma ðmean ¼ 0:07; SD ¼ 0:05Þ ð14Þ
The predictors are normalized such that Xt,r gives the change in

behaviour at time t relative to the first day, i.e. t0= 2020-12-01, in
region r. Thus, the effect size er in Eq. (11) translate a relative
change in the predictor Xt,r to a change in the regional
reproduction number Rt,r. We pool information in order to
reduce regional biases and to give a robust country-level effect
estimate e akin to multi-level models44.

With more contacts or a higher mobility level, we expect an
increased disease transmissibility and therefore, we choose a
skewed Laplace distribution as a prior for the pooled effect
parameter μe45. Furthermore, we choose a shrinking prior on the
dispersion parameter s to limit regional differences and thus
reduce potential overfitting given the limited data. Note, however,
that substantial effect differences are still inferrable if the data
provides sufficient evidence.

Initialization of the non-parametric model. Observations start on
01-August-2020, i.e., well before the second wave of Covid
infections (see Fig. 2). In order to initialize the discrete renewal
process, we can therefore reasonably assume that the number of
latent infections prior to 01-August-2020 are constant, i.e., it,r≡
i0,r for t ≤ 0. We infer i0,r from the number of PCR-positive cases
I0,r on 01-August-2020 and roughly assume an underestimation
factor of three:

i0;r � Exponential ð3I0;rÞ ð15Þ
The exponential prior implies a broad uncertainty and thus suf-
ficient flexibility of the inference model. Note that we choose
PCR-positive cases to initialize the number of infected because
hospitalizations were very low and noisy at the start of the second
wave, making incidence data in this case a stronger choice for
initializing the model. Moreover, we choose the initial repro-
duction number to be around one, which reflects our prior believe
that the epidemic was under control well before the second wave

of infections:

R0;r � Normalþð1:0; 0:1Þ ð16Þ
Initialization of the parametric model. Observations start on 01-
December-2020, i.e., about 1 week prior to the lockdown’s
announcement and well withing the second wave of Covid-19
infections. Here, the assumption of constant it,r≡ i0,r for t≤0 as
well as R0,r ≈ 1 are not suitable. Instead, we take posterior samples
from the non-parametric model, marked with an asterisk, for
initialization: In particular, we take the mean over the posterior
samples of the latent infections hii�t;r and scale the timeseries with
a factor ν that corresponds roughly to the posterior uncertainty of
i�t;r . Hence, we obtain the initial number of latent infections
according to:

it;r ¼ ν � hii�t;r for all t ≤ 0 ð17Þ

ν � Normal�ð1; 0:1Þ ð18Þ
Similarly, we initialize the effective reproduction number R0,r by
fitting a Normal distribution to the posterior samples R�

0;r from
the non-parametric model at the initial observation, i.e. 01-
December-2020:

R0;r � NormalþðμR; σRÞ ð19Þ

μR ¼ mean ðR�
0;rÞ ð20Þ

σR ¼ std ðR�
0;rÞ ð21Þ

Parametric model with multiple predictors. For the analysis in
Supplementary Fig. 1 and Supplementary Table 1, we implement
a parametric model with multiple predictors c. To this end, we
modify Eq. (11) to Eq. (14) according to:

Rt;r ¼ R0;r exp ∑
c
ecrX

c
t;r

� �
ð22Þ

ecr � Normal ðec; sÞ ð23Þ

ec � SkewedLaplace ðμ ¼ 0; σ ¼ 0:7; α ¼ 0:2Þ ð24Þ

s � Gamma ðmean ¼ 0:07; SD ¼ 0:05Þ ð25Þ
The reproduction number in region r at time t is a linear com-
bination multiple data streams Xc

t;r with an exponential link-
function to ensure positivity. Each predictor is normalized such
that Xc

t;r gives the change in behaviour or mobility at time t
relative to the first day, i.e. 2020-12-01, in region r. Thus, the
effect sizes ecr translate a relative change in the predictor c to a
change in the reproduction number Rt,r. We pool effect sizes ecr to
reduce regional biases and obtain a national-level effect size ec for
each predictor c.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
We establish the link between survey data, mobility data, and
hospitalizations via epidemic modeling, which uses the beha-
vioural survey and mobility data as an input to capture under-
lying infectious activity30,43. Specifically we extend the semi-
mechanistic Bayesian model from Flaxman et al.29,30 to jointly
model the epidemic spreading within the five regions of Den-
mark. Where possible, we use partial pooling of parameters to
share information across regions and thus reduce region specific
biases. We parametrize the regional reproduction number Rt with
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a single predictor Xt from our survey or the mobility data,
respectively, for each realization of a model:

logðRtÞ ¼ logðR0Þ þ eXt ð26Þ
The regional reproduction number at time t derives from the
initial value R0 and the scaled predictor eXt with a logarithmic
link-function (see Methods for full details on the model).

