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Abstract

Background Increasingly large and complex biomedical data sets challenge conventional

hypothesis-driven analytical approaches, however, data-driven unsupervised learning can

detect inherent patterns in such data sets.

Methods While unsupervised analysis in the medical literature commonly only utilizes a

single clustering algorithm for a given data set, we developed a large-scale model with 605

different combinations of target dimensionalities as well as transformation and clustering

algorithms and subsequent meta-clustering of individual results. With this model, we

investigated a large cohort of 1383 patients from 59 centers in Germany with newly diag-

nosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular

genetic parameters were available.

Results Unsupervised learning identifies four distinct patient clusters, and statistical analysis

shows significant differences in rate of complete remissions, event-free, relapse-free and

overall survival between the four clusters. In comparison to the standard-of-care hypothesis-

driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017

risk categories being represented in all four clusters in varying proportions indicating

unappreciated complexity of AML biology in current established risk stratification models.

Further, by using assigned clusters as labels we subsequently train a supervised model to

validate cluster assignments on a large external multicenter cohort of 664 intensively treated

AML patients.

Conclusions Dynamic data-driven models are likely more suitable for risk stratification in the

context of increasingly complex medical data than rigid hypothesis-driven models to allow for

a more personalized treatment allocation and gain novel insights into disease biology.
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Plain language summary
There are various ways in which

clinicians can predict the risk of dis-

ease progression in patients with

leukemia, helping them to treat the

patients accordingly. However, these

approaches are usually designed by

human experts and might not fully

capture the complexity of a patient’s

disease. Here, with a large cohort of

patients with acute myeloid leukemia,

we design an unsupervised machine

learning model – a type of computer

model that learns from patterns in

data without human input—to sepa-

rate these patients into subgroups

according to risk. We identify four

distinct groups which differ with

regards to patient genetics, labora-

tory values, and clinical character-

istics. These groups have differences

in response to treatment and patient

survival, and we validate our findings

in another dataset. Our approach

might help clinicians to better predict

outcomes in patients with leukemia

and make decisions on treatment.
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The ever-growing complexity of medical data poses a chal-
lenge for researchers and clinicians alike in determining
meaningful parameters that delineate different groups of

patients according to disease biology, clinical presentation, and
outcome. Acute myeloid leukemia (AML) is a clinically and
genetically heterogenous disease and recent studies have estab-
lished common genetic alterations1–3 that are used to stratify
patients into risk categories which ultimately guide treatment
decisions, such as the European Leukemia Net 2017 (ELN2017)
recommendations4. Commonly, the underlying statistical models
looking for a connection between a patient feature and outcome
are hypothesis-driven, i. e. they need human-drafted hypotheses
for data analysis5,6. With the rise of ‘big data’ in healthcare,
finding meaningful patterns in a diverse and high-dimensional
data set becomes more and more challenging with this conven-
tional approach7. To address this challenge, data mining and
machine learning (ML) methods are applied to ‘big’ medical data
sets to find patterns that represent clinically meaningful disease
phenotypes8 with AML being a model disease for the imple-
mentation of computational data analysis methods9. There is a
plethora of different approaches that greatly depend on the data
set and the research question, but in general we can distinguish
between supervised and unsupervised learning. Briefly, supervised
ML requires labeled training data to train the algorithm and
subsequently matches fitting labels to unlabeled elements
according to patterns derived during the training stage10. In
contrast, unsupervised ML aims to discover inherent patterns in
the data without the need for manually drafted labels and can be
used for knowledge retrieval where the algorithm explores simi-
larities and differences between elements in a sample and there-
after groups these elements into clusters based on distinctive
underlying patterns11. Thus, large-scale complex data sets can
provide novel insights into the biology of a variety of malig-
nancies such as AML12, and unsupervised ML can find structure
in these data sets to derive clinically relevant information13.
Nevertheless, the majority of recent studies applying clustering
algorithms in cancer focuses only on genetic data and neglect
clinical information. However, the combination of clinical,
laboratory and genetic data seems more meaningful to daily
practice as it may incentivize clinical decision-making based on
commonly available data. From a technological perspective,
recent studies have often used only a single clustering method for
the analysis of the respective data sets, however, differences in
algorithms may lead to different results and it remains unclear
whether the usage of different algorithms on the same data sets
may yield the same results thereby sparking a discussion of
reproducibility of ML-based research in cancer.

In this study, we investigated a cohort of 1383 intensively
treated AML patients from 59 hematological centers across
Germany according to clinical, laboratory, cytogenetic and
molecular genetic data. To ensure the validity of our results, we
used different combinations of transformation and unsupervised
clustering algorithms. Their individual cluster results were then
processed by meta-clustering to find overlapping prognostic
patient clusters. Results were then validated on an external cohort
of 664 intensively treated AML patients.

Methods
Patient data. 1383 AML patients were retrospectively identified
from previously reported multi-center trials (AML9614,
AML200315, AML60+ 16, and SORAML17) and the German
Study Alliance Leukemia (SAL) bioregistry (NCT03188874)
encompassing 59 centers specialized in the treatment of hema-
tological neoplasms. Patients ≥18 years with AML diagnosed
according to WHO criteria18 and curative treatment intent were

eligible for the purpose of this study. Patients with acute pro-
myelocytic leukemia were excluded. For external validation of an
unsupervised learning task, the availability of overlapping features
between an original cohort and an external cohort is essential
since the distribution of the data shape is tightly connected to the
features for any given data set. Hence, a data set that diverges
substantially in its available features will inevitably produce dif-
ferent results in an unsupervised learning task. We obtained
another large cohort of 664 intensively treated AML patients for
whom the same eligibility criteria applied and for whom the same
features were available (with the exception only of IKZF1 and
FLT3-TKD mutation status). This cohort was provided by the
AML Cooperative Group, a multicenter collaborative group of
university centers from southern Germany and Austria, and was
comprised of patients treated within previously reported clinical
trials (AMLCG-1999 and AMLCG2008)19,20. Specific treatment
regimens for all different trial protocols are summarized in
Supplementary Data 1. AML status was defined as de novo when
no prior hematologic malignancy was reported. AML was defined
as secondary (sAML) when prior myeloid neoplasms such as
myelodysplastic syndromes were reported or treatment-related
(tAML) when prior exposure to radio- and/or chemotherapy for
other malignancies was reported. Complete Remission (CR) was
defined according to the ELN2017 recommendations4. Sample
collection, biobanking, use of samples and clinical information
as well as analysis of individual patient data was carried out
under the auspices of the SAL bioregistry and the AMLCG. All
these activities carried out for the purpose of retrospective
research such as this study on previously acquired data were
previously approved by the Institutional Review Board of
the Technical University Dresden (EK 98032010) and the Insti-
tutional Review Board of the Ludwig-Maximillians-University
Munich (EK427-13). All participants gave their written informed
consent according to the Declaration of Helsinki to having their
data used for retrospective research in addition to the individual
prospective studies.

