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Abstract

Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hema-

topoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical

techniques due to complex parameters and their interactions. The primary object of this

study was to establish a convolutional neural network (CNN)-based prediction model for

aGVHD.

Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and

2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a

natural language processing technique and an interpretable explanation algorithm, was

applied to develop and validate prediction models.

Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50

years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%.

The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an

individual case, which is validated to distinguish the high-risk group of aGVHD in the test

cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for

patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk

patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high

generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning

process. Moreover, contributions of pre-transplant parameters other than HLA information to

the risk of aGVHD are determined.

Conclusions Our results suggest that CNN-based prediction provides a faithful prediction

model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.
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Plain language summary
Hematopoietic stem cell transplanta-

tion (HSCT) is a procedure used in

patients to reestablish blood cell

production. It involves the transplant

of cells from a donor to the patient. In

some patients the transplanted cells

damage cells within the patients. This

is called graft-versus-host disease

(GVHD). We developed a computa-

tional code that can predict the like-

lihood a person will develop GVHD

soon after HSCT. Using this compu-

ter program will enable doctors to

better identify those at risk of GVHD

and initiate treatments when

required.

COMMUNICATIONS MEDICINE |            (2023) 3:67 | https://doi.org/10.1038/s43856-023-00299-5 | www.nature.com/commsmed 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00299-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00299-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00299-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-023-00299-5&domain=pdf
http://orcid.org/0000-0002-9662-5093
http://orcid.org/0000-0002-9662-5093
http://orcid.org/0000-0002-9662-5093
http://orcid.org/0000-0002-9662-5093
http://orcid.org/0000-0002-9662-5093
http://orcid.org/0000-0002-8661-3179
http://orcid.org/0000-0002-8661-3179
http://orcid.org/0000-0002-8661-3179
http://orcid.org/0000-0002-8661-3179
http://orcid.org/0000-0002-8661-3179
http://orcid.org/0000-0001-9609-3202
http://orcid.org/0000-0001-9609-3202
http://orcid.org/0000-0001-9609-3202
http://orcid.org/0000-0001-9609-3202
http://orcid.org/0000-0001-9609-3202
http://orcid.org/0000-0003-4404-2870
http://orcid.org/0000-0003-4404-2870
http://orcid.org/0000-0003-4404-2870
http://orcid.org/0000-0003-4404-2870
http://orcid.org/0000-0003-4404-2870
http://orcid.org/0000-0002-1194-8046
http://orcid.org/0000-0002-1194-8046
http://orcid.org/0000-0002-1194-8046
http://orcid.org/0000-0002-1194-8046
http://orcid.org/0000-0002-1194-8046
www.nature.com/commsmed
www.nature.com/commsmed


A llogenic hematopoietic stem cell transplantation (HSCT)
can be a curative therapeutic procedure for malignant or
nonmalignant hematological diseases. Even though

transplantation outcomes have improved in recent years1, the
incidence of transplant-related mortality (TRM) remains as high
as 30% among HSCT recipients2. Acute graft-versus-host disease
(aGVHD) is one of the most critical complications after HSCT
and can lead to TRM3. Therefore, accurate prediction of the risk
of developing aGVHD is essential to reduce the risk of TRM by
optimizing donor selection and transplantation procedures.

Most previous studies on risk assessment of aGVHD have
employed conventional linear proportional hazard models,
including the Cox proportional hazard4,5. However, such models
are simplified by assuming that the log-risk function is linear.
Importantly, these studies suffered limitations due to the arbitrary
setting of variables. For example, the human leukocyte antigen
(HLA) disparity between donors and recipients has been treated
as a binary variable, i.e., matched or mismatched; however, the
degree of HLA disparity may not be equivalent, depending on the
combinations with alleles between different HLA loci and the
combination of specific HLA antigens or alleles between donor
and recipient6. Thus, HLA information should be handled as
close to raw data without arbitrariness. Moreover, while previous
studies have focused on HLA mismatches, the extent to which
various factors other than HLA affect the risk of developing
aGVHD, or whether they do at all, has remained murky due to
highly complex clinical parameters and their interactions.
Therefore, conventional models do not predict the occurrence of
aGVHD reliably enough to be applied to individual cases in
clinical practice.

