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Integrated algorithm combining plasma biomarkers
and cognitive assessments accurately predicts
brain β-amyloid pathology
Fengfeng Pan1,4, Yanlu Huang1,4, Xiao Cai 2,4, Ying Wang1, Yihui Guan3, Jiale Deng2, Dake Yang2,

Jinhang Zhu2, Yike Zhao2, Fang Xie3,5✉, Zhuo Fang2,5✉ & Qihao Guo1,5✉

Abstract

Background Accurate prediction of cerebral amyloidosis with easily available indicators is

urgently needed for diagnosis and treatment of Alzheimer’s disease (AD).

Methods We examined plasma Aβ42, Aβ40, T-tau, P-tau181, and NfL, with APOE genotypes,

cognitive test scores and key demographics in a large Chinese cohort (N= 609, aged 40 to

84 years) covering full AD spectrum. Data-driven integrated computational models were

developed to predict brain β-amyloid (Aβ) pathology.
Results Our computational models accurately predict brain Aβ positivity (area under the

ROC curves (AUC)= 0.94). The results are validated in Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort. Particularly, the models have the highest prediction power

(AUC= 0.97) in mild cognitive impairment (MCI) participants. Three levels of models are

designed with different accuracies and complexities. The model which only consists of

plasma biomarkers can predict Aβ positivity in amnestic MCI (aMCI) patients with AUC=
0.89. Generally the models perform better in participants without comorbidities or family

histories.

Conclusions The innovative integrated models provide opportunity to assess Aβ pathology in
a non-invasive and cost-effective way, which might facilitate AD-drug development, early

screening, clinical diagnosis and prognosis evaluation.
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Plain language summary
The numbers of people with Alzhei-

mer’s disease are increasing. People

with Alzheimer’s disease have chan-

ges in the brain as well as cognitive

impairment, which is when a person

has difficulty remembering, learning,

concentrating, or making decisions.

Innovative medicines and new treat-

ments all target people with early

Alzheimer’s disease. However, the

methods used currently to diagnose

Alzheimer’s disease are expensive

and can be unpleasant for patients.

We studied Chinese people with no

cognitive impairment, some cognitive

decline, mild cognitive impairment,

Alzheimer’s disease and non-Alzhei-

mer’s disease dementia. We estab-

lished a computational model that

can predict the changes seen in the

brain in people with Alzheimer’s dis-

ease from information including

results of blood and memory tests.

This non-invasive and cost-effective

approach might improve early iden-

tification of those with Alzheimer’s

disease.
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A lzheimer’s disease becomes an ever-growing burden on
public health1. Most existing treatments and ongoing
clinical trials of innovative medicines all appeared more

effective on MCI or early Alzheimer’s disease patients, especially
those who had abnormal levels of brain Aβ2,3. Currently, cerebral
accumulation of extracellular amyloid plaques can be detected by
positron emission tomography (PET) scan or reflected by cere-
brospinal fluid (CSF) Aβ measurements after lumbar puncture4.
However, the high cost and accessibility limitations of PET
images and the invasive sampling procedure of CSF restricted
their clinical applications.

Blood-based biomarkers have the advantages of being less
invasive, more cost-effective and better feasibility5. Several studies
have demonstrated that plasma Aβ40, Aβ42, phosphorylated tau
(P-tau) and neurofilament light (NfL) are to some extent corre-
lated with PET scan and CSF detection results6–8. Those bio-
markers were measured on various innovative platforms, because
the concentrations of plasma biomarkers are significantly lower
than those in CSF in general. For each individual biomarker, the
cut-point and prediction power varied in specific assays, plat-
forms and cohorts9,10.

Among the existing plasma biomarkers, P-tau has shown the
highest predictive accuracy for Aβ positivity11,12. However, one
single biomarker can hardly represent thorough disease status.
Previous research attempted to develop algorithms combining
multiple factors and showed better and more robust performance
in predicting Aβ positivity of Alzheimer’s disease. Those algo-
rithms are clinically meaningful and demonstrated ideal accuracy
in western cohorts ADNI and BioFINDER11,13,14.