Pre-treatment biomaterial from bone marrow aspirates or
peripheral blood samples of all patients was screened using high
resolution fragment analysis for FLT3-ITD21, NPM122 and
CEBPA23. Next-Generation Sequencing (NGS) with the Illumina
TruSight Myeloid Sequencing Panel was used for additional
molecular aberrations. This panel covers 54 genes (Table S1)
which are frequently altered in myeloid malignancies as described
in detail previously24,25. For cytogenetics, standard techniques for
chromosome banding and fluorescence-in-situ-hybridization
(FISH) were used.

Data pre-processing and dimensionality reduction. Multi-
center data were merged in a MySQL (Oracle, Austin, TX,
USA) database. Features used for cluster generation were avail-
able upon initial diagnosis and were either clinical variables (such
as age, sex etc.), laboratory variables (such as Hb levels, platelet
and white blood cell count etc.) or cytogenetic or molecular
genetic alterations comprising a total of 212 parameters. Sup-
plementary Data 2 shows a full list of variables and their fre-
quencies in the patient cohort. Further, it has to be noted that in
an unsupervised setting, a number of n features is transformed
into n axis of a coordinate systems which represent the model
space. To reduce model dimensionality26, variables that were
present in <1% of the patient cohort were excluded from analysis.
This is intended to tackle the so-called ‘curse-of-dimensionality’,
where computation is destabilized by adding dimensionality in a
data set with a smaller number of samples compared to the
available number of features. After excluding sparse features in
order to make computations more stable and efficient, 61 features
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were left. Importantly, no outcome features such as achievement
of CR or survival times (EFS, RFS, and OS) were used for cluster
generation. These outcome features were explicitly excluded from
cluster generation as they may substantially bias cluster assign-
ments. As individual features represent axis in a coordinate sys-
tem, weights between features are uniformly equal and cannot be
modified externally, i. e. each feature for cluster generation is as
important as any other feature. Modifying features, either by
inclusion of novel features or exclusion of present features, will
therefore obviously modify the shape of the intermediary model
and hence the results. Nominal and ordinal variables were one-
hot encoded. Continuous variables were standardized to the
z-score. Many statistical and machine learning models do not
cope well with large amounts of missing data which may ulti-
mately result in unstable or biased models depending on the
mechanisms of missingness. A full list of absolute and relative
numbers of missing values for the features included in the model
is provided in Supplementary Data 3. Since unsupervised clus-
tering itself poses a ‘black blox’-like dilemma with regard to
explainability, introducing a multiple imputation mechanism that
generates different results each time an imputation is run would
not be a suitable option, if one aims at reproducible results. No
missing data was present for age, sex and molecular alterations
(with the exception of subtyping for CEBPA mutations into
specific domains in 31 cases), and only a fraction of karyotypes
(5.9%) and laboratory values (range 0.2 – 7.4%) were missing. In
order to generate reproducible outputs for imputation that would
still be solid in k-fold cross-validation and potential re-runs of the
model, continuous variables were imputed with the median of
the respective variable. Missing categorical variables were tagged
as unknown. Unknown variables were dropped at the pre-
processing stage. For example, a patient with all data available
except for information on extramedullary AML manifestations
will still be included in clustering, however will be represented by
a feature vector consisting of 60 values rather than 61 in a 61-
dimensional intermediary model space. With regard to outcome
variables, which were strictly withheld from cluster generation,
only cases with available survival times were used in Kaplan-
Meier analysis (see numbers-at-risk-tables, Fig. 4). There was no
imputation of missing outcome variables.

Since scaling and transformation of such a heterogenous data
set could potentially lead to distortions of individual relations
between elements, the individual elements were transferred to a
model space of reduced dimensionality while at the same time
retaining their original similarities expressed in Euclidean
distances and therefore allowing for accurate clustering of
elements and ensuring model stability by reduced dimensionality.
The transfer between model space and original space was
interchangeably available so that re-transformation to original
scales (i. e. mmol/l instead of z-standardized values) for clinically
meaningful interpretation of variables was possible. As no
uniformly optimal algorithm for transformation and dimension
reduction exists, but rather an optimal strategy has to be
determined based on the given data set, we used eleven
transformation algorithms listed in Table S2. A crucial adjust-
ment is the number of targeted uniform dimensions in the model
space, as this substantially influences the shape and expressive-
ness of the intermediate model. A high number of uniform
dimensions allows for accurate mapping but makes it difficult for
the subsequent clustering methods to detect distinct clusters,
while a low number possibly distorts the original representation
but allows for more distinctive clustering.

Unsupervised learning and meta-clustering. On the basis of the
transformed data models, unsupervised clustering was performed.