We compare the predictive performance of each data stream
using leave-one-out cross-validation (LOO). LOO works by fit-
ting the model to the observed hospitalizations excluding a single
observation and comparing the prediction of the unseen obser-
vation against the observed real-world data. Repeating this pro-
cess over all observations, allows one to estimate the model
performance on out-of-sample data with a theoretically prin-
cipled method that accounts for uncertainties44. In practice, this
would result in an immense computational effort and therefore,
we use an efficient estimation of LOO based on pareto-smoothed
importance sampling46. In order to compare the predictive per-
formance of, say self-reported survey against mobility, we cal-
culate the LOO score for each model parametrization and
consider the difference significant if it exceeds the 95% CI.

Because we are interested in the use of behavioural data as a
guide for decision-making, our inference focuses on the key period
of the second wave from 1-December-2020, i.e., about 1 week before
Denmark’s lockdown announcement, to 20-February-2021 when
vaccinations accelerated across the country. The period captures a
sharp increase and eventual decline in hospitalizations during the
second wave of Denmark’s Covid-19 pandemic (see Supplementary

Fig. 2). We stress that this narrow focus makes ours a proof-of-
concept study. To fully understand the efficacy of survey-data, it
will be important to extend models and analyses to longer periods
of time—thus making it necessary to involve factors such as vac-
cination, new variants of concern, the opening of schools, etc.

Defining risk-taking behaviour. As a monitoring tool, we first
consider self-reported survey data on the daily number of contacts,
defined as close encounters with <2 meters distance for at least
15 minutes47. The reported numbers are highly skewed, with 15.7%
of all counts concentrated on zero with some reporting over 1000
contacts (see Supplementary Fig. 3). As a result, taking the mean
over daily reported numbers is highly sensitive to outliers, while
reporting quantile-based measures obscure most of the variation.

Instead, we define the following robust measure of risk-taking
behaviour: We label a participant in the survey as risk-taking if
they report contacts above a fixed threshold and propose the daily
fraction of risk-taking individuals as a predictor to the effective
reproduction number. The intuition is that infections tend to be
linked to large clusters via super-spreading events48. Therefore,
we base our analysis on the fraction of the population that reports
an above-average number of contacts.

That choice begs the question ‘What is a reasonable threshold
that defines risk-taking behaviour?’ We choose a reference period
prior to the lockdown’s announcement, take the distribution of
contacts over the time window and define a range of thresholds in
terms of percentiles (see Supplementary Fig. 3 for details). For a
visual comparison, Fig. 1, second row illustrates the dynamics of

Fig. 1 National-level comparison between the inferred reproduction number and multiple predictors. a inferred reproduction number from national
hospitalizations. b Comparison between thresholds that define risk-taking behaviour: The percentile gives a number of contacts n that defines risk-taking
behaviour. The time-series present the daily fraction of individuals P(#total contacts≥n) that report at least n contacts. c Comparison between risk-taking
behaviour with a threshold at the 70th percentile (self-reported survey data), Google mobility, Apple mobility, and telecommunication data (Telco).
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risk-taking behaviour, referred to as self-reported survey data. The
thresholds range from the 40th to the 90th percentile and
translate into a critical number of contacts ranging from 3 and 25,
respectively. For thresholds above the 60th percentile, risk-taking

behaviour shows the strongest response to the announced
lockdown and increases little during the Christmas period.
Qualitatively, this behaviour matches the time-varying reproduc-
tion number Rt (see Fig. 1, first row) that we inferred from

Fig. 2 Regional-level comparison between hospitalizations, reproduction number and predictors. First row: Hospitalizations. 2nd row: inferred
reproduction number from regional hospitalizations with mean and 95% CI. 3rd-6th row: survey data (70th percentile threshold), Google mobility, Apple
mobility, and telecommunication data (Telco). We mark the lockdown’s first announcement, it’s partial and national implementation with a solid vertical
line, a dashed vertical line and shaded vertical area, respectively.
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national hospitalizations using a latent random-walk model
(details in Sec. 3).

In the following, we use the 70th percentile as a threshold,
which corresponds to 10 close contacts and more within the past
24h. However, our results are not sensitive to this value as all
models within a threshold between the 60th and 90th percentile
perform similarly well (see Supplementary Fig. 4 and Supple-
mentary Table 2).