The increasing prevalence of AD calls urgent attention to both
treatment and diagnosis15. Various computational models,
including mathematical models, causal models, data-driven
models, and personalized models, were constructed to investi-
gate the strategies that may be utilized to target both AD treat-
ment and diagnosis16. Hao and Friedman used a system of partial
differential equations to simulate the efficacy of drugs that may
slow the progress of the disease. The mathematical model was
based on a schematic network which depends on some uncon-
firmed interaction between amyloid, tau, and NfL in AD17.
Iturria-Medina et al. used a multifactorial causal model and
aimed to find the causal event leading to late-onset Alzheimer’s
disease. The model suggested some complex interplay among
multiple relevant direct interactions that ultimately cause AD.
However, the causal relationship has not been confirmed at the
individual level18. Zhu et al. constructed a subject-specific AD
classifier to refine the dataset at the individual level. It could
potentially achieve classification in complex and heterogeneous
MRI datasets but lacked unity and interpretability at a universal
level19. Many researches, including our study, employed data-
driven models to predict AD progression20–22. Combinations of
genes, neuropsychological scales, and biomarkers were integrated
to make an accurate prediction. However, all data-driven models
do not depend on any pathological assumptions. The actual
results were only inferred from the underlying data. Therefore,
data-driven models require a large scale of data to be reliably
corroborated23. Under the current status of this field, the
pathology of AD progression has not been clarified and con-
firmed. Models that rely on pathological assumptions seem fragile
on where they stand. With sufficient and multi-platform data for
analysis, data-driven models could directly establish connections
between patient features and target results without any premise
on the pathological pathways. Our study, utilizing data-driven
models, attempts to find the optimal computational models
to predict AD and its corresponding feature under various
circumstances.

In the present study, we constructed computational models to
predict brain Aβ pathology based on plasma biomarkers, APOE
genotypes, cognitive test scores and key demographics. Our
integrated models were able to accurately predict Aβ positivity,
with the best performance observed in the MCI group, particu-
larly in the aMCI subgroup. We developed other integrated
models based on plasma biomarkers alone which were able to
discriminate the patients in different development stages of
dementia. All plasma biomarkers were found to fluctuate in
participants with comorbidities or family history.

Methods
Study participants. Participants were consecutively enrolled
from Sixth People’s Hospital, Shanghai, China. The inclusion
criteria were as follows: (1) aged 40 to 85 years; (2) educated for
more than one year and fully understand the neuropsycholo-
gical tests; (3) consent to the blood tests, cranial MRI and 18F-
florbetapir PET scan. The exclusion criteria were as follows: (1)
significant systemic illness or renal and hepatic dysfunction
which may interfere with the results of plasma biomarkers; (2)
Individuals with a history of significant neurologic disease and
psychiatric disorders; (3) other conditions which may be
adversely affecting cognitive function. To evaluate the perfor-
mance of our integrated model, we hypothesized that our
integrated model would exceed the current standard clinical
method to diagnose AD in AUC. According to clinical data, the
standard AUC is defined as 0.85 and our model is expected to
have an AUC of 0.90. According to statistical convention, we
set a two tailored α= 0.05 and β= 0.2. Using the formula

N ¼ Z1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VH0ðcAUCÞ
q

þZ1�β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð dAUCnew ÞþVð dAUCstandard Þ
q

AUCnew�AUCstandard
, we determined

the minimum sample size required is 415. As a result, 609
participants with available data from both blood tests and 18F-
florbetapir PET scan within 3 months after blood sampling were
included in this study. The sample size is sufficient to reject the
null hypothesis24. Written informed consents were obtained
from all the participants or their caregivers. The ethics com-
mittee of Shanghai Jiao Tong University Affiliated Sixth Peo-
ple’s Hospital approved this study.

Neuropsychological assessment and diagnostic classification.
The Chinese version of the Mini-Mental State Examination
(MMSE)25, Montreal Cognitive Assessment-Basic (MoCA-BC)26,
and Addenbrooke’s Cognitive Examination-III (ACE-III-CV)27

were selected as brief cognitive screening tests. Global functional
status was assessed by Activities of Daily Living (ADL) and
Functional Assessment Questionnaire (FAQ)28. Different cogni-
tive domains were assessed by a battery of standardized neu-
ropsychological tests, including Auditory Verbal Learning Test
(AVLT)29 20 min delayed free recall and AVLT recognition for
memory, Boston Naming Test (BNT)30 and Animal Verbal Flu-
ency Test (AFT)31 for language, Shape Trail Test Part A and B
(STT-A, STT-B)32 for executive function.

