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Abstract

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated

with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens

can lead to improved risk stratification and discover pathophysiological mechanisms.

Methods Using measurements of ~4000 plasma proteins in two cohorts of patients

hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI

(stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we

identified 413 higher plasma abundances of protein targets and 30 lower plasma abundances

of protein targets associated with COVID-AKI (adjusted p < 0.05). Of these, 62 proteins were

validated in an external cohort (p < 0.05, N= 261).

Results We demonstrate that COVID-AKI is associated with increased markers of tubular

injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) mea-

surements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are

significantly associated with decreased post-discharge eGFR (adjusted p < 0.05). Proteins

most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil

factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating

tubular dysfunction and injury.

Conclusions Using clinical and proteomic data, our results suggest that while both acute and

long-term COVID-associated kidney dysfunction are associated with markers of tubular

dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic

instability and myocardial damage.
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Plain language summary
Acute kidney injury (AKI) is a sud-

den, sometimes fatal, episode of kid-

ney failure or damage. It is a known

complication of COVID-19, albeit

through unclear mechanisms.

COVID-19 is also associated with

kidney dysfunction in the long term,

or chronic kidney disease (CKD).

There is a need to better understand

which patients with COVID-19 are at

risk of AKI or CKD. We measure

levels of several thousand proteins in

the blood of hospitalized COVID-19

patients. We discover and validate

sets of proteins associated with

severe AKI and CKD in these

patients. The markers identified sug-

gest that kidney injury in COVID-19

patients involves damage to kidney

cells that reabsorb fluid from urine

and reduced blood flow to the heart,

causing damage to heart muscles.

Our findings might help clinicians to

predict kidney injury in patients with

COVID-19, and to understand its

mechanisms.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a novel coronavirus that has caused the cor-
onavirus disease 2019 (COVID-19) pandemic. Although

effective vaccines are available, novel variants that may evade
neutralizing antibodies exist in the population and have led to
high case counts and periodic case surges. COVID-19 most
commonly presents with fever, cough, and dyspnea1,2 and is
associated with acute respiratory distress syndrome (ARDS).
However, the clinical syndrome resulting from SARS-CoV-2
infection is broad, ranging from asymptomatic infection to severe
disease with extrapulmonary manifestations3, including acute
kidney injury4, acute myocardial injury5,6 and thrombotic
complications7–11. The CRIT-COV-U research group in Ger-
many recently developed a urinary proteomics panel COV50 that
could consider this variability in infection by generating bio-
markers that can indicate adverse COVID-19 outcomes based on
the WHO severity scale12.

Acute kidney injury (AKI) is a particularly prominent com-
plication. The rates of AKI vary greatly based on patient popu-
lation, but evidence suggests that at least 30% of hospitalized
patients and 50% of patients in the intensive care unit (ICU)
develop AKI1,4,13–16. Although the rate of AKI in hospitalized
COVID-19 patients has decreased since the initial surge in 2020,
the incidence remains high17. Like community-acquired
pneumonia18, AKI is increasingly recognized as a common
complication of COVID-19 in the hospitalized setting and confers
significantly increased morbidity and mortality19.

There is a limited understanding of the pathophysiology of
COVID-19-associated AKI. A recent paper20 compared tran-
scriptomics and proteomics of postmortem kidney samples of
patients with severe COVID-19 and autopsy-derived control
cohorts of sepsis-AKI and non-sepsis-AKI. The work found
common inflammatory pathways and regulatory responses
including the downregulation of oxidative signaling pathways
between COVID-19 AKI and sepsis-AKI. They also confirmed
the observation of tubular injury in almost all their COVID-19
AKI samples while drawing similarities between the inflammation
response of sepsis-associated AKI and COVID-19 associated AKI.
Histopathological reports from autopsy specimens have provided
conflicting insights into the pathological changes in the kidney in
COVID-19. A report of 26 patients who died with COVID-19
AKI revealed acute tubular injury as a prominent mechanism21.
Additionally, the presence of viral particles in the tubular epi-
thelium and podocytes in autopsy specimens has been
reported21,22, which is evidence of direct viral invasion of the
kidney. In addition, coagulopathy and endothelial dysfunction are
hallmarks of COVID-1923 and may also contribute to AKI.
Finally, SARS-CoV-2 may directly activate the complement
system24. In addition to these mechanisms, systemic effects of
critical illness (hypovolemia, mechanical ventilation) and
derangements in cardiac function and volume may also con-
tribute to COVID-19 AKI.