Clustering was designed according to the following rules to
guarantee: (i) a minimum size of clusters (not smaller than 10%
of the entire cohort), i. e. feature abstraction should not be too
strong or too weak which would result in a large number of
clusters consisting of only a few patients each; (ii) large differ-
ences between clusters, i. e. the patients in different clusters
should differ maximally in terms of their features and; (iii) small
differences within clusters, i. e. the patients within a cluster
should differ minimally in terms of their features. Ideally, this
would allow for clusters that are in themselves maximally
homogenous but in comparison to another cluster maximally
heterogenous. Since, again, no optimal algorithm exists and
performance has to be evaluated based on the given data, we
tested a variety of combinations: (i) For data transformation and
mapping, eleven different algorithms were used (Table S2); (ii)
data was transformed to a target dimensionality pre-determined
at each run ranging from 2 to 6 (n= 5); (iii) then, eleven different
clustering algorithms (Table S3) were employed to assign patients
to groups based on outcome. In total, we considered 605 different
possible clustering combinations in a large-scale grid search. To
define a starting value for grid search in the model space and
make the behavior of pseudo-stochastic methods repeatable, a
random seed was used, and to reduce the influence of pseudo-
randomness, each run was repeated for 10 iterations.

To ensure optimal quality of the clusters, a sanity-check was
performed after each clustering. This is intended to make clusters
both interpretable and clinically meaningful. From a purely
mathematical standpoint, it would be conceivable that cluster
generation would end in 1383 clusters, i. e. one cluster for each
patient, or one cluster for all patients as well as any number of
clusters in between. As this is not practicable to be used in the
clinical routine, a set of rules has to be introduced to ensure that
generated clusters fulfill a set of criteria that enables their
transferability from computer to bedside. To highlight biological
differences between AML patients, clusters have to differ
maximally in their data distribution. In an n-dimensional space,
this means that each patient is represented by a point in a
coordinate system with n axis. Cluster generation should then be
able to delineate clusters by maximizing the distance between
patients in the n-dimensional space. This means that only
patients that are close to each other with regard to their features
should be considered belonging to the same cluster while patients
that are different, i. e. are farther apart in this n-dimensional
space, should belong to a different cluster. Further, clusters
should be of adequate size to be meaningful in clinical routine. A
cluster that consists of only e. g. five patients (of 1383 patients in
total) would not be meaningful. At the same time, such small but
distinctive clusters would dramatically increase the overall
number of clusters and thereby further hinder clinical applic-
ability as it seems rather improbable that a clinician would utilize
(or even memorize) a risk assessment tool consisting of a two- or
even three-digit number of individual risk groups. Therefore,
cluster sizes and numbers of clusters (minimum of 10% of overall
patients, i. e. limiting cluster numbers to a maximum of 10) were
also considered as rules in the sanity check. Since we aimed to
include a variety of transformation and clustering algorithms
rather than subjectively selecting any specific combinations, it has
to be pointed out that depending on the distribution of the data
not all transformation algorithms are suitable to work with all
kinds of data and not all combinations of transformation and
clustering algorithms work well with each other. As our explicit
goal from a technological perspective was to manually interfere as
little as possible and rather let the model decide for itself and
eliminate unfitting outliers, we nevertheless allowed all 11 ×11
combinations of transformation and clustering algorithms.
Conceivable, a dysfunctional match-up between any of these
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algorithms would produce a result that would be extreme in some
sense, e. g. would produce to large or small, to few or to many
clusters, or patients within the clusters would be too different and
patients between the clusters would be too similar. Again, this is
where the sanity check comes in that eliminates such extreme and
mathematically unsound combinations before a final analysis is
undertaken. Thereby, we do not need to sort through combina-
torial outputs manually and potentially introduce subjectivity, but
rather let the model decide under the pretense of the above-
specified rules for clustering which clusters and thereby which
algorithmic combinations satisfy the pre-specified quality criteria.
It needs to be stressed, that the sanity check did in no way
interfere with feature selection nor did it include any outcome
variables to maximize cross-cluster heterogeneity. Outcome
variables were strictly withheld from cluster generation and only
statistically analyzed after final clusters were generated. If an
individual run fails the sanity-check, for example if it includes
clusters harboring only 1 patient each, the result is discarded and
not evaluated further.

Inherently to unsupervised learning, different methods of
clustering, i. e. different algorithms, will result in different
outputs. Hence, no single ‘best’ algorithm exists for any given
task, but rather the algorithm has to be evaluated within the
context of a specific data set. What further complicates this issue,
is that there are no labels in unsupervised learning. A supervised
learning task is trivial to evaluate with regard to differential model
performance: A given set of robust ground truth labels are
provided and model performance is simply evaluated on how well
each single model predicts the previously unseen labels. Then, the
best model is the one with the highest hit-rate between predicted
and ground truth labels. Since there are no labels (and often no
real ground truth) in unsupervised learning, a selection of the
‘best’ algorithm is rather subjective. In our set-up of 605 different
possible combinations, one could conduct statistical analysis for
each combination, but would still be left with the issue of what
output would be considered the ‘winner’. As this fundamentally
ends in a subjective and therefore potentially biased manual
decision, we used meta-clustering not to select the ‘best’ clustering
output, but rather to average all valid (after the sanity check)
outputs. Still, to make individual algorithmic combinations
numerically comparable, we used the silhouette coefficient27,
the Calinski-Harabasz-Index28, and the Davies-Bouldin-Score29.
Silhouette analysis27 measures how close a point in a cluster is to
points in neighboring clusters. On a scale from −1 to +1, samples
that are far away from neighboring clusters will receive a value
close to +1 while a value close to 0 means that a sample is close to
the decision boundary between two clusters whereas a value close
to −1 indicates an error in cluster assignment. The Calinski-
Harabasz-Index (also known as the Variance Ratio Criterion)28 is
the ratio between the sum of inter-cluster dispersion and the sum
of intra-cluster dispersion. It ranges from 0 to (theoretically)
infinity with higher values indicating higher clustering quality.
Lastly, the Davies-Bouldin-Score29 is an average similarity index
that compares each cluster to its most similar cluster. A ratio is
formed of intra-cluster distances to inter-cluster distances. The
score ranges from 0 to (theoretically) infinity where values close
to 0 indicate a higher distance between clusters and thus, better
overall cluster quality.