Recent application of machine learning algorithms, which
perform statistical calculations without the assumptions required
by conventional methods, is beginning to provide novel insights
into clinical practice7–9. However, these previous studies utilizing
machine learning algorithms have not solved the arbitrariness of
variable settings and failed to incorporate detailed, raw clinical
data. Moreover, many machine learning-based models do not
explain the model’s learning process, nor do they indicate why the
model predicted that specific cases would develop aGVHD. This
“black-box” nature of machine learning constitutes a barrier to
the implementation of machine learning-based models in clinical
practice10.

Among various machine-learning methods, convolutional
neural networks (CNNs) are promising machine-learning
algorithms that excel at feature extraction; thus, they are well
suited to overcome the limitations of existing methods11. The
CNN-based method has an affinity for natural language pro-
cessing, which can automatically convert complex information
in a database into a computer-friendly representation. This
feature is advantageous for modeling HSCT because HLA
information is close to natural language from the viewpoint of
data processing. Moreover, CNN is able to visualize learning
processes that help clinical decision-making12. Nonetheless, the
usefulness of CNN-based prognostic prediction in HSCT has
not been evaluated yet.

Thus, in this study, we applied CNN algorithms to develop a
prediction model for aGVHD after HSCT, which can incorporate
detailed raw HLA information, as well as various non-HLA
variables, and can transparently visualize the contribution of each
variable in the learning process. This prediction model revealed
that the risk of aGVHD is determined not only by HLA disparity
but also by detailed HLA information, as well as various clinical
factors other than HLA. We expect our results to provide a
clinically useful model for predicting aGVHD risk, and to offer
insights into the complex decision-making process of a machine-
learning system in the field of transplantation.

Methods
Patient inclusion and exclusion criteria. Data on adult patients
(age ≥16 years) with malignant and nonmalignant hematological
diseases who underwent allogeneic HSCT between 1 January 2008
and 31 December 2018 were obtained from the Japanese Trans-
plant Registry Unified Management Program13,14, sponsored by
the Japanese Society for Transplantation and Cellular Therapy
(JSTCT) and the Japanese Data Center for Hematopoietic Cell
Transplantation. Patients were excluded if information about
HLA mismatch, aGVHD grade, or clinical outcomes (dead or
alive) was missing. Our protocol, which complied with the
Declaration of Helsinki, was approved by the Ethics Committee
of Kyoto University and the Japanese Data Center for Hemato-
poietic Cell Transplantation. Patient information is anonymized,
and patients consented to provide their data to the data center
prior to the initiation of the study.

Data collection and definition of each covariate. From the
registry database, we extracted data on all pre-transplant char-
acteristics (Supplemental Data 1), along with data on post-
transplant aGVHD grade and prognoses. Patients were divided
into standard- and advanced-risk groups according to previous
criteria for determining disease risk15,16. Eastern cooperative
oncology group performance status scale (ECOG PS) at trans-
plantation was evaluated according to ECOG criteria17. Major
organ complications were assessed using hematopoietic cell
transplantation-specific comorbidity index (HCT-CI) according
to the Seattle scale18. Conditioning intensity was defined
according to operational definitions of the National Marrow
Donor Program/CIBMTR19. GVHD prophylaxis was performed
at the discretion of the institutions, and in the majority of cases, a
combination of either cyclosporin A (CyA) or tacrolimus (Tac)
with methotrexate (MTX) or mycophenolate mofetil (MMF) was
adopted. Disparities in HLA-A, HLA-B, and HLA-DR antigens
were determined at the serologic level from relatives and cord
blood transplants. In unrelated bone marrow and peripheral
blood stem cell transplants, 8 antigens, including HLA-C, were
examined at the allele level. A 6/6 or 8/8 match was considered
HLA matched2,20. Diagnosis and classification of aGVHD cases
were performed by the attending physicians at each center based
on conventional criteria21.