The clinical diagnosis of probable Alzheimer’s disease
dementia was made by experienced neurologists according to
the National Institute on Aging and Alzheimer’s Association
(NIA-AA) criteria33, and only those with positive results of 18F-
florbetapir PET scan were classified as Alzheimer’s disease
dementia patients. Participants met the criteria for all-cause
dementia but not classified as Alzheimer’s disease dementia were
classified as non-Alzheimer’s disease dementia patients. Partici-
pants with cognitive symptoms but not met the diagnostic criteria
for dementia were classified as MCI if they met the actuarial
neuropsychological criteria put forward by Jak and Bondi34.
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The subgroup of aMCI was defined based on the impaired
performance on AVLT delayed free recall and AVLT recognition.
In the participants who performed essentially normal on
neuropsychological tests, those with self-reported and concerned
memory decline within the last 5 years and onset age over 60
years were classified as subjective cognitive decline (SCD)35.

Measurements of plasma Aβ42, Aβ40, T-tau, P-tau181 and
NfL. The latest Simoa technique (Single Molecule Array, by
Quanterix) was used for plasma biomarker detection. All of these
five biomarkers were detected using two steps reaction methods.
Aβ42, Aβ40 and T-tau were detected using Neurology 3-Plex A
Assay Kit (Lot 502838). For the first step, 25 µl bead, 20 µl
detector and 38 µl sample were diluted with 114 µl diluent, the
incubation time was 47 cadences (45 s per cadence). For the
second step, 100 µl β-galactosidase-streptavidin (SBG) was added
into the reaction mixture, and the incubation time was 7
cadences. 50 µl resorufin β-D-galactopyranoside (RGP) was
added for the measurement. P-tau 181 was detected using P-tau
181 Assay Kit V2 (Lot 502923). For the first step, 25 µl bead, 20 µl
detector and 25 µl sample were diluted with 75 µl diluent, the
incubation time was 47 cadences. For the second step, 100 µl SBG
was added into the reaction mixture, and the incubation time was
7 cadences. 50 µl RGP was added for the measurement. NfL was
detected using NF-light Assay Kit (Lot 202700). For the first step,
25 µl bead, 20 µl detector and 38 µl sample were diluted with
114 µl diluent, the incubation time was 47 cadences. For the
second step, 100 µl SBG was added to the reaction mixture, and
the incubation time was 7 cadences. 50 µl RGP was added for the
measurement. Twenty-four samples were tested using duplicate
measurements to ensure the repeatability of our experiment based
on Simoa platform, and the remaining 585 samples were tested
using singlicate measurement. All the samples were analyzed on
one occasion.

Parameters calibration for model construction. A few restric-
tions on all of the models were applied when constructing the
decision tree models. The minimum number of observations for a
split to be attempted was set to eight. The minimum number of
observations in any terminal leaf node was set to four. The
maximum tree depth was restricted to be the same as the number
of variables in the model. All the parameters stated above were
used to avoid over-fitting. The best model was first chosen based
on cross-validation (CV) error rate. The model, which gives the
maximum CV error rate within one standard deviation from the
lowest CV error rate, was deemed as giving the best trade-off
between model complexity and model fit. Then, variables were
deleted in the sequence of their variable importance. The deletion
process only stops until there was a significant difference in AUC
to the original model based on Delong’s test. The refined model
further restricted the tree depths to three with all other para-
meters unchanged.

Amyloid PET imaging. The 18F-florbetapir PET scans were
performed with a PET/CT system (Biograph mCT Flow PET/CT,
Siemens, Erlangen, Germany) 50 min after the intravenous
injection of 7.4 MBq/kg 18F-florbetapir and lasted for 20 min.
PET images were reconstructed by filtered back projection algo-
rithm with corrections for decay, normalization, dead time,
photon attenuation, scatter and random coincidences. In brief,
images were coregistered to the individual structural MRI and
further warped into the standard Montreal Neurological Institute
(MNI) stereotactic space. Standard uptake value ratios (SUVR)
were calculated for the cortical regions of interest (ROIs) using
cerebellar crus as a reference36. The mean cortical SUVR scores

were calculated by weighted averaging of these ROIs. PET Image
interpretation was performed by three nuclear medical physicians
with specialized training according to the guidelines of visual
rating37.