Self-reported survey data versus mobility data. By considering
self-reported survey data, we capture the sharp decline in the
reproduction number after the lockdown’s announcement, i.e., about
2 weeks before its nationwide implementation. This early signal is not
as pronounced in the combined mobility time series from Google
and Apple that have been proposed in ref. 43, nor in the tele-
communication data from Danish mobile network operators (see
Fig. 1 and Fig. 2 for a visual comparison on the national and regional
level, respectively). In addition, we also observe a sharp increase in
mobility shortly after the lockdown’s implementation, which does not
correspond to the inferred reproduction number and thus does not
translate into increased hospitalizations. This decoupling between
mobility and disease dynamics has been previously observed for
other countries43,49. A quantitative model comparison with LOO
cross-validation confirms that self-reported survey data gives the best
out-of-sample predictions for hospitalizations (see Fig. 3).

We find a more nuanced result when comparing self-reported
contacts to the individual data streams provided by Google (see
Supplementary Fig. 5). In particular, the category “Retail &
Recreation” performs only marginally worse (see Supplementary
Table 3) suggesting that disease relevant contacts are highly
context dependent—a result that we will examine in the following
section.

Understanding the role of contact-types. In our survey, we
assessed the daily number of contacts separately for (a) family
members outside the household, (b) friends and acquaintances,
(c) colleagues and (d) strangers, i.e. all other contacts. Therefore,
we can evaluate the impact of social context-depending risk-
taking behaviour on Rt and observed hospitalizations, respectively
(Fig. 4). As above, we choose the 70th percentile as a threshold for
risk-taking behaviour for each contact type, and as above our
findings are robust to the specific choice of threshold.

The visual comparison in Fig. 5 shows that risk-taking
behaviour towards friends, strangers and colleagues declines
significantly weeks before the lockdown’s national implementa-
tion—unlike risk-taking behaviour towards family members. The
latter spikes around Christmas, which appears to have little effect

on the reproduction number, perhaps due to precautionary
measures taken prior to visiting family (e.g., testing).

Cross-validation shows that risk-taking behaviour towards
friends and strangers is significantly more predictive than family
members and colleagues (see Fig. 5). Importantly, however, this
does not imply that contacts with colleagues and family members
play a minor role in disease spreading. A joint model that
includes all contact types as predictors reveals a strong correlation
between risk-taking behaviour towards colleagues and family
members (see Supplementary Fig. 6) and Supplementary Fig. 1
and a further cross-validation analysis shows that the combina-
tion of both predictors performs similarly well to contacts with
strangers and friends (see Supplementary Table 1).

Discussion
During a lockdown, decision-makers need high-fidelity, real-time
information about social behavior in order to carefully calibrate
restrictions to both the epidemic wave and levels of public
compliance. Interventions that are too lenient will not sufficiently
reduce the wave, while too severe interventions (e.g., curfews)
may have significant negative externalities on, for example, public
trust and mental health4,5.

To this end, researchers and authorities worldwide have relied
on mobility data, which have been cheaply available as they were
already unobtrusively collected by, for example, private tech
companies. At the same time, such reliance entails a dependency
on data collected by company actors and data which may raise
privacy issues.

In the present analysis, we have provided evidence suggesting
the usefulness of daily surveys of nationally representative sam-
ples as an alternative source of information during a lockdown.
While the use of surveys has been recommended during the
COVID-19 pandemic by WHO10 and on the basis of the SARS
epidemic in Hong Kong9, the present analysis provides one of the
first attempts to quantify the predictive validity of surveys of self-
reported behavior during a lockdown. In contrast, prior research
has focused on the behavioral antecedents of behavior such as
self-reported fear of COVID-1925. While understanding the
impact of such antecedents is a theoretically important endea-
vour, more direct measures of behavior may be preferable for a
monitoring purpose (see also Supplementary Fig. 7 and Supple-
mentary Table 6 for a comparison with indirect measures from
our survey).

Our analyses provides a proof-of-concept that self-reported
measures of behavior can be superior to mobility. Given the
widespread use of mobility data it is relevant to ask why survey
data fared better. Unlike the telco data and the combined time-
series from Google and Apple, respectively, the survey data was
able to capture behavioural changes weeks before the lockdown’s
nation-wide implementation. Parts of the effect can be explained
by preceding partial lockdowns (see Supplementary Table 7 for a
timeline of Covid19 related restrictions). However, we see similar
decreases of activity also in regions that were not targeted with
the partial lockdown and in addition, we observe an early increase
in risk-awareness (see Supplementary Fig. 8). This observation
hints at an additional indirect, i.e., psychological effect: Indivi-
duals adjust their behaviour in response to an increased perceived
threat due to rising case numbers or intensified political discus-
sions that culminated in the announced national lockdown on 07-
December-2020. This finding suggests that part of the problem of
mobility data may be that it is too coarse and, hence, does not
capture the micro-adjustments in social behavior that people
make when they are concerned with infection risk such as
standing further away from others in public queues, not mingling
with co-workers at the workplace and so forth.