Development of a prediction model of aGVHD based on CNN
algorithms. Predictive models for aGVHD (grade II–IV and
III–IV) were developed using CNN algorithms. The CNN
architecture was implemented in Python using the Keras
library22, which is a high-level library for TensorFlow version
2.2ML framework23. The CNN architecture included an input
layer, a modified bottleneck layer, a global average pooling layer,
fully connected (FC) layers, and output layers. The CNN model
took inputs from patient data, where HLA information was pre-
processed using word2vec24, a natural-language processing (NLP)
application, in which antigens and alleles of HLA-A, B, -C, and
DRB1 in both recipient and donor were treated as words that
generate vectors. In the modified bottleneck layer, there were
short-cut connections that skip indicated layers, and ResNet, a
residual learning framework was used to optimize and train the
deep networks25. L2 regularization was adopted to avoid over-
fitting, thereby ensuring the availability of the proposed archi-
tecture. Adam was chosen as the optimizer to compute different
and adaptive learning rates for each parameter using a batch size
of 32 for an initial learning rate of 0.01 with a decay rate of 0.9.
We randomly split the whole cohort into 65%, 15%, and 20% sub-
cohorts for training, validation, and testing purposes, respectively.
The training set was used to train the network, and learnable
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parameters were updated via backpropagation. The validation set
was employed to monitor the model’s performance during the
training process, thereby establishing the reliability of learning
results. In order to evaluate the generalizability of the CNN
algorithm, the test set was used to assess the efficacy of a trained
model on data that it had not seen previously.

t-Distributed stochastic neighbor embedding (t-SNE). t-SNE is
a dimensionality reduction technique that allows high-
dimensional data to be mapped in two dimensions and visua-
lized as a scatter plot26. In this study, t-SNE was adapted to
reduce the dimensions of the distributed representation in the
neural network algorithm, including word embedding space,
thereby visualizing word embedding of HLA information and
features of the indicated layers of the model. We employed t-SNE
plots of individual patients using pairwise distances in high
dimensions. This means that each plot is equal to one patient. In
general, patients closest to each other are most similar, while
those farthest apart are most different. On all t-SNE maps the
axes are called t-SNE dimension 1 and t-SNE dimension 2 to
show the separation of risk scores in the test dataset. These axes
lack concrete meaning themselves due to the technical nature of
t-SNE method. Higher scores are associated with higher inci-
dences of aGVHD.

Local interpretable model-agnostic explanations (LIME). We
used LIME27 to explain predictions from the CNN algorithm.
LIME is a local linear approximation of the model’s behavior.
While CNN is complex globally, it is easier to approximate it
close to the neighborhood of a particular observation. By sti-
mulating other observations around that observation, LIME fits a
sparse linear model in this local region to assess the positive and
negative effects of each predictor in the CNN to estimate the
incidence of aGVHD. It provides both an explanation of an
instance by an interpretable representation as well as visualiza-
tion. The lime R package (https://cran.r-project.org/web/
packages/lime/) was used to perform the analysis.

Clinical evaluation of the generalizability of the trained model.
Assessment of the generalizability of the developed CNN-based
model was performed using the test cohort (comprising 20% of
the entire cohort) using conventional statistical methods. To
assess whether the developed model could identify patient
populations at extremely high or low risk of aGVHD, we divided
the cohort into three groups according to percentile scores for
grade II–IV and grade III–IV aGVHD: low-risk group (Low;
0–10th percentile), intermediate-risk group (Int;10th–90th per-
centile), and high-risk group (High; 90th–100th percentile).
Overall survival (OS) was calculated using the Kaplan–Meier
method and compared using the Cox proportional-hazards model
according to aGVHD predictive scores determined by the CNN
algorithm. The cumulative incidence of aGVHD was calculated
using Gray’s method while considering relapse and death as
competing risks28. The Fine-Gray proportional-hazards model
was used to compare the incidence of aGVHD with aGVHD
predictive scores that were determined by the CNN-based
model29. TRM was calculated considering relapse as a compet-
ing risk30. Stata (version 17; Stata Corp., College Station, TX) was
used to analyze data. p < 0.05 was considered statistically
significant.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Patient characteristics. We evaluated 18,763 patients between 16
and 80 years of age (median, 50 years), who underwent allogeneic
HSCT between 2008 and 2018 (Supplemental Data 2). The most
common indication of HSCT was acute myeloid leukemia (AML)
or myelodysplastic syndrome (MDS) (n= 10,780, 57.5%) fol-
lowed by acute lymphoblastic leukemia (ALL) (n= 3609, 19.2%).
Graft sources were related bone marrow (BM) in 1803 cases
(9.6%), related peripheral blood stem cells (PBSC) in 3993
(21.3%), unrelated BM in 7232 (38.5%), unrelated PBSC in 403
(2.2%), and unrelated cord blood (CB) in 5332 (28.4%). HLA-
matched donors were selected in 10,131 cases (54.0%), and HLA-
mismatched donors were selected in the remaining 8632 (46.0%).
The median follow-up period for survivors was 45.4 months after
HSCT. In total, grade II–IV aGVHD was observed among 42.1%
of all patients (n= 7895) on Day 30 in the median after HSCT,
while grade III–IV aGVHD was noted in 15.6% of all patients
(n= 2930) on Day 33 in the median after HSCT. Severe aGVHD
(grade III–IV) resulted in TRM in 45.4% of patients with grade
III–IV aGVHD (n= 1329). Overall, 377 of these patients died of
aGVHD (12.9%).