In addition to morbidity and mortality in the acute setting,
COVID-19 is also associated with long term manifestations i.e.,
the post-acute sequelae of SARS-CoV2 (PASC)25. Kidney func-
tion decline is a major component of PASC and a study of >1
million individuals found that survivors of COVID-19 had an
elevated risk of post-acute eGFR decline26, suggesting long term
kidney dysfunction may occur following the acute infection.

Given the high incidence of COVID-19 associated kidney
dysfunction, the unknown pathophysiology, and the urgent need
for better approaches for risk stratification for long term kidney
function decline we aimed to characterize the proteomic changes
associated with COVID associated AKI and long-term kidney
function. Proteomic biomarkers have previously shown success in
predicting COVID-19 outcomes27–29. Other work12 has also

applied urinary proteomic profiling to predict worsening of
COVID-19 at early stages of the infection. Prior research using
minimally invasive proteomics assays supports the use of per-
ipheral serum as a readily accessible source of proteins that
accurately reflect the human disease state30–33. We measured
protein expression of >4000 proteins from serum samples col-
lected in a diverse large cohort of hospitalized patients with
COVID-19 and validated significant results in an independent
cohort and identified proteins that are significantly different
between patients with and without AKI. We then determined
whether these proteomic perturbations also characterize post-
discharge kidney function decline as measured by estimated
glomerular filtration rate (eGFR).

Our results demonstrate that COVID-AKI is associated with
increased markers of tubular injury (NGAL) and myocardial
injury. Using estimated glomerular filtration (eGFR) measure-
ments taken after discharge, we find that 25 of the 62 AKI-
associated proteins are significantly associated with decreased
post-discharge eGFR (adjusted p < 0.05). Notably, these include
desmocollin-2, trefoil factor 3, transmembrane emp24 domain-
containing protein 10, and cystatin-C indicating tubular dys-
function and injury.

Methods
Patient cohort. An overview of the discovery cohort selection
process is provided in Fig. 1. We prospectively enrolled patients
hospitalized with COVID-19 between March 24, and August 26,
2020, at five hospitals of a large urban, academic hospital system
in New York City, NY into a cohort as previously described34.
The cohort enrolled patients (with informed consent) who were
admitted to the health care system with a COVID-19 infection
and had broad inclusion criteria without specific exclusion cri-
teria. The Mount Sinai Institutional Review Board approved this
study under a regulatory approval allowing for access to patient-
level data and biospecimen collection35. This research was
reviewed and approved by the Icahn School of Medicine at
Mount Sinai Program for the Protection of Human Subjects
(PPHS) under study number 20-00341. Peripheral blood speci-
mens were collected at various points during the hospital
admission for each patient. Data for the analysis and the clinical
data covariates are available in Synapse syn35874390 found here.
Access to the data and steps to process the clinical information to
create the cohort is detailed on the site.

The validation cohort included a prospective biobank from
Quebec, Canada that enrolled patients hospitalized with
COVID-19, as previously described29. Validation cohort was
The Biobanque Québécoise de la COVID-19 (BQC19) cohort.
For individual-level data in BQC19, BQC19 received ethical
approval from the Jewish General Hospital research ethics
board (2020-2137) and the Centre hospitalier de l’Université de
Montréal institutional ethics board (MP-02-2020-8929, 19.389).
All participants gave informed consent. More information on
the plasma proteome from BQC19 can be viewed at https://
www.mcgill.ca/genepi/mcg-covid-19-biobank. Access to the
data of BQC19 can be obtained upon approval of requests via
bqc19.ca. Patients were recruited from the Jewish General
Hospital and Centre Hospitalier de l’Universite ́ de Montreál.
Peripheral blood specimens were collected at multiple time
points after admission.

We defined an AKI cohort using proteomic data acquired at
the last available timepoint during the hospital course for all
individuals. Patients who developed AKI after the last specimen
collection timepoint were excluded. Controls were defined as
individuals who developed AKI stage 1 or did not develop AKI
during their hospital course.
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Serum collection and processing. Blood samples were collected
in Serum Separation Tubes (SST) with a polymer gel for serum
separation as previously described35. Samples were centrifuged at
1200 g for 10 min at 20 °C. After centrifugation, serum was
pipetted to a 15 mL conical tube. Serum was then aliquoted into
cryovials and stored at −80 °C.