Statistical analyses. APOE genotypes were categorized into dif-
ferent groups according to their Aβ risks (41): (a) ε2/ε2 or ε2/ε3;
(b) ε3/ε3; (c) ε2/ε4 or ε3/ε4; (d) ε4/ε4. Categorical variables were
analyzed by Chi-squared test and multi-group comparisons of
continuous variables were assessed by Kruskal–Wallis test. Mann-
Whitney U test was conducted to compare the differences in
plasma biomarkers between the participants of amyloid PET
positive and negative in each diagnostic group. Decision tree
models constructed with recursive partitioning were performed.
The full model, which provided excessive accuracy, utilized all
available variables and restricted the tree depth to be the same as
the number of variables in the model. Next, the best model was
constructed by two steps fine-tuning: 1) complexity reduction by
the best trade-off between model complexity and model fit
according to the CV error rate; 2) variable reduction by removing
as many variables as possible without significant decrease of
model performance. A refined model was created by restricting
the tree depths to 3, in the effort to provide simple yet concise
PET positivity prediction rules for the clinicians. Receiver oper-
ating characteristic curves (ROC) were produced and AUC,
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy were calculated under the
optimal Youden threshold to evaluate the performance of pre-
diction models. Differences in AUCs were compared using the
DeLong method38. Models were trained and tested through 1000
times CV to avoid over-fitting and maximize model stability.
Validation in ADNI cohort was performed using the same vari-
ables from the training cohort. The DeLong’s test was used to
compare the performance in pairing diagnostic groups between
the training cohort and ADNI cohort. A two-sided P value < 0.05
was considered statistically significant. The cut-off values for each
node were z-score transformed. All data analyses were performed
with R software 4.0.3.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Clinical characteristics of participants in the cohort. Partici-
pants were enrolled by the process described in Methods. Parti-
cipants with complete demographic information, β-amyloid PET
results, clinical diagnostic results and most of the cognitive
assessments and plasma biomarker measurements were included
in this study. Those resulted in 609 individuals in total. Based on
the diagnostic criteria mentioned in Methods, the participants
were classified as cognitive normal (CN (n= 238), SCD
(n= 118), MCI (n= 135, including 93 aMCI), Alzheimer’s dis-
ease dementia (n= 89) and non-Alzheimer’s disease dementia
(n= 29). Baseline characteristics of this cohort were presented in
Supplementary Data 1 and plasma biomarkers in Supplementary
Table 1. The group of CN showed relatively younger ages, and the
groups of MCI, Alzheimer’s disease and non-Alzheimer’s disease
dementia had significantly lower education levels compared to
cognitive normal controls. No significant difference in sex or
body mass index (BMI) was found among five groups. The Alz-
heimer’s disease group showed significantly higher frequency of
APOE ε4 genotype, while no significant difference was found in
the groups of SCD, MCI and non-Alzheimer’s disease dementia.
A detailed distribution of APOE genotypes was summarized in
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Supplementary Table 2. In order to evaluate their cognitive and
functional status, all participants completed most of the assess-
ment scales (Methods). Participants of MCI, Alzheimer’s disease
and non-Alzheimer’s disease dementia had worse performance in
the brief cognitive assessments and standardized neuropsycho-
logical tests than CN, and participants of Alzheimer’s disease and
non-Alzheimer’s disease dementia had worse performance in
ADL and FAQ than CN. There were 46 (19%), 36 (31%) and 53
(39%) Aβ positive cases in CN, SCD, MCI groups respectively.
Based on our diagnostic criteria, dementia patients with positive
18F-florbetapir PET scan results were classified as Alzheimer’s
disease, while the rest as non-Alzheimer’s disease dementia
(Methods).