Development of CNN-based prediction models for aGVHD.
We randomly split the cohort into 65%, 15%, and 20% for
training, validation, and testing purposes, respectively. There
were no significant differences among these sub-cohorts in terms
of pre-transplant characteristics (Supplemental Data 2). Pre-
dictive models for grade II–IV and III–IV aGVHD were devel-
oped utilizing CNN-based models with the training and
validation cohorts. As a result, the final CNN architecture
included an input layer, a modified bottleneck layer, a global
average pooling layer, fully connected (FC) layers, and an output
layer (Fig. 1A). The CNN model took inputs from patient data
(Supplemental Data 1), and HLA information was pre-processed
using word2vec (Fig. 1B). In the modified bottleneck layer, there
were short cut connections that skip indicated layers, and ResNet,
a residual learning framework25, was used to ease the training
process of deep networks (Fig. 1C). The learning process with the
CNN-based model eventually allowed us to calculate a prediction
score for grade II–IV or III–IV aGVHD for individual cases,
which predicts the risk of developing grade II–IV or III–IV
aGVHD (Supplemental Fig. 1A and B).

Visualization of the learning process. In order to show how
input data is transformed through each layer, we visualized out-
puts of hidden layers that were reduced to two dimensions using
t-Distributed Stochastic Neighbor Embedding (t-SNE) in the
CNN model for grades II–IV and III–IV aGVHD (Fig. 2A–F).
From the t-SNE transformation of hidden layer outputs, we
found data points that classified each patient with various pre-
diction scores were randomly distributed after the first encoder
layer (Fig. 2A and D). Notably, t-SNE showed that the incor-
poration of detailed HLA information, even with natural language
processing, was not sufficient to differentiate the risk of grade
II–IV or III–IV aGVHD (Fig. 2A and D). Moreover, before the
training process, concatenating all variables did not permit dis-
crimination of the risk of aGVHD (Fig. 2B and E). However, after
the following training process, it was possible to resolve grades
II–IV and III–IV aGVHD (Fig. 2C and F). These results suggest
that this machine-learning process with an autoencoder and an
FC neural network in the CNN model successfully extracted
discriminating features.

We also utilized local interpretable model-agnostic explana-
tions (LIME) to explain predictions from the CNN algorithm.
Representative output examples of LIME analysis, which
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extracted weights of HLA-related variables, are presented in
Fig. 3A and B. In the model output, a positive indicates a
probability of developing aGVHD, while a negative indicates that
aGVHD is unlikely. Bars indicate the weight of each variable on
predictive scores for the risk of aGVHD. Subtraction of these
weights from prediction probabilities (1 in both cases as indicated
in the left part of the figure) alters the probability of a sample
being classified as aGVHD-positive or -negative. The LIME
method facilitates the interpretation of factor weighting in the
CNN-based predictions of grade II–IV or III–IV aGVHD in
individual cases.