Definition of acute kidney injury. We defined AKI (stage 2 or 3)
as per Kidney Disease Improving Global Outcomes (KDIGO)
criteria: an increase in serum creatinine of at least 2.0 times the
baseline creatinine36. For patients with previous serum creatinine
measurement available in the 365 days prior to admission, the
minimum value in this period was considered the baseline crea-
tinine. For patients without a baseline creatinine in this period, a
baseline value was calculated based on an estimated glomerular
filtration rate (eGFR) of 75 ml/min per 1.73 m2 as per the KDIGO
AKI guidelines.

Clinical data collection. We collected demographic and labora-
tory data collected as part of standard medical care from an
institutional electronic health record (EHR) database. We defined
clinical comorbidities using diagnostic codes recorded in the EHR
before the current hospital admission. To account for disease
severity at the time of specimen collection, we defined supple-
mental oxygen requirement as 0 if the patient was not receiving

supplemental oxygenation or on nasal cannula, 1 if the patient
was receiving non-invasive mechanical ventilation (CPAP,
BIPAP), or 2 if the person was receiving invasive mechanical
ventilation.

Somalogic proteomic assay. We used the SomaScan discovery
platform to quantify levels of protein expression37. The SomaScan
platform is a highly multiplexed aptamer based proteomic assay
based on Slow Off-rate Modified single-stranded DNA Aptamers
(SOMAmers) capable of simultaneously detecting 4497 proteins
in biological samples in the form of relative fluorescent units
(RFUs). The assay was run using the standard 12 hybridization
normalization control sequences to assess for variability in the
Agilent plate quantification process, five human calibrator control
pooled replicates, and 3 quality control pooled replicates to
control for batch effects. Standard preprocessing protocols were
applied as per Somalogic’s guidelines published previously37 The
specificity and stability of the SOMAScan assay has been
described previously38. Briefly, the data was first normalized
using the 12 hybridization controls to remove hybridization
variation within a run. Then, median signal normalization is
performed with calibrator samples across plates to remove var-
iation in sample-to-sample differences attributable to variations
due to pipetting, reagent concentrations, assay timings and other
technical aspects. Data was then calibrated to remove assay

Fig. 1 Overview of the discovery cohort selection process. a Cohort selection strategy overview. (abbreviation legend: AKI Acute Kidney Injury, ESKD End
Stage Kidney Disease, Ctrls Controls) b Estimated Glomerular Filtration Rate (eGFR) measurements recorded post-discharge for returning patients until
12/21/2021. Source data for a are generated from Supplementary Data 3, which is in turn generated from the clinical data table in the Synapse data
repository syn35874390.
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differences between runs. Standard Somalogic acceptance criteria
for quality control metrics were used (plate scale factor between
0.4 and 2.5 and 85% of QC ratios between 0.8 and 1.2). Samples
with intrinsic issues such as reddish appearance or low sample
volume were also removed as part of the Somalogic quality
control protocol. After quality control and normalization proce-
dures, the resulting relative fluorescence unit (RFU) values were
log2 transformed.

Dimensionality reduction. Principal component analysis (PCA)
was performed using log2 transformed RFU values of all proteins.
Pairwise plots of the top three principal components were plotted.

Differential expression analysis for prevalent AKI. Using data
from the AKI cohort, log2 transformed normalized protein values
were modeled using multivariable linear regression in the Limma
framework39 Models were adjusted for age, sex, history of chronic
kidney disease (CKD), and supplemental oxygen requirement
(0,1, or 2 [see above]) at the time of specimen collection. P-values
were adjusted using the Benjamin-Hochberg procedure to control
the false discovery rate (FDR) at 5%. FDR was performed on
discovery and validation data with respect to all proteins
measured.