Integrated model accurately predicted Aβ positivity. Each
individual plasma biomarker had limited performance in pre-
dicting Aβ status solely (Supplementary Table 3 and Supple-
mentary Fig. 1). Therefore we combined multiple variables
including plasma biomarker measurements, APOE genotypes,
cognitive test scores and key demographics to construct

integrated prediction models. The model selection process and
AUC of all steps were illustrated in Fig. 1a. The ROC curves of the
three models in all participants were shown in Fig. 1b. The
detailed statistic parameters of models were shown in Supple-
mentary Table 4. The whole process was completely data-driven,
without any prior weighting or setting for the variables. First,
variables were automatically selected by their importance and
formed a full model. The AUC of full model is 0.94 (95% con-
fidence interval (CI): 0.92-0.96). Although the full model has high
accuracy in predicting Aβ positivity, the clinical application of it
may be challenging since it requires most of the variables.
Therefore we streamlined it to a best model by two steps of fine-
tuning: 1) complexity reduction by the best trade-off between
model complexity and model fit; 2) variable reduction by
removing as many variables as possible without significant
decrease in model performance. The best model yielded an AUC
of 0.83 (95% CI: 0.79–0.87) while it contains only 5 variables:
plasma P-tau181, plasma Aβ42/Aβ40 ratio, MMSE score, edu-
cation years and age. To further simplify the prospective appli-
cation in clinical practice, we finally restricted the depths of
model to three to mimic the common diagnostic path. It indicates

Fig. 1 Integrated models in the whole dataset. Model selection process and performance for predicting PET positivity in all the participants (n= 609).
a The decision tree model selection process. The full model was generated with all covariates. The best model was pruned with the best cross-validation
error rate and deleted as many variables as possible while maintaining similar performance. The refined model restricted the tree depths to three.
b Receiver operating characteristic (ROC) curves of the different models for discriminating Aβ-PET positive versus negative.
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that the users can get the results by no more than 3 steps inter-
pretations. The refined model resulted in an AUC of 0.71 (95%
CI: 0.67–0.75). The details of modeling process is described in
Methods.

The prediction of Aβ positivity in MCI subgroup had the
highest accuracy. The same procedures were carried out to
construct the prediction models in each diagnostic group inde-
pendently. The performance of the best models in all individual
groups was demonstrated in Fig. 2 and Table 1. The top pre-
diction was in MCI group with an AUC 0.93 (95% CI: 0.89–0.98).
The AUCs of CN, SCD and dementia groups were 0.82 (95% CI:
0.75–0.90), 0.82 (95% CI: 0.74–0.89) and 0.86 (95% CI:
0.77–0.94), respectively. The AUC values and the corresponding

95% confidence intervals of prediction in four groups were shown
in Fig. 2. The detailed statistic parameters of models in MCI
subgroup were shown in Supplementary Table 4.

The Aβ positivity in aMCI subgroup can be predicted by
plasma biomarkers alone. Afterwards, we dug into the subtypes
of MCI patients. In the subgroup of aMCI, which is memory-
specific and recognized as the precursor to Alzheimer’s disease,
the integrated models revealed superior performance. The AUCs
of full model, best model and refined model are 0.97 (95% CI:
0.94–1.00), 0.96 (95% CI: 0.92–0.99) and 0.89 (95% CI:
0.84–0.95). The detailed statistical parameters of models in aMCI
subgroup were shown in Supplementary Table 4. Remarkably, the
variables in the automatically data-driven selected refined model

Fig. 2 Integrated models in individual groups. Area under the Receiver Operating Characteristic (AUROC) values and the corresponding 95% confidence
intervals of the established models for predicting Aβ-PET positivity in different diagnostic groups (All participants: n= 609; CN: n= 238; SCD: n= 118;
MCI: n= 135; Dementia: n= 118) were shown.

Table 1 Best model performances in different dementia stages.