Clinical evaluation of the generalizability of the CNN-based
model. Then, we assessed the generalizability of the developed model
using the test cohort. The distribution of prediction scores of grade
II–IV and III–IV aGVHD in the test cohort (n= 3753) is shown in
Fig. 4A and B. For grade II–IV aGVHD, scores ranged from 0.136 to
0.894 (median, 0.450; Fig. 4A). This cohort was divided into three
groups according to percentile scores: a low-risk group (Low; 0–10
percentile; range 0.136–0.209; median 0.177; n= 375), an
intermediate-risk group (Int;10–90 percentile; range 0.209–0.770;
median 0.450; n= 3003), and a high-risk group (High; 90–100
percentile; range 0.770–0.894; median 0.826; n= 375) (Fig. 4A). The
distribution of aGVHD III–IV scores is also displayed in Fig. 4B.

The incidence of aGVHD (for grade II–IV and III–IV) was
calculated and compared among the three subgroups for aGVHD
risk using conventional statistical techniques (competitive hazard risk
models), along with OS and TRM (Fig. 5A–F and Table 1). For grade

II–IV, the cumulative incidence of aGVHD was stratified according
to each risk group. There was a significantly higher incidence of
aGVHD among patients sorted into the High-risk group (54.8% at
Day 100) compared with patients in the Low-risk group (31.8% at
day 100; hazard ratio [HR], 2.04 vs. Low-risk group; p= 0.001)
(Fig. 5A and Table 1). OS decreased as the risk of aGVHD increased,
probably due to higher incidence of TRM (HR 1.96 and 1.36 in the
High-risk vs. Low-risk group, and Intermediate-risk vs. Low-risk
group, respectively) (Fig. 5B and C, and Table 1). There was a
significant relationship between raw values of prediction scores
(continuous variables) and the higher incidence of aGVHD, with
higher TRM and inferior OS, calculated using conventional Gray-
Fine or Cox proportional-hazard models (Supplemental Data 3). The
incidence of grade III–IV aGVHD was also stratified among
subgroups (28.8% and 8.4% at Day100 for high and low risk,
respectively; HR, 4.02, High-risk vs. Low-risk groups; p < 0.001)
(Fig. 5D, and Table 1). Grade III–IV GVHD prediction scores were
correlated with OS (HR, 1.10 per 0.1) (Fig. 5E, and Supplemental
Data 3), most likely as a result of the higher incidence of TRM among
higher-risk patients (Fig. 5F). There were also significant relationships
between prediction values (raw scores) and higher incidence of
aGVHD, higher TRM, and inferior OS (Supplemental Data 3).

Performance of the CNN-based model for each subgroup. We
then evaluated the performance of the CNN-based model to
predict grade II–IV or grade III–IV aGVHD for various patient
subgroups (Supplemental Figs. 2 and 3, and Supplemental Data 4
and 5). As a result, we found that the CNN-based model was able
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to stratify the risk of aGVHD in various patient populations,
suggesting that scores calculated with the CNN-based model are
applicable in a wide range of clinical settings, regardless of patient
background.

Comprehensive evaluation of factors other than HLA disparity
for aGVHD. Then, we evaluated the significance of various factors
other than HLA disparity for the risk of aGVHD, using the CNN-
based model. As expected, prediction scores both of grade II–IV
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and grade III–IV aGVHD in the HLA-mismatched group were
higher than those in the HLA-matched group (Supplemental
Fig. 4), reflecting the effects of HLA disparity on the risk of
aGVHD. Interestingly, prediction scores based on the current
model clearly stratified the risk of grade II–IV and grade III–IV
aGVHD both in the HLA-matched and mismatched groups,
respectively (Fig. 6A and B). Moreover, patients with high pre-
diction scores in the HLA-matched group had a higher risk of

grade II–IV or grade III–IV aGVHD than those with low predic-
tion scores in the HLA-mismatched group. This trend was more
pronounced in grade III–IV aGVHD than in grade II–IV acute
GVHD. These results suggest that the risk of aGVHD cannot be
predicted solely by HLA match/mismatch, but also by a combi-
nation of non-HLA parameters. The CNN-based model enabled us
to comprehensively evaluate the contributions of various factors to
the risk of aGVHD, especially for severe aGVHD.