Fig. 3 Self-reported survey data (survey) demonstrates highest
predictive performance compared to Google mobility, Apple mobility and
telecommunication data (telco). We calculate the difference in LOO score
w.r.t the best performing model and mark the mean difference and the 95%
CI with a circle and a blue bar, respectively. We consider the difference
significant if the mean exceeds the 95% CI. See Supplementary Table 4 for
details.
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Fig. 4 Regional-level comparison between hospitalizations, reproduction number and risk-taking behaviour in different social contexts. 1st row: regions
of Denmark. 2nd row: inferred reproduction number from regional hospitalizations with mean and 95% CI. 3rd-6th row: Regional predictors including risk-
taking behaviour towards friends, strangers, colleagues, and family members outside the household, respectively, with a threshold at the 70th percentile.
The solid vertical line, dashed vertical line and shaded area mark the lockdown’s first announcement, it’s partial implementation and national
implementation, respectively.
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Moreover, mobility increases shortly after the lockdown’s
implementation with little effect on hospitalizations. This
decoupling between mobility and reproduction number has been
previously observed in other countries43,49. Unlike mobility, self-
reported contacts provide a more direct measure of behaviour
and thus improves predictability months after the lockdown’s
implementation.

At the same time, it is relevant to note that a more detailed
analysis of the individual Google data streams revealed the
importance of context-depending contacts: Our analysis finds
that “Retail & Recreation” performs only marginally worse than
self-reported contacts (see Supplementary Table 3) and Supple-
mentary Fig. 5 and can be best explained by risk-taking behaviour
towards strangers (see Supplementary Fig. 9).

Finally, we find that risk-taking behaviour towards strangers
and friends provide the best predictors for hospitalizations,
although, a joint model that includes contacts to colleagues and
family members performs similarly well. This behaviour could be
explained by their complementary dynamics during the Christ-
mas period: Holidays implied less contacts to colleagues and
larger gatherings with family members.

Our sensitivity analysis in Supplementary Figs. 10, 11, 12, 13,
14, and 15 confirms that all results are robust to minor changes in
the observation window, the infection-to-hospitalization dis-
tribution, and the threshold that defines risk-taking behaviour.

Our inability to predict the rise of COVID-19 related hospi-
talizations prior to the lockdown’s announcement suggests that
there are multiple possibilities of improving the measures used for
monitoring public behavior during an epidemic. When knowl-
edge has been gathered about the main pathways of transmission,
researchers and authorities can more directly ask questions about
social interactions in situations that enhances or inhibits trans-
mission risk. During the COVID-19 pandemic, for example, it
would be relevant to know whether the contact occurred inside or
outside, especially as temperatures drop and individuals adjust
their behaviour. Moreover, we know now about the importance of
transmission in children and young adults below 18, which could
not be included in the study. We believe that the lack of con-
textual information and representativeness limits the usefulness
of our data set to predict the onset of the second wave of COVID-
19 infections. (see Supplementary Fig. 2).

An important final lesson is that if one is able to sample
representatively, the surveys themselves do not need to be espe-
cially large—only around 500 responses per day in this case.
However, this also raises an important limitation of our study.
The samples we are able to collect in Denmark are arguably too
good to transfer directly to other contexts. Our ability to sample
directly from highly curated central database, with a 25%

response rate despite no compensation offered to respondents is
not necessarily replicable in many other countries, especially
outside of Europe50. We stress that the implications of reduced
sample quality need to be explored if extending our results to
other contexts.

In summary, the present analysis has provided proof-of-
concept regarding the usefulness of survey data as public policy
tool for monitoring compliance with the announcement and
implementation of lockdowns. Even though, the analyses we
present are narrowly focused on a single lockdown, they provide
evidence in support for the WHO’s recommendation to integrate
social science methods such as surveys into pandemic surveillance
and management.

Data availability
All data necessary for the replication of our results is collated in https://github.com/
andreaskoher/Covid19Survey33. This includes mobility data from Google (https://www.
google.com/covid19/mobility/), Apple (https://covid19.apple.com/mobility), and Danish
telco providers (https://covid19.compute.dtu.dk/data-description/telco_data/), as well as
Covid-19 related hospitalizations in the five regions of Denmark (https://covid19.ssi.dk/).
For convenience, we provide the regional hospitalization data together with the
predictors used in the main text in Supplementary Data (see also https://doi.org/10.5281/
zenodo.781879351).

Code availability
All code necessary for the replication of our results is collated in https://github.com/
andreaskoher/Covid19Survey33.
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