Meta-clustering was performed using principal component
analysis for transformation and mean shift for clustering. Meta-
clustering essentially does not cluster the raw data, but clusters
the output of the previous algorithms (Fig. 1). Thereby, the
individual outputs of all 605 combinations are used to generate
clusters based on similar cluster assignments, i.e. patients that are
farther apart in the n-dimensional model space for the majority of
clustering algorithms will also be farther apart in meta-clustering

(on average) and will therefore be put in two different final
clusters. In that way, the chance for false positives or negatives
that may be given when using only one combination of
transformation and clustering algorithms is reduced and the
need for human judgment of what makes one combination better
or worse than another (and thereby potentially introduce bias) is
limited. Code was generated using Python 3.8 (Python Software
Foundation, Fredericksburg, Virginia, USA). Python packages
that were used are summarized in Table S4.

External validation as a supervised learning task. Unsupervised
learning inherently only sorts samples into clusters. Therefore,
any addition of new data will lead to a completely new sorting.
Ideally, original clusters would be retained, however, this depends
on the distribution of the newly introduced data. In order to
externally validate our model, a mere addition of data is therefore
insufficient. Unsupervised learning does not consider labels as
there is no evident ground truth, but rather commonalities and
differences between samples are at the center of the analysis.
Contrastingly in supervised learning, labels can be used to learn
features that distinguish a certain set of specimens (e. g. shape
and color can be learned to distinguish apples and bananas).
Hence in our set-up cluster, assignment can be viewed as labels
that are determined by patient features. Therefore, in order to
include new data into the model, the set-up can be modified to a
supervised learning task as soon as one set of final cluster
assignment labels has been generated previously. Potentially, this
process can be iterated ad infinitum: Use unsupervised clustering
for cohort A, predict cluster assignments based on A’s features for
cohort B. It could also be modified in order to alter the original
cluster results: Use unsupervised clustering for cohort A+ B,
predict cluster assignments based on A and B’s features for cohort
C etc. For this design to function properly, the overlap in available
features between cohort A and B has to be high (ideally fully
matching). We obtained an external cohort of 664 intensively
treated AML patients from previous clinical trials as described
above. Cluster assignment labels were learned using supervised
learning on the original cohort and subsequently, cluster assign-
ment was predicted on the external cohort in order to sort them
within the existing clusters. Pre-processing for the external data
did not differ from our original cohort as described above. Again,
there is no universally ‘best’ algorithm for such a supervised
learning problem. Therefore, different algorithms have to be
evaluated based on their individual performance for a given task.
To do this, we used a train-test-split on the original cohort of
80:20 and evaluated four different supervised algorithms: naïve
Bayes, gradient boosting, random forest and logistic regression.
Algorithm performance was evaluated using AUROC, precision,
recall, and F1-score. The overall best performing supervised
algorithm was selected in order to assign cluster labels to the
external validation cohort. Since there is no ground truth for
cluster labels with regard to the external cohort, only test set
performance on the orginal cohort can be reported. Based on
these cluster assignments, survival analysis was performed on the
external cohort and compared to our original cohort.

Statistical analysis. Statistical significance was determined using
a significance level α of 0.05. All tests were carried out as two-
sided tests. Univariate analysis for binary outcomes including
complete remission (CR) was carried out using logistic regression
models to obtain odds ratios (ORs) in comparison to the overall
sample. For survival analysis including the evaluation of event-
free survival (EFS), relapse-free survival (RFS) and overall sur-
vival (OS), the Kaplan-Meier method and the log-rank test
were used. For univariable and multivariable analysis regarding
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survival, Cox-proportional hazard models were used to obtain
hazard ratios (HRs). For both ORs and HRs, 95%-confidence
intervals (95%-CI) are reported. Differences between clusters with
respect to categorical variables were evaluated using Fisher’s exact
test, and continuous variables were compared using ANOVA, if
the assumption for normality was met. Normality was evaluated
using the Shapiro-Wilk test. If the assumption of normality was
violated, the Kruskal-Wallis test was used. The Benjamini-

Hochberg method30 was used to adjust for multiple testing with
regard to the respective outcome variables. Statistical analysis was
performed using STATA BE 17.0 (Stata Corp, College Station,
TX, USA).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.
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Fig. 1 Step-wise workflow of unsupervised learning. After pre-processing of multimodal patient data (i), unsupervised learning (ii) was performed with
different combinations between target dimensionality (2–6, n= 5), data transformation (n= 11) and unsupervised clustering algorithms (n= 11). The
individual outputs of each algorithm combination were gathered and uses as input for meta-clustering (iii) to find patient clusters that in themselves are
maximally homogenous while at the same time differ maximally from other patient clusters. Thus, final clusters are identified and individual features of
patients within these clusters become available for further analysis. In the next step, the previous cluster assignments can be treated as labels for
supervised learning (iv). After training and testing on the original cohort, the highest performing classifier is being selected for assigning cluster labels to an
external validation cohort.
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Results
Unsupervised learning identifies four distinct clusters of AML
patients. Using meta-clustering, we aggregated the results of 605
different combinations of target dimensionalities, data transfor-
mation and clustering algorithms and obtained four final clusters
that were mapped to a three-dimensional space (Fig. 2). Without
any manual feature selection, 61 patient variables (Supplementary
Data 4) were used for cluster formation as sparse and redundant
variables were excluded by machine learning for dimensionality
reduction. These features were solely comprised of clinical vari-
ables such as age, AML status (de novo, sAML, tAML) etc.,
laboratory variables such as bone marrow blast count or white

blood cell count etc. upon initial diagnosis, and molecular and
cytogenetic variables. Individual clustering performance of dif-
ferent combinations of transformation and clustering algorithms
as well as target dimensions were evaluated using the silhouette
coefficient27, the Calinski-Harabasz-Index28, and the Davies-
Bouldin-Score29. Silhouette coefficients, Calinski-Harabasz-
Indices and Davies-Bouldin-Scores ranged from −0.12 to 0.72
(closer to 1 is better), 4.56 to 3533.94 (higher is better), and 0.46
to 18.46 (closer to 0 is better), respectively. 517 of 605 possible
algorithmic combinations passed the sanity check. Their indivi-
dual performance metrics can be viewed in Supplementary
Data 5. Since a good numerical value in the above-mentioned
indices does not necessarily guarantee meaningful knowledge
retrieval from clustering and picking a ‘winner’ combination still
remains somewhat subjective, meta-clustering was used to aver-
age the results of combinations that passed the sanity check.