Positive

Negative

0.64

0.36

Positive Negative
HLA allele mismatch GVH vector (A, B, C, and DR)

HLA allele mismatch GVH vector (A, B, and DR)

HLA antigen mismatch GVH vector (A)

HLA-A allele recipient 1

HLA antigen mismatch GVH vector (A, B, C, and DR)

Donor HLA-A allele 2

Donor HLA-C antigen 2

Recipient HLA-A allele 2

Recipient HLA-B antigen 2

Recipient HLA-B allele 1

Donor HLA-A antigen 2

Recipient HLA-C antigen 1

HLA antigen mismatch GVH vector (DR)

Donor HLA-B allele 1

HLA allele mismatch GVH vector (C)

Donor HLA-DR antigen 1

Donor HLA-B antigen 2

Donor HLA-DR antigen 2

HLA allele mismatch GVH vector (A)

0.21

0.13

0.12

0.09

0.09

0.08

0.07

0.06

0.05

0.05

0.04

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.03

Prediction probabilities

A

B

Case 1

Positive

Negative

0.17

0.83

Positive Negative
HLA allele mismatch GVH vector (A, B, C, and DR)

HLA antigen mismatch GVH vector (A, B, C, and DR)

HLA allele mismatch GVH vector (A, B, and DR)

HLA antigen mismatch GVH vector (A)

Donor HLA-B antigen 1

Recipient HLA-B antigen 1

Donor HLA-B allele 1

HLA antigen mismatch GVH vector (DR)

Donor HLA-DR antigen 1

Recipient HLA-B allele 2

Recipient HLA-B antigen 2

Recipient HLA-C antigen 1

HLA allele mismatch GVH vector (DR)

Donor HLA-C antigen 1

Donor HLA-B antigen 2

Donor HLA-A antigen 2

HLA allele mismatch GVH vector (A)

0.30

0.23

0.17

0.16

0.08

0.06

0.06

0.05

0.05

0.05

0.05

0.05

0.05

0.04

0.04

0.03

0.02

Prediction probabilities

Case 2

Fig. 3 Application of local interpretable model-agnostic explanations (LIME) for two representative cases. A For case 1. This example is the case of a
relatively higher risk for aGVHD (positive probability of 0.64), including an HLA class I antigen mismatch in the GVH direction. B For case 2. This example
is the case of relatively lower risk for aGVHD (positive probability of 0.17), including no allelic mismatches in HLA-A, -B, and -DR.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00299-5

6 COMMUNICATIONS MEDICINE |            (2023) 3:67 | https://doi.org/10.1038/s43856-023-00299-5 | www.nature.com/commsmed

www.nature.com/commsmed


Discussion
This machine learning-guided retrospective cohort study inves-
tigating risk prediction of aGVHD revealed four major results/
findings: (1) A CNN-based model, which can extract dis-
criminating features from comprehensive patient characteristics,
was developed to predict risk of aGVHD after HSCT. (2) The
learning process employed by the CNN-based model successfully
visualized the weight of each clinical factor. (3) Raw HLA data
was utilized by the CNN-based model. (4) Influences of factors
other than HLA disparity on the risk of aGVHD were clarified.

Whereas CNN made its early success in the area of image
analysis, it has also been applied in various areas due to its
excellent feature extraction capability31, 32. By applying the CNN
algorithm, we developed a prediction model for grade II–IV and
grade III–IV aGVHD. The generalizability of the model was
determined using an internal test cohort. The model succeeded in
discriminating between patient groups with a high and low risk of
aGVHD. This risk stratification is important because aGVHD is
one of the most serious complications, often leading to TRM33.
Indeed, in this study, patients in the high-risk group had higher
TRM and poorer OS than those in the low-risk group (Fig. 5B, C,
E, and F). Our reliable prediction model optimizes transplanta-
tion procedures by choosing risk-adapted immunosuppression,
thereby improving transplantation outcomes.

While the machine learning-based approach has the advantage
of unbiased feature selection and prediction, one of the major
challenges of machine learning is the difficulty of understanding
how it functions. Transparency is essential in order to widely
implement a machine-learning model in clinical practice; how-
ever, variables used by the model to make its judgment, vary
among patients, depending on other clinical factors and inter-
actions between variables. Therefore, these variables must be
weighed on a case-by-case basis. For example, HLA disparity,
which is a major contributing factor for aGVHD, has different
effects among underlying diseases7. In this context, our CNN-
based model succeeded in visualizing the learning process with
t-SNE and in assessing the weights of variables in individual cases
using LIME. Our results suggest that this CNN-based model
employing techniques that render it transparent and compre-
hensible will help clinicians to select optimal donor sources and
transplantation procedures with confidence.