Proteomic characterization of long-term kidney function in
discovery cohort. Outpatient creatinine values measured after
discharge were used to compute estimated glomerular filtration
rate (eGFR) values the CKD-EPI equation. All values were taken
from the EHR as part of routine clinical care with follow-up until
12/2/2021. To determine whether AKI associated protein
expression correlated with post-discharge kidney function, we fit
a mixed effects linear regression model with random intercept.
Using the discovery cohort, protein expression of AKI-associated
proteins measured at the last available timepoint during admis-
sion was used. The dependent variable was eGFR and the model
was adjusted for age, sex, baseline creatinine, history of CKD,
maximum AKI stage during the hospital admission, and day of
eGFR measurement after hospital discharge. Models included a
random effect of patient ID to adjust for correlation between
eGFR values taken from the same individuals. Significance was
evaluated using a t-test with Satterthwaite degrees of freedom
implemented in the lmerTest R package40. P-values were adjusted
using the Benjamin-Hochberg procedure to control the false
discovery rate (FDR) at 5%.

We then plotted the post-discharge eGFR values over time for
individuals separated by protein expression tertiles (bottom 33rd
percentile, middle 33rd percentile, and top 33rd percentile). We
transformed data using the LOESS smoothing function as
implemented in the ggplot R package.

Data analysis and visualization. We performed all statistical
analysis using R version 4.0.3. Protein–protein interaction (PPI)
network was constructed using the Network X package in Python
v3.4.10 to display a Minimum Spanning Tree (MST) using Prim’s
algorithm. Network clustering was conducted using the MCL
cluster algorithm and functional enrichment was carried out
using the STRING41 database in Cytoscape42. Using results from
a recent publication30, we also annotated our signature AKI
proteins with reported protein quantitative trait loci (pQTLs) for
the set of COVID AKI-associated proteins. For each AKI-
associated protein, we determined whether cis and trans pQTL
associations had been reported.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Discovery and validation cohort overview. To discover proteins
associated with COVID-AKI, we enrolled a prospective cohort of
patients hospitalized with COVID-19 admitted between March
24, 2020 and August 26, 2020 into a biobank as previously
described34. Cases were defined as patients who developed AKI
(stage 2 or 3) during their hospital admission and controls
included all other patients (Fig. 1). Characteristics of cases and
controls in the discovery cohort are provided in Supplementary
Data 1 (sheet “Table 1”). Patients who developed AKI (stage 2 or
3) had a greater prevalence of diabetes (42% vs 22%, p < 0.001),
and chronic kidney disease (31% vs 5%, p < 0.001) and more
frequently required intubation (46% vs 11%, p < 0.001). Patients
who developed AKI (stage 2 or 3) also had a significantly lower
minimum systolic blood pressure (104 vs 110, p < 0.001), greater
maximum pulse (106 vs 94, p < 0.001), white blood cell count
(12.9 vs 8.8, p < 0.001), ferritin (2210 vs 1030 p < 0.001), and
frequency of vasopressor use (48% vs 14%, p < 0.001). We vali-
dated proteomic associations in an external cohort from Quebec,
Canada. Characteristics of the validation cohort are provided in
Supplementary Table 1 (See Supplementary Information). In the
validation cohort, compared to controls, AKI (stage 2 or 3) cases
have a significantly higher prevalence of CKD (29% vs 11%,
p= 0.01) and a higher rate of intubation at the time of sample
collection (49% vs 13%). FDR was performed on discovery and
validation data with respect to all proteins measured.

Identification of proteins associated with prevalent AKI. In the
discovery cohort, serum levels of 4496 proteins were quantified
using the SomaScan platform using samples collected at multiple
time points during the hospital course (Supplementary Table 2,
See Supplementary Information) as previously described34. We
first identified proteins associated with prevalent AKI using
measurements taken after the onset of AKI in cases and the last
available measurement in controls (Fig. 1, 71 cases and 366
controls). The top three principal components (PCs) distinctly
separate samples by case status (Fig. 2a). We fit a multivariable
linear regression model for the log2 normalized protein expres-
sions adjusted for age, sex, history of chronic kidney disease
(CKD), and maximum oxygen requirement at the time of blood
draw. We identified 413 proteins with higher plasma abundances
and 30 proteins with lower plasma abundance (Supplementary
Data 2).