Supplementary Data 6 shows a detailed comparison of baseline
patient characteristics and significant differences between clus-
ters. With respect to baseline patient characteristics, patients
assigned to cluster A, C, and D predominantly had de novo AML,
while cluster B had equal proportions of patients with de novo
and sAML. We found significant differences in age and sex
between the four clusters with patients in cluster D being the
youngest (median age 49 years) and patients in cluster B being
the oldest (median age 60.5 years), while cluster A harbored the
largest proportion of female patients (59.7%) and cluster C the
largest proportion of male patients (66.0%). Regarding the FAB-
classification31, cluster A showed the largest proportion of AML-
M5 and B harbored the largest proportion of AML-M6 while at
the same time having the smallest proportion of AML-M1.
Cluster C had the highest proportion of AML-M4, while D
consisted predominantly of AML-M1 and -M2. With regard to
laboratory values at initial diagnosis, patients in cluster A showed
the highest white blood cell count (median: 52.5 * 109/l, Fig. S1A),
highest platelet count (median: 62 * 109/l, Fig. S1B), highest LDH
(median: 613 U/l, Fig. S1C), and highest bone marrow blast count
(median: 77%, Fig. S1D). Patients in cluster B had the lowest
white blood cell count (median: 4.0 * 109/l, Fig. S1A), lowest LDH
(median: 293 U/l, Fig. S1C), and lowest peripheral blood blast
counts (median: 10%, Fig. S1E). Lastly, patients in cluster C
showed the lowest bone marrow blast counts (median: 34%,
Fig. S1D), while patients in cluster D had the lowest platelet
counts (median: 39 * 109/l, Fig. S1B). There was no significant
difference in hemoglobin levels between the clusters (Fig. S1F).

Clusters identified by unsupervised learning differ according to
molecular and cytogenetic alterations. The four clusters showed
distinct differences in the expression of molecular and cytogenetic
alterations displayed in Fig. 3. Cluster A had a high proportion of
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Meta-clustering was used to aggregate individual clustering results and the
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meta-clusters were obtained. Each dot represents a single patient
(n= 1383). Colors indicate patient cluster assignments. Axes represent
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scale. Since features can be represented as vectors, for each patient a mean
feature vector (i. e. a vector that aggregates all 61 features) can be
calculated that determines the patient’s location in the feature space where
a value of 0 indicates the mean for the entire cohort and values larger or
smaller than 0 correspond to deviations from the average. Thus, patients
can be separated in the feature space based on different expressions of
their feature vectors which allows for subsequent (meta-)clustering.
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normal karyotypes (77.6%) while complex karyotypes were rare
(0.7%). The majority of patients in A showed mutations of NPM1
(78.3%), FLT3-ITD (61.3%), and DNMT3A (53.5%). Further,
FLT3-TKD (17.7%), mutations of IDH2 (17.2%), TET2 (17.2%),
IDH1 (15.8%), PTPN11 (12.3%), and NRAS (11.3%) were present.
Cluster B had equal proportions of normal (33.2%) and complex
karyotypes (31.3%) and a high proportion of patients with −5 or
del(5q) (23.4%). The most frequent molecular aberrations in B
were TP53 (27.7%), ASXL1 (23.4%), RUNX1 (23.0%), TET2
(18.4%), IDH2 (18.4%), DNMT3A (16.0%), NRAS (14.1%),
STAG2 (12.5%), and BCOR (10.2%). With respect to cytogenetic
aberrations, cluster C showed a high proportion of normal kar-
yotypes (32.8%) while also harboring patients with complex
karyotypes (12.1%). Furthermore, 13.1% of patients in C had
inv(16) or t(16;16) and 8.2% had t(8;21). Alterations of NRAS
(22.6%) were the most frequent molecular alteration in cluster C
followed by mutated NPM1 (19.2%), DNTM3A (18.7%), TET2
(15.1%), and IDH2 (14.2%). Lastly, cluster D consisted of a
majority of patients with normal karyotypes (71.3%). Regarding
molecular alterations, D was dominated by mutated CEBPA
(94.6%). The majority of patients carried biallelic CEPBA muta-
tions (53.3%) with 24.6% of patients carrying mutations in the
TAD-domain and 15.6% of patients carrying mutations in the
bZIP-domain only. Other frequent alterations were GATA2
(31.1%), TET2 (27,5%), DNTM3A (16.8%), FLT3-ITD (15.0%),
NRAS (14.4%), NPM1 (14.4%) and WT1 (13.2%). Specifically
with respect to FLT3-ITD ratio, we found significant differences
between clusters (adj. p < 0.001) with cluster A having the largest
median ratio of 0.675 while the remaining clusters B, C, and D
had median ratios below 0.5 (0.425, 0.255, and 0.220 respectively,
Fig. S2). Supplementary Data 7 shows all absolute numbers and
proportions of molecular and cytogenetic alterations in the dif-
ferent clusters in detail. The connections between individual
aberrations per cluster are displayed as a heatmap in Fig. S3.

Clusters differ in response to induction therapy and long-term
survival. All patients in our cohort received intensive induction
therapy. 61.4% of patients received double induction therapy
(n= 849) while 38.6% of patients (n= 534) received only a single
course of induction therapy. Allogeneic hematopoietic stem cell
transplantation (HSCT) status was explicitly not used as a feature

for cluster generation as it may have substantially biased results
with regard to survival times. The rate of HSCT either upfront or
as salvage treatment did not differ significantly across clusters
(adj. p= 0.058 and adj. p= 0.675, respectively). Therefore, any
potential effect of HSCT (in total rather than regarding HSCT in
first CR) on cluster outcome appeared to be equally distributed
among clusters rather than distorting outcomes for any cluster in
particular. With respect to achievement of CR, patients in cluster
D followed by A had a significantly increased OR of 2.42 and 1.60
compared to the overall sample, respectively, while B showed a
significantly decreased OR of 0.36. Median EFS was significantly
increased for D with 11.2 months (HR= 0.74) followed by C with
9.1 months (HR= 0.83), while B showed the lowest EFS with
1.9 months and a corresponding HR of 1.84 (Fig. 4A). Patients in
cluster A and B showed significantly increased HRs for relapse of
1.25 and 1.39, respectively, with a correspondingly decreased RFS
of 14.8 and 11.9 months, respectively. In contrast, cluster C
showed a significantly decreased HR of 0.73 for relapse with a
corresponding median RFS of 30.7 months while no significant
differences were found for cluster D (Fig. 4B). OS was sig-
nificantly increased for cluster D and C with a median of 54.0 and
25.8 months corresponding to HRs of 0.68 and 0.82, respectively,
while B had significantly decreased OS with a median of
10.5 months (Fig. 4C) and a corresponding HR of 1.69. Supple-
mentary Data 8 provides a detailed overview of survival times,
ORs, HRs and significance levels for each cluster.