AUC
(95% CI)

Sensitivity Specificity PPV NPV Accuracy CV Error

General population 0.830
(0.794–0.865)

65.6% 88.8% 77.4% 81.6% 80.3% 0.805

CN 0.824
(0.752–0.896)

56.5% 93.8% 68.4% 90.0% 86.6% 1.016

SCD 0.817
(0.740–0.894)

86.1% 67.1% 53.4% 91.7% 72.9% 1.025

MCI 0.933
(0.888–0.978)

88.7% 93.9% 90.4% 92.8% 91.9% 0.491

Dementia 0.855
(0.769–0.941)

91.0% 72.4% 91.0% 72.4% 86.4% 1.108

AUC area under the ROC curve, PPV positive predictive value, NPV negative predictive value, 95% CI 95 percent confidence interval, CV Error cross-validation error, CN cognitive normal, SCD subjective
cognitive decline, MCI mild cognitive impairment.
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were plasma P-tau181, Aβ40 and Aβ42, indicating that the Aβ
status of PET-CT can be predicted with reasonable confidence by
only measuring plasma biomarkers. The refined model with
detailed paths and parameters were shown in Fig. 3. This concise
and straightforward model provided potential possibility for
clinical utility broadly.

The integrated models were validated in the ADNI cohort. To
investigate the robustness of our integrated models, we validated
them in Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. To get an impartial comparison, we tried to assemble the
data which have identical variables as in our dataset. As the result,
284 cases with available data of demographics (age, sex and
education years), APOE genotypes, plasma biomarkers (Aβ40,
Aβ42, P-tau181, T-tau and NfL), brief cognitive test (MMSE) and
the results of Aβ-PET were collected, including 97 of CN, 124 of
MCI and 63 of Alzheimer’s disease patients. SCD group in ADNI
was excluded because we didn’t find complete plasma biomarker
data for those. The demographic summary of validation dataset
was shown in Supplementary Data 1. There was 8 years difference
in the average ages of two cohorts (77 years old in ADNI cohort
and 65 years old in our study). The proportion of APOE ε4
carriers are also higher in ADNI cohort (30.9–69.8%) than in our
study (14.4–52.8%), which consists with earlier finding that the
frequency of APOE ε4 genotype is lower in Asian than western
population39. For the cognitive test in ADNI dataset, only MMSE
was available and therefore involved in the validation process.
BMI was not involved in the procedure of model selection
because it was only available in a small population in ADNI. We
compared the levels of Aβ40, Aβ42, NfL, P-tau181, and T-tau
between ADNI dataset and our dataset. ADNI cohort had an
overall higher distribution than the Chinese cohort based on the
raw value after measurement (Supplementary Table 1 and Sup-
plementary Fig. 2). These differences may be caused by the
experimental kit and the ethnic features between ADNI and our
study. In order to have unified values as an input to the model, all

values were z-score transformed within their own dataset. After
the transformation, only Aβ40, and Aβ42 have statistical differ-
ence between the ADNI and the Chinese cohort in NC and MCI
group (Supplementary Fig. 3).

The same variables as previously described were input to
construct models in all the collected cases from ADNI. No non-
Alzheimer’s disease dementia data with all five biomarkers were
found in ADNI and therefore the analyses were performed in the
whole dataset, CN and MCI subgroup separately. As shown in
Fig. 4 and Supplementary Table 5, the full model, best model and
refined model in ADNI returned similar accuracy to this study
(AUC= 0.96 (95%CI: 0.93–0.98), 0.88 (95%CI: 0.84–0.92) and
0.75 (95%CI: 0.70–0.81) in the whole dataset; AUC= 0.91 (95%
CI: 0.85–0.98), 0.86 (95%CI: 0.78–0.93) and 0.71 (95%CI:
0.63–0.79) in the subgroup of CN; AUC= 0.95 (95%CI:
0.91–0.99), 0.93 (95%CI: 0.89–0.97) and 0.87 (95%CI:
0.81–0.93) in the subgroup of MCI). The AUCs of the whole
dataset in ADNI were higher than in our cohort. It is probably
because the ADNI dataset in this study did not contain SCD
group, as the models had the lowest prediction AUCs in SCD
group in previous section (Fig. 2 and Table 1). This assumption
was proven by matching our cohort population by removing SCD
and non-Alzheimer’s disease patients from the dataset. The
resulting AUCs were 0.95 (95%CI: 0.92–0.97), 0.87 (95%CI:
0.84–0.91) and 0.79 (95%CI: 0.75–0.83), which does not differ
significantly from that obtained from ADNI cohort (p-value >
0.05). Furthermore, the best models in the whole dataset and
MCI subgroup in ADNI cohort both had exactly identical
variables (MMSE, plasma P-tau181, plasma Aβ42/Aβ40 ratio,
education years and age for the whole dataset; APOE genotype,
plasma P-tau181, plasma Aβ42/Aβ40 ratio and plasma Aβ40 for
the MCI subgroup) as in our cohort. Those findings suggested
that the integrated models established in our Chinese cohort can
be effectively applied in another independent cohort, even with
different ethnic backgrounds.