Validation of AKI-associated proteins. We then performed an
external validation of AKI-associated proteins in a prospective
biobank cohort from Quebec, Canada. 443 proteins in the dis-
covery cohort are significantly associated with AKI (FDR adjusted
P < 0.05) while 71 proteins in the validation cohort are sig-
nificantly associated with AKI (p < 0.05). Of the proteins sig-
nificantly associated with AKI in the discovery cohort, 62 are also
associated with AKI in the validation cohort (p < 0.05), See
Supplementary Data 1 (sheet “Table 2”). The hypergeometric test
for overlap between the significant proteins in the validation and
discovery cohorts was also significant (P= 2.133E-159). Addi-
tionally, the Cohen’s Kappa between the two protein lists based
on P-value was 0.501. All validated proteins associate with an
increased risk of AKI with nominal significance. The correlation
of fold changes of validated proteins in the discovery and vali-
dation cohort show a Pearson correlation score of 0.71 (Fig. 2b).
The 62-protein signature distinctly separate AKI cases from
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cohorts in the discovery cohort (Fig. 2c). To assess how many of
our candidate proteins had orthogonal evidence for target spe-
cificity, we sought to identify how many of our proteins contained
reported plasma protein quantitative trait loci (pQTL) associa-
tions from a recent publication by Ferkingstad et al. (Nat Genet,
2021). Of the 62 AKI associated proteins, 45 have both cis and
trans pQTLS, 14 have only trans pQTLs, and 2 had cis pQTLs
(See Supplementary Fig. 1, Supplementary Information).
Protein–protein interaction (PPI) network analysis reveal
enrichment of several highly connected proteins, including LCN2
(alternative name: NGAL), REG3A, and MB (Fig. 3a). The AKI-
associated protein network also includes a cluster of cardiac

structural proteins (Fig. 3b), TNNT2, TTN, MYL3, SRL, and
NPPB (alternative name: BNP).

Proteomic characterization of post-acute kidney dysfunction.
Given the previously reported association of COVID-19 AKI with
long-term eGFR decline43, we hypothesize that significant pro-
teomic markers associated with COVID-19 AKI are also asso-
ciated with post-discharge eGFR. We included all outpatient
eGFR measurements taken after discharge from patients in the
Mount Sinai Biobank cohort of the 437 patients in the cohort, 181
patients had at least one outpatient post-discharge eGFR

Fig. 2 Analysis of the clinical and proteomic data. a Top 3 Principal Components show separation of the sample by Acute Kidney Injury (AKI) (stage 2 or
3) case status. b External validation of AKI associated proteins in the discovery cohort shows high correlation with increased risk of AKI with significance of
p < 0.05. (n= 62). The black line of regression runs diagonally across, and the gray shaded area represents the region wthin 95% Confidence Intervals
around the regression line. c Expression heatmap shows a distinct separation of the cases and controls using the 62 significant proteins identified from the
validation cohort in the discovery cohort. Source data for the PCA plots in a are found in the Synapse data repository syn35874390. Source Data for b are
provided in Supplementary Data 1(sheet “Table 2”). Source Data for c is from the raw data matrix provided in syn35874390 but filtered for the 62 proteins
documented in the sheet “Table 2” in Supplementary Data 1.
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measurement. The median number of eGFR measurements was 4
with an interquartile of 9. The first post-discharge eGFR was
measured at a median of 37 days after discharge. The last post-
discharge eGFR was measured at a median of 374 days after
discharge (See Supplementary Fig. 2, Supplementary
Information).

We used a mixed effects linear model accounting for baseline
creatinine, AKI stage during the COVID admission and repeated
eGFR measurements to associate the 62 protein AKI signature
with long-term eGFR. Of the 62 AKI-associated proteins, 25 are
significantly (FDR adjusted P < 0.05) associated with long-term
post-discharge eGFR (Figs. 4 and 5a). All 25 eGFR-associated
proteins are negatively correlated with post-discharge eGFR (See
Supplementary Data 2). However, the strength of association with
AKI is not significantly associated with the strength of association
with post-discharge eGFR. Proteins most strongly associated (by
P-value) with decreased post-discharge eGFR include desmocol-
lin-2, trefoil factor 3, transmembrane emp24 domain-containing
protein 10, and cystatin-C (Fig. 5b).