While we and other groups have previously developed machine
learning-based models to predict outcomes after HSCT7–9, but the
arbitrariness of variable settings has not been solved, especially
regarding HLA information. In this study, for the first time, we
incorporated raw information about specific antigens and/or alleles
of both donors and recipients into a machine learning-based pre-
diction model. Previous studies with conventional linear
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Fig. 4 Distribution of acute graft-versus-host disease (aGVHD) predictive scores in the test cohort. Distribution of aGVHD prediction scores calculated
by the convolutional neural network (CNN) model are displayed among patients in the test cohort (N= 3753). A For grade II–IV aGVHD. Low (scores,
0.136–0.209), n= 375 (10.0%); Int (scores, 0.209–0.770), n= 3003 (80.0%); and High (scores, 0.770–0.894), n= 375 (10.0%). B For grade III–IV
aGVHD. Low (scores, 0.080–0.138), n= 375 (10.0%); Int (scores, 0.138–0.840), n= 3003 (80.0%); and High (scores, 0840–0.951), n= 375 (10.0%).
Higher scores indicate a higher risk of developing aGVHD. The data used to plot the graphs is in Supplemental Data 7.
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proportional hazard models or machine-learning models treated
HLA information as binary data (matched or mismatched).
However, the degree of HLA disparity may not be equivalent
depending on combinations of specific HLA antigens and/or alleles
between donor and recipient. For example, the difference between
HLA-A02:01 and HLA-A02:02 may not always be the same as that
between HLA-A02:01 and HLA-A11:01. We successfully imported
raw HLA information in the CNN-based model by utilizing
word2vec, a natural-language processing method. While this study
did not identify novel HLA combinations that consistently alter the
risk of developing aGVHD irrespective of patient background,
visualization efforts using LIME enabled us to assess the con-
tributions of HLA antigens or alleles of donors and recipients to the
risk of aGVHD in individual cases. Machine-learning models that

combine biological HLA information, including epitopes and
molecular structures, in a larger cohort may provide further
detailed information about the contributions of specific combina-
tions of HLA antigens or alleles to aGVHD risk6.

In this study, we clarified the impact of factors other than HLA
disparity on the risk of aGVHD using a CNN-based model. HLA
mismatching is the most important risk factor for acute GVHD,
but effects of other clinical factors on the risk of aGVHD have
differed from report to report due to differences in patient
characteristics4, and the contributions of these factors other than
HLA disparity have not been fully evaluated. This study revealed
contributions of clinical factors other than HLA mismatches to
the risk of aGVHD. In this study, we found that there was a group
even among patients transplanted from HLA-matched donors
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Fig. 5 Validation of predictive scores based on the convolutional neural network (CNN) model. A Cumulative incidence of grade II–IV acute graft-versus-
host disease (aGVHD) in the test cohort is shown according to each risk group for grade II–IV aGVHD (Low, n= 375; Int, n= 3003; High, n= 375).
B Overall survival (OS) and C therapy-related mortality (TRM) were calculated for the same subgroups. D Cumulative incidence of grade III–IV aGVHD in
the test cohort is shown according to each risk group for grade III–IV aGVHD (Low, n= 375; Int, n= 3003; High, n= 375). E OS and F TRM were
calculated for the same subgroups.

Table 1 Clinical evaluation for generalizability of the trained model.

Risk group aGVHD Overall mortality TRM

HR 95% CI P HR 95% CI P HR 95% CI P

Grade II–IV
Low Reference Reference Reference
Int 1.44 1.19–1.73 <0.001* 1.36 1.12–1.65 0.002* 1.39 1.07–1.80 0.015*
High 2.04 1.64–2.55 <0.001* 1.96 1.55–2.49 <0.001* 1.81 1.31–2.50 <0.001*
Grade III–IV
Low Reference Reference Reference
Int 1.93 1.34–2.78 <0.001* 1.41 1.16–1.72 0.001* 1.38 1.06–1.79 0.016*
High 4.02 2.70–5.97 <0.001* 2.25 1.78–2.86 <0.001* 1.81 1.31–2.51 <0.001*