Integrated model of plasma biomarkers alone for distin-
guishing the patients in different stages. In the context of pri-
mary care, such as community-based large-scale screening and
physical examination, the cognitive tests and demographic
information are sometimes missing/biased due to the lacking of
experienced neurologists. Therefore we explored the opportunity
to predict disease status by using only plasma biomarkers. The
results of ROC analysis was shown in Fig. 5. AUCs with their 95%
confidence intervals, sensitivities, specificities, PPV, NPV were
shown in Supplementary Table 6. Alzheimer’s disease group can
be discriminated very well from CN, SCD and MCI (AUCs are
0.93 (95% CI: 0.90–0.96), 0.91 (95% CI: 0.87–0.96) and 0.92 (95%
CI: 0.88–0.96), respectively), suggesting that the Alzheimer’s
disease patients can be identified nicely by using just blood bio-
markers testing. The AUCs in other groups were not as good as
Alzheimer’s disease: 0.75 (95% CI: 0.69–0.81) in SCD vs. MCI,
0.74 (95% CI: 0.68–0.79) in CN vs. SCD and 0.70 (95% CI:
0.65–0.74) in CN vs. MCI. Those observations indicated that
plasma biomarkers are probably not completely sufficient to
specify early progress stages of dementia.

The impacts of comorbidities and family history. Part of the
participants in our study had records of chronic disease and
family history. To investigate the influence of disease and family
history on the plasma biomarkers and prediction models, we
analyzed the distribution of plasma biomarker values and the
performance of integrated models in disease and family history-
related participants. Diseases/family histories with at least 40
patients in our study were involved, including respiratory system

Fig. 3 Tree view of aMCI refined model. Decision Tree diagram of the
refined model in the aMCI group (n= 93). The tree started from the root
node. If the value met the current condition, the workflow would go to the
left node; otherwise, the right node. The green nodes indicated PET
negative and the red nodes indicated PET positive. Note that all values were
transformed to z-score prior to fitting the model. Cut-off values were
shown in z-score values.
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Fig. 4 Model validation in ADNI cohort. AUROC values and the corresponding 95% confidence intervals of the established model for predicting Aβ-PET
positivity in different diagnostic groups and in different cohorts. The n number of each group is showed as follows: All participants: Training with SCD &
non-AD: n= 609; Training without SCD & non-AD: n= 462; ADNI: n= 284. CN: Training: n= 238; ADNI: n= 97. MCI: Training: n= 135; ADNI: n= 124.

Fig. 5 Prediction of disease stages by plasma biomarkers alone. ROC plots for showing the efficiency of the integrated model for distinguishing the
patient with different dementia statuses. (CN: n= 238; SCD: n= 118; MCI: n= 135; Alzheimer’s disease: n= 89).
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disease, coronary heart disease, hypertension, hyperlipemia, dia-
betes, general anesthesia history and Alzheimer’s disease family
history. The analysis details were demonstrated in Methods. The
plasma biomarker values with/without disease/history were
shown in Table 2. All five biomarkers (Aβ40, Aβ42, T-au,
P-tau181 and NfL) had higher levels in hypertension patients
than participants without hypertension. Aβ40 levels were elevated
in hyperlipemia patients. Aβ40 and NfL levels were elevated in
diabetes patients. NfL levels were slightly decreased in partici-
pants with Alzheimer’s disease family history.

Next we investigated whether the changes of plasma biomarker
levels influenced the prediction of integrated models. For the
disease/family history with plasma biomarker value changes
(hypertension, hyperlipemia, diabetes and Alzheimer’s disease
family history), the full model, best model and refined model were
applied on participants with and without the disease/family
history independently. As shown in Supplementary Fig. 4 and
Supplementary Table 7, the models performed better in
participants without disease/family history except for the full
model for Alzheimer’s disease family history. The important
values for the variables in all of the models were listed in
Supplementary Tables 8–25.