Discussion
Using proteomic profiling in two large groups of patients hos-
pitalized with COVID-19, we report several observations. First,

we identified specific protein markers of AKI and post-discharge
kidney dysfunction, both well-documented sequelae of COVID-
194,43. Second, in the acute phase, tubular injury and hemody-
namic perturbation may play a role. Thus, characterization of the
peripheral blood suggests specific large-scale perturbations of the
proteome that accompany both AKI and long-term eGFR decline
with implications for more specific prognostic models and tar-
geted therapeutic development.

Based on our results, we hypothesize that COVID AKI may
involve several mechanisms: tubular injury, neutrophil activation,
and hemodynamic perturbation. First, we found significantly
higher plasma abundances of NGAL (LCN2), a canonical marker
of tubular injury that is also involved in neutrophil activation.
NGAL is secreted by circulating neutrophils and kidney tubular
epithelium in response to systemic inflammation or ischemia.
Since renal tubular epithelial cells express the angiotensin-
converting enzyme 2 (ACE2) receptor which enables SARS-
CoV2 viral entry into cells, direct tubular infection may cause the
release of NGAL into the serum and urine. This potential
mechanism is supported by our results and remains a testable
hypothesis. Although NGAL is a known marker for intrinsic AKI
accompanied by tubular injury, it is relatively insensitive to pre-
renal AKI caused by hemodynamic disturbance44,45. However,

Fig. 3 Protein–protein interaction (PPI) and clustering analysis for functional annotation of the 62 differentially expressed proteins. a Protein–protein
interaction (PPI) network (Minimum Spanning Tree) of the 62 overlapping AKI associated proteins with a score >0.4. The size of each node corresponds to
number of interactions and the thickness of the edges represent the weight of the interactions between the nodes. b Markov Clustering Algorithm (MCL)
algorithm was used to identify tightly connected cluster of proteins which was functionally enriched for cardiac structure proteins using the STRING
(https://string-db.org/) database. Source data for Fig. 3a. AKI-associated protein–protein interaction network on our GitHub repository.
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our results demonstrate higher plasma abundance of BNP, a
protein released in the setting of volume overload as well as
several cardiac structural proteins (cardiac troponin T, titin,
myosin light chain 1, and sarcalumenin). This proteomic sig-
nature may represent either myocardial injury leading to
decreased renal perfusion or impaired filtration by the kidney in
response to injury. Myocardial injury has been previously
reported in patients hospitalized with COVID-196 and thus may
contribute to the multifactorial nature of COVID-AKI. It is worth
noting that in addition to myocardial injury, BNP may also be
increased in critical illness due to pro-inflammatory cytokine
release.

Since COVID-AKI increases the risk of long-term eGFR
decline43, we then sought to determine whether these two phe-
nomena shared common proteomic markers. Surprisingly, we
found that although almost half of the AKI-associated proteins
were also significantly associated with post-discharge eGFR
decline, the strengths of associations were not correlated. While
COVID-AKI is likely caused by a combination of intrinsic tubular
injury and hemodynamic disturbance in the setting of critical
illness, long term eGFR decline was associated with increased
expression of trefoil factor 3 (TFF3), a known prognostic marker
for incident CKD46. Trefoil factors are a class of small peptides
expressed in colonic and urinary tract epithelia that play essential
roles in regeneration and repair of epithelial tissue47,48. Immu-
nohistochemistry reveals TFF3 expression is localized to the
tubular epithelial cells in kidney specimens from patients with
CKD46, suggesting that long term eGFR decline may be asso-
ciated with renal tubular epithelial damage. The exact patholo-
gical role of TFF3 in the renal tubules is unclear but it has been
hypothesized to play a role in repair of kidney damage49. Addi-
tionally, TFF3 release from the renal interstitium has also been
hypothesized to direct the epithelial-to-mesenchymal transition

(EMT) in renal interstitial fibrosis, a main pathway that leads to
ESKD46. Our results implicate tubular damage in both AKI and
long term eGFR decline suggesting that SARS-CoV2 may pre-
ferentially target this region of the nephron. While AKI in the
acute setting may be a result of ischemia and decreased renal
perfusion associated with critical illness, the specific elevation of
TFF3 associated with eGFR decline implicates a more general
pattern of tubular injury that underlies COVID mediated kidney
dysfunction. Since the ACE2 is preferentially expressed in the
tubular epithelial cells of the kidney50,51, the elevation of markers
of tubular damage in the plasma may represent direct viral
invasion of tubular epithelia cells. However, again this would
need to be tested using biopsy/autopsy specimens or other
mechanistic studies. Direct viral entry into the kidney remains
controversial and using our current data we are not able to
comment on this mechanism.