aGVHD acute graft-versus-host disease, CI confidence interval, HR hazard ratio, TRM, transplant-related mortality.
*Indicates p < 0.05.
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who were at a higher risk of developing aGVHD than those
transplanted from HLA-mismatched donors and another group
among those transplanted from HLA-mismatched donors who
had an extremely low risk of severe aGVHD. While this study
showed that individual patients had a different weight for each
factor in the risk of developing acute GVHD, a comparison of
patients who had HLA-matched and the highest prediction scores
for aGVHD II–IV (matched highest group) and those who had
HLA-mismatched and the lowest prediction scores (mismatched
lowest group) revealed that matched highest group patients ten-
ded to be older, more male, worse performance status, have more
frequent complications of major organ, use more RIC, and use
less MTX and MMF for GVHD prophylaxis than the entire
cohort, and that mismatched lowest group patients tended to be
younger, use less peripheral blood stem cells as graft sources, and
use less ATG than the entire cohort (Supplemental Data 6). Thus,
prophylactic measures to reduce the risk of aGVHD should be
optimized according to comprehensive prediction models that
incorporate various clinical factors, rather than depending solely
on HLA matching.

The present study revealed the utility of CNN as a prognostic tool
for aGVHD. However, there are some limitations to this study that
must be addressed. While the CNN model was designed to avoid
researcher bias in variable settings, some of the variables were cate-
gorized into subgroups based on clinically established criteria. For
example, we stratified pre-transplant disease conditions using disease
risk. Another limitation is that our outcome measure, the incidence
of aGVHD, was also treated as a binary variable in the CNN-based
model that we used in this study. Information on the onset time for
cases of aGVHD was not included in the process of model devel-
opment. In this study, the onset of aGVHD is limited to a small
window (usually 30–100 days after HSCT); therefore, the effect of
ignoring information regarding the time of onset is probably sub-
optimal. Because biological HLA information was not included in
this study, the risk of aGVHD can potentially be affected by com-
binations of HLA alleles that are different in notation, but are bio-
logically homologous. In this study, we included as many variables
accessible and consistently evaluable in the existing registry for the
establishment of prediction models but might ignore the potential
effects of unavailable parameters on the risk of acute GVHD. And the
inclusion of parameters early after transplantation in addition to pre-
transplant factors can improve the stratification power of the model,
as previously reported34. While technical improvements are required
to collect information on a larger number of parameters,

incorporating more parameters, including variables with uncertain
significance at present, into the machine learning model is beneficial
to maximize the potential of machine learning. In this study, missing
values regarding several variables were handled by the model, miss-
ingness can potentially affect the prediction. Overfitting is the con-
ventionally discussed limitation in machine learning35, and our
algorithm is not completely free of this limitation, even though we
took measures to avoid it. In addition, ethnicity affects the incidence
and severity of GVHD36. While the main architecture of our model
can be applied to various different cohorts, tuning the model is
required to apply this model in different cohorts. Therefore, further
validation of the CNN-based model using different cohorts, including
other ethnic groups, by using our approach as a proof-of-concept is
needed. We note that alternative machine learning algorithms, such
as random forest regression and recurrent neural networks, have seen
increased application to problems with clinical practices in recent
years, and maybe equally suited to CNN-based models, and the
optimal machine learning approach should be further studied.

In conclusion, we developed a CNN-based prediction model
for aGVHD after allogeneic HSCT using a nationwide transplant
database in Japan, which incorporates comprehensive HLA
information, excluding arbitrariness, as well as ensuring trans-
parency of the calculation process. This prediction model revealed
that the risk of aGVHD is determined not only by HLA disparity
but also by detailed HLA information, as well as various clinical
factors other than HLA. This study suggests that our CNN-based
prediction model can be used to establish various prognostic
predictive models in the field of HSCT, which is applicable in
clinical practice.

Data availability
The data that supports the findings of this study are not openly available due to reasons
of sensitivity (patient privacy) and are available from the corresponding author upon
reasonable request such as the application of novel drugs. The data used to plot the
graphs in Fig. 4 is in Supplemental Data 7.

Code availability
The code that supports the findings of this study is in Supplemental Data 8 and 9.
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