Unsupervised clustering re-stratifies patients compared to the
ELN2017 classification. Across the clusters, the distribution of
ELN2017 risk groups differed significantly (ELN2017 favorable,
adj. p < 0.001; ELN2017 intermediate, adj. p= 0.007; ELN2017
adverse, adj. p < 0.001). In cluster A, patients were most fre-
quently assigned to the ELN2017 favorable risk group followed by
ELN2017 intermediate risk while ELN2017 adverse risk allocation
was rare (Fig. 5A). In contrast, B was primarily composed of
patients within the ELN2017 adverse or intermediate stratum
while a minority were assigned to ELN2017 favorable risk
(Fig. 5B). C consisted of equal parts of patients within the
ELN2017 favorable and intermediate stratum with a fifth of
patients being assigned to the ELN2017 adverse risk group
(Fig. 5C). Lastly, D was predominated by patients assigned to the
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ELN2017 favorable risk group with roughly a quarter of patients
within the ELN2017 intermediate stratum and only a small
proportion of patients with ELN2017 adverse risk (Fig. 5D). For
patients allocated to the ELN2017 favorable risk group within
cluster A, 54.9% of patients were bearing mutated DNMT3A,
while mutated PTPN11 was found in 20.7% of patients. Mutated
IDH1, IDH2 and NRAS was found in 19.7%. For patients with
ELN2017 intermediate risk in A, mutated DNMT3A was seen in
55.7% of patients (Supplementary Data 9). With respect to cluster
B, patients in the ELN2017 intermediate subgroup frequently
showed mutations of IDH2 (29.3%), STAG2 (20.7%), TET2
(20.7%) as well as DNMT3A (23.3%, Supplementary Data 10).
Within cluster C (Supplementary Data 11), we observed 95.8% of
patients with ELN2017 intermediate risk to bear mutated CEBPA

−37.5% of patients with mutations in the TAD-domain, 47.9% in
the bZIP-domain, and 8.3% with biallelic mutations – while
35.4% also had mutated TET2 and 20.8% had mutated DNMT3A.
Lastly for the five patients with ELN2017 adverse risk within
cluster D (Supplementary Data 12), all of the five patients had
mutated CEBPA, four of which had mutations in the TAD-
domain and one had a mutation in the bZIP-domain. All of these
patients had concomitant mutations in RUNX1.

Cluster outcomes are preserved in an external multicenter
validation cohort. In stark contrast to supervised learning,
external validation of an unsupervised learning task is much
harder to accomplish since there is no obvious ground truth an
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algorithm’s performance can be compared against. Furthermore,
there is no ‘off-the-shelf’-solution to incorporate new data into a
previously established cluster without altering the cluster itself. In
order to retain previously generated clusters and at the same time
add new external data, we transformed the task into a supervised
one by using the cluster assignments as learnable labels. We then
trained four different supervised algorithms to predict cluster
assignments on the original cohort with a 80:20 train-test-split in
order to identify the most suitable algorithm for the task. Indi-
vidual model performance is displayed in Table S5. With a test set
AUROC of 0.99, logistic regression was the highest performing
algorithm in cluster assignment. Hence, logistic regression was
used to assign cluster labels to an external cohort. This cohort
was comprised of 664 intensively treated AML patients from
previous trials of the Acute Myeloid Leukemia Cooperative
Group (AMLCG). In comparison to the original cohort, cluster
sizes for each of the four clusters were similar. In general, the
directionality of effects, i. e. cluster B showed overall a high risk-
profile while cluster D had more favorable outcomes with clusters
A and C in between, was retained. As in the original cohort,
patients assigned to cluster A were significantly more likely to
achieve CR (OR= 2.08). Patients assigned to B again had dismal
outcomes as they were significantly less likely to achieve CR
(OR= 0.33) and had a significantly decreased RFS and OS as in
the original cohort with a HR of 1.68 and 1.87, respectively. C,

again, showed intermediate outcomes with regard to survival
times. Lastly, patients assigned to D had the most favorable
outcomes with significantly increased RFS and OS (HR= 0.47
and 0.64, respectively) as in the original cohort, while CR rate did
not differ in contrast to the original cohort. Detailed information
on outcomes in comparison to the original cohort can be taken
from Supplementary Data 7 and Fig. 4D, E. Information on EFS
was not available for the external validation cohort.

Discussion
Based on 605 different combinations of target dimensionalities,
transformation and clustering algorithms, unsupervised meta-
clustering identified four distinct clusters in a large multicenter
cohort of 1383 intensively treated AML patients differing
according to clinical phenotypes, laboratory parameters, mole-
cular as well as cytogenetic alterations. Results were externally
validated in a cohort of 664 intensively treated AML patients. The
lessons from this study are threefold in terms of (i) acknowl-
edging disease biology and interconnectedness of genetic altera-
tions in a combinatorial model, (ii) providing a data-driven tool
for cohort-based risk assessment with clinically meaningful dif-
ferences in patient outcome that potentially warrant different
disease managing strategies, and thereby (iii) challenging con-
ventional approaches for risk stratification that are expert-
opinion-based rather than data driven.
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Fig. 5 Distribution of ELN2017 risk categories across the clusters in the original multicenter cohort. In each of the four clusters, all three ELN2017 risk
groups were represented in differing proportions. Both clusters A (panel a) and C (panel c) harbored equal proportions of patients assigned to the ELN2017
favorable and intermediate categories, while B (panel b) had equal proportions of patients with ELN2017 intermediate and adverse features and D
(panel d) was dominated by ELN2017 favorable markers, however, followed by the ELN2017 intermediate group. nCluster A= 424 patients, nCluster B= 256
patients, nCluster C= 536 patients, nCluster D= 167 patients.
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AML biology is more complex than can be acknowledged by
mere presence or absence of one marker of favorable or adverse
prognosis. Conventional risk assessment tools like ELN20174