Discussion
In this study, we integrated plasma biomarkers measurements,
APOE genotypes, cognitive test scores and key demographics and
developed computational models to predict brain Aβ pathology in
a large Chinese cohort. We had four major findings. First, the
integrated models can predict Aβ positivity accurately, and the
results were validated in ADNI cohort. Second, the models per-
formed best in MCI group. Especially in aMCI subgroup, the
model which only consisted of plasma biomarkers can accurately
predict Aβ positivity with an AUC of 0.89. Third, we developed
other integrated models based on plasma biomarkers alone which
can discriminate the patients in different development stages of
dementia. Last, all plasma biomarkers were found to fluctuate in
participants with comorbidities or family history. In general, the
model performance was better in participants without comor-
bidities or family histories.

To our knowledge, the present study is the largest Chinese
cohort which included CN, SCD, MCI and Alzheimer’s disease
participants with comprehensive clinical diagnosis, cognitive
assessments, plasma biomarker measurements and Aβ PET
results. According to our inclusion criteria, the participants in this
study were relatively young (average age: 65 years) comparing to
ADNI and BioFinder cohorts11,40,41. Previous studies revealed
that Aβ began to accumulate up to 15–20 years prior to clinical
symptoms of Alzheimer’s disease42,43. Therefore, it is very
important to understand the early signal of disease progression.
Most of the previous research were based on western
population14,42,44. However, it is known that some essential fea-
tures are discrepant in different populations, for example, the
frequency of APOE ε4 carriers, lifestyle, etc39,45. Therefore it is
critical to examine if the observations based on western popula-
tion can be generalized to Chinese population.

The correlations between plasma biomarkers and Aβ pathology
or disease status have been investigated in several studies13,46–48.
However, few studies have reported cutpoints of those biomarkers
for disease diagnosis, because cutpoints can differ based on the
assays, experimental platforms and specific applications. Fur-
thermore, few studies included all five stages of dementia status.
The diagnostic power of the biomarkers also varied in different
studies49,50. In clinical practice, it happens that the biomarkers
change to contrary directions, which raises difficulties for clin-
icians to draw conclusions5,51. Therefore we recognized that the T
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most possible solution is to combine the disease-related variables
and generate data-driven, non-biased computational models in
each stage, which will dilute the contribution/noise of single
factor and represent the full-scale picture. In present study, we
established integrated models with three levels of accuracies and
complexities in every stage, which can serve different application
purposes. The full model has the highest accuracy, but it also
requires complete input variables. The best model was optimized
to contain only critical variables yet remaining satisfactory per-
formance. By sacrificing certain accuracy, the refined model is
very easy-to-use since it only has three steps judgements. The
users can select appropriate models based on the testing condi-
tions and clinical scenarios.

MCI is the critical stage for Alzheimer’s disease progression. It
was reported that about 15% of MCI patients older than 65
converted to Alzheimer’s disease after two years of follow-up1.
Most anti-Aβ drugs showed the best efficacy on Aβ-positive MCI
patients in clinical trials and real-world studies52. Therefore
verified Aβ status in MCI patients is very important for recruiting
participants and future treatment. Our integrated models had the
best performance in MCI group (AUC= 0.97 for the full model).
Moreover, the refined model for aMCI subgroup containing only
plasma P-tau181, Aβ40 and Aβ42 has an AUC of 0.89. Those
high accuracies supported that our models can be widely used in
clinical trial, screening and primary care.

Assessment of disease stages is crucial for determining plans of
treatment and therapeutic intervention53. The cognitive tests are
standard tools to classify disease stages and the clinical diagnoses
are made by experienced neurologists. The results of cognitive
tests may be affected by some non-objective factors, such as
education levels, the health condition and mood of examinees and
so on54. Therefore we tried to generate a prediction model for
disease stages by using only plasma biomarkers. Alzheimer’s
disease patients can be clearly identified from other groups. But
CN, SCD and MCI groups did not show specific patterns in
this model.

Blood biomarkers are regulated by multiple metabolic path-
ways and circulating environments. It is known that the levels of
Alzheimer’s disease plasma biomarkers are affected by several
factors including age, sex and comorbidities55. Our study also
showed that the levels of Alzheimer’