Our study should be interpreted in the context of certain
limitations. First, samples were collected during the hospital
course of patients with confirmed COVID-19. However, the time
points were not systematic due to logistical challenges during the
peak of the COVID-19 pandemic and thus are not standardized
between patients. Since a subset of patients had AKI at the time of
admission, these patients were excluded from our analysis since
specimens were collected after admission. Additionally, we did
not include patients who developed AKI without COVID and
were unable to determine whether COVID-AKI has unique
proteomic markers compared to other forms of sepsis-AKI. Thus,
our AKI cases may be biased towards less severe presentations.
Second, since kidney injury is usually not an isolated phenom-
enon in critically ill patients, the protein expression changes
observed may have been partially due to damage to other organs,
such as the lung, liver, and heart. However, we accounted for
non-kidney damage by adjusting for the highest level of ventila-
tory support and thus our results are likely a reflection of kidney
injury. Specifically, our results do show the importance of
crosstalk between the cardiac system and the kidneys. In addition,
we did not include proteomic measurements from urine speci-
mens and thus it is unclear whether poor filtration or resorption
of proteins plays a role in peripheral blood protein concentra-
tions. For example, poor resorption of cystatin-C in the setting of
AKI may have led to the increased peripheral blood cystatin-C
that we report. Our study was adequately powered to detect effect
sizes of greater than or equal to 1.6. Also, since we enrolled
patients only from March-October 2020, we cannot generalize
our findings to other COVID-19 variants and time periods.
Although we adjusted our regression models for history of CKD,
it is possible that unmeasured confounding due to preexisting
impaired kidney function has not completely been controlled our
in our analyses. Another big limitation of our study is the inability
to significantly distinguish between effects of impaired filtration
and true pathogenic differences in protein levels without having
to conduct additional validation tests.

We were not able to exclude individuals who were lost to
follow-up or died because the data was extracted from an insti-
tutional EHR. Some patients accessed care at other hospitals after
discharge. This remains a limitation as well. Finally, our cohort
did not include autopsy or kidney biopsy specimens. Histo-
pathological analysis of kidney specimens is necessary to deter-
mine the mechanism of AKI and whether viral particles are
present in the kidney.

In conclusion, we provide, to the best of our knowledge, the
first comprehensive characterization of the plasma proteome of
AKI and long term eGFR decline in hospitalized COVID-19
patients. Our results suggest in the setting of COVID-AKI and
post-discharge kidney dysfunction there is evidence of tubular
damage in the peripheral blood but that in the acute setting,

Fig. 4 Nested Venn diagram of the analyses performed. The Venn
diagram showing the count of significant genes at each analysis step. Of the
443 proteins found to be significantly associated with Acute Kidney Injury
(AKI) stage 2 or 3 in the discovery cohort, 62 were significantly associated
with AKI stage 2 or 3 in the validation cohort. Of the 62 AKI-associated
proteins, 25 are significantly (FDR adjusted P < 0.05) associated with long-
term post-discharge estimated glomerular filtration rate (eGFR). Source
data for Fig. 4. Results Overview is acquired from Supplementary Data 2
and Supplementary Data 1(sheet “Table 3”).
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several factors including hemodynamic disturbance and myo-
cardial injury also play a role.

Data availability
This research was reviewed and approved by the Icahn School of Medicine at Mount Sinai
Program for the Protection of Human Subjects (PPHS) under study number 20-00341. The
clinical data tables and the analysis data are available in Synapse repository syn35874390.
Synapse can be accessed here https://www.synapse.org/#!Synapse:syn35874390..

Code availability
Code is available at our GitHub repository Nadkarni-Lab: aki_covid_proteomics here:
https://github.com/Nadkarni-Lab/aki_covid_proteomics/releases/tag/v0.1.2. The code52

has been made citable with DOI: and target link: https://zenodo.org/badge/latestdoi/
436359832. Code to generate Fig. 2, Fig. 3 and Fig. 5 are in the GitHub code repository
within the folder, code_and_data_for_figures_in_paper.
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