essentially act as evidence-based and expert-opinion-guided
decision trees. The general rule is that as soon as one item on a
checklist is present, a certain group assignment (favorable,
intermediate, adverse) is undertaken as long as there are no
contradicting items for a given patient. For example: A patient
has a feature; This feature is considered high-risk in the ELN
model; There are no contradicting other features; The patient is
categorized as high risk. In this regard, with the exception of a few
rules on specific mutation types and co-occurring mutations,
genetic alterations within a certain risk group are weighed equally
although this contradicts biological rationale with respect to
molecular mechanisms. Further, in such a decision tree model,
the presence of one alteration in a given risk group, e. g. mutated
RUNX1 in the ELN2017 adverse risk category, fundamentally
dictates patient assignment to this risk group without acknowl-
edging further adverse risk factors that may be present for this
patient. For example, a patient with mutated RUNX1 only is
treated the same as a patient with a complex karyotype, mutated
TP53 and mutated RUNX1. This lack of granularity fails to
acknowledge biological differences between genetic alterations
within the same risk category and sometimes even across cate-
gories within the ELN2017 risk stratification. Results of unsu-
pervised clustering approaches could be one way to perceive that
AML biology is much more complex than what can be captured
with a simple ‘absent vs. present feature’-type of decision tree. In
all of our four clusters, patients from all ELN2017 risk categories
are represented suggesting a differential outcome for patients with
a given mutation in context with co-occurring mutations. Our
approach therefore treats available patient information in an
interconnected manner in the context of other patients with
similar profiles rather than a decision-tree where even one piece
of information may be sufficient to fulfill the checklist for a
certain group assignment thereby acknowledging implicit rules in
the data that are not captured in previous models such as the ELN
recommendations.

Cluster assignment was performed using clinical, laboratory
and genetic information on the patient level. Individual patient
outcome, i.e. achievement of CR or survival times, were explicitly
excluded from cluster formation. Thereby, cluster assignment
could be used to analyze clusters with regard to treatment
response and survival based on their upfront clinical and genetic
information. With respect to clinically relevant endpoints such as
CR and OS, clusters ranged from favorable prognosis (D) over
intermediate (C) to high-risk patients (B) and a hybrid group of
patients with increased odds to achieve CR after induction ther-
apy, but contrastingly decreased survival (A). Regarding the latter,
cluster A was dominated by normal karyotypes, mutated NPM1,
DNMT3A and FLT3-ITD with a ratio >0.5 and accordingly
patients were mainly allocated to either the ELN2017 favorable or
intermediate risk groups4. While the interplay of mutated NPM1
as well as FLT3-ITD depending on its allelic ratio is well
characterized1,21,22,32, the prognostic impact of DNMT3A is
still controversial as previous studies showed conflicting
results reporting both decreased, increased or no impact on
survival3,33,34. Considering that the rates of patients receiving
HCT between clusters in our analysis did not differ and thus
likely did not bias individual clusters’ outcomes, plus given the
substantial discrepancy between the significantly increased odds
to achieve CR and the subsequent meager OS of cluster A, a closer
monitoring of patients fitting that cluster seems warranted and
potentially, allogeneic HCT may be an option for these patients to
consolidate the initial treatment response. With respect to high-
risk disease, cluster B showed dismal rates of treatment response

and substantially decreased OS. In a proof-of-concept fashion, B
showed the highest rate of established markers of poor outcomes
such as complex karyotypes, −5/del(5q) as well as mutated TP53,
RUNX1, ASXL14,35–40 paired with an absence of established good
risk markers. Considering ELN20174 allocation, patients in B
majorly either belonged to the ELN2017 intermediate or high-risk
groups while a small proportion were labeled ELN2017 favorable.
In contrast, cluster D showed remarkably favorable outcomes
with high rates of CR and substantially prolonged survival and
was mainly comprised of patients bearing normal karyotypes as
well as mutations of CEBPA, dominated by biallelic mutations as
well as single mutations in the bZIP and TAD domain, followed
by mutated GATA2 and TET2 in the absence of high-risk markers
corresponding to a majority of patients being allocated to the
ELN2017 favorable group followed by ELN2017 intermediate
group. Biallelic mutations of CEBPA have been demonstrated to
be associated with improved outcomes41,42, and recently a dif-
fering prognostic impact of mutational sites of CEBPA-TAD and
-bZIP has been reported23. Mutated GATA2 has been reported
to be associated with biallelic mutations of CEBPA23,43 and
improved outcome44, however whether the latter is due to
GATA2 mutation status alone or related to the frequent co-
mutational spectrum of GATA2 is unclear. Interestingly, roughly
a third of patients in D also harbored mutations in TET2, which
have been reported to be associated with poor outcomes45–47.
Lastly, patients in cluster C showed intermediary outcomes
compared to the other clusters and were allocated in equal
parts of ELN2017 favorable and intermediate risk categories with
a minority displaying ELN2017 adverse features. Notably, C
harbored the highest proportions of t(8;21) and inv(16) or
t(16;16), both have been previously associated with improved
outcomes4,48,49, however, were not allocated to the ‘good-risk’
cluster D by unsupervised learning in our analysis.

A key limitation in the transferability of any unsupervised
learning task is the data set used for cluster generation. It has to
be acknowledged that both our internal data set for cluster gen-
eration and our external data set for validation stem from a
multicenter collective of central European university centers and
a patient cohort that was treated in multiple anthracycline-based
intensive regimens within previously reported clinical trials. Such
a patient cohort obviously falls short to acknowledge ethnical
differences in disease biology, differences in supportive treatment
between healthcare systems and overall differences between
patients that are eligible for intensive therapy within a clinical
trial and those who are not. We want to point out that study
results are not set in stone but our dynamic approach easily
enables the pooling of patient data with other cohorts from dif-
ferent backgrounds in order to generate a more holistic picture of
AML’s molecular and clinical landscape than rigid hypothesis-
driven models can that need to be updated manually over the
course of years. However, for this purpose it is necessary to
actually pool data from different international sources and run
cluster analysis on them. By incorporating a final supervised
learning step into our pipeline, future research may also seek to
validate cluster assignments in a prospective fashion by assigning
patients to clusters pre-treatment and compare predicted cluster
results to actual patient outcomes.

As pointed out, low-scale hypothesis-driven models likely
underestimate the complexity of AML biology. While our model
is not intended or validated to challenge well-established risk
assessment tools, we argue that data-driven models can poten-
tially leverage a multitude of available clinical and genetic infor-
mation for a more nuanced and personalized approach to AML
therapy. For instance, Gerstung et al.50 demonstrated that the use
of knowledge banks incorporating predictions of treatment
response and survival for a variety of treatments may allow for
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individual treatment regimens reducing the need for allogeneic
HCT in 20–25% of patients while maintaining overall survival
rates. In that sense, unsupervised cluster analysis may aid in
unveiling differences and commonalities in disease biology that
are of prognostic impact as, for example, demonstrated by Bul-
linger et al.51,52. Additionally, Awada et al.53 recently used
Bayesian latent class clustering to group AML patients based on
gene sequencing data and similarly found 4 distinct genomic
clusters with impact on patient outcomes while challenging the
conventional dichotomy between de novo and sAML.

From a methodological perspective, a common shortcoming in
biomedical machine learning is the reduction of a given use-case
to one single algorithm without evaluation of alternative algo-
rithms in comparison. Further, in contrast to conventional clas-
sification tasks (in supervised learning), clustering of patient data
without ground truth labels is inherently difficult to evaluate. In
supervised learning an algorithm is trained with labeled samples
and a well-defined ground truth and is tested by predicting labels
to previously unseen samples while being measured on how well
the predicted labels fit the ground truth. Contrastingly in unsu-
pervised learning, no labels exist and the ground truth, if one
exists at all, is often difficult to point to. Hence, it is of utmost
importance to inspect clustering results in their specific con-
textual domain, respective research question and, most impor-
tantly, evaluate them by information gain. By incorporating a
multitude of different algorithm combinations into a single model
and subsequently meta-clustering results with minimal feature
engineering, our approach acknowledges differences between
algorithms that usually cannot be determined a priori for a given
data set as no ‘one-size fits all’ solution exists in unsupervised
learning and results may vary based on data transformation and
clustering methods. Despite our analysis on multi-center data
stemming from over 50 centers, the retrospective nature of this
model is still a limitation and prospective validation is none-
theless warranted. Additionally, our approach is limited by
excluding sparse features to avoid the curse-of-dimensionality26:
An increased number of variables, i. e. higher model dimen-
sionality, inflates the model space rapidly which leads to a scarcity
of available data in the model. In order to avoid the consequential
model instability and ensure reliable and interpretable results, we
excluded parameters that were only present in <1% of patients at
the pre-processing state and the remaining parameters were
mapped to a lower dimensional space. Potentially, this may lead
to a loss of information, which however can be tackled by
including more data, i. e. more patients. Hence, a larger sample of
patients may allow for rare features, combinatorial features (i.e.
unmutated NPM1+ FLT3-ITDhigh) or higher dimensional map-
ping to be included without sacrificing model stability while
potentially increasing the information gain. With the availability
of a much larger patient cohort, e. g. through collaborative data
collection efforts in hematology such as HARMONY54, clustering
could be extended to methods such as deep learning55, potentially
unveiling more nuanced differences between patient groups.
Additionally, all patients in our cohort received intensive che-
motherapy, and – with the exception of patients from the SOR-
AML trial17 which showed no impact on long-term overall
survival for the addition of sorafenib56—did not receive mole-
cular targeted therapy. With the advent of targeted therapy in
AML treatment, more personalized treatment regimens will have
impact on individual patient outcomes57,58. Hence, a compre-
hensive evaluation of a wide range of potentially impactful
molecular lesions for a given patient seems reasonable and a
dynamic data-driven approach as ours to delineate patient groups
according to their risk profiles possibly also stratifying for dif-
ferent treatment modalities in the future is likely more suitable to
keep pace with the rapid advancements in targeted therapies than

rigid hypothesis-driven models. Potentially, our model is trans-
ferable to other cancer entities with multi-modal data. Hence, the
code used for the purpose of this work is publicly available.

In summary, we here provide a data-driven approach combining
a variety of unsupervised learning algorithms and meta-clustering
to identify distinct patient clusters that differ significantly in clini-
cally meaningful endpoints like achievement of CR and survival
based on heterogenous clinical, laboratory and genetic data. We
evaluated our model on patient data from a multinational cohort
from 59 centers and externally validated clustering results. Our
model provides further insight into the complex biology and clinical
presentation of AML beyond ELN2017 recommendations and
warrants the incorporation of data-driven models utilizing large
biomedical data sets for a more accurate stratification of AML
patients in order to improve patient care.

Data availability
Data that was used for initial clustering in this study stems from previously reported
multi-center trials (AML9614, AML200315, AML60+ 16, and SORAML17) of the SAL.
Data that was used for external validation stems from previously reported trials of the
AMLCG (AMLCG-1999 and AMLCG2008)19,20. Further information on patients
enrolled in these trials can be obtained from the individual references. Data is available
from the corresponding author upon reasonable request. Full public access is currently
not possible due to ongoing retrospective studies of the respective study alliances with
currently unpublished results. The underlying data for the figures generated for the
purpose of this study can be found in Supplementary Data 7 (Fig. 3), Supplementary
Data 8 (Fig. 4), Supplementary Data 9–12 (Fig. 5).

Code availability
The code59 generated for the purpose of this study is publicly available at https://zenodo.
org/badge/latestdoi/629506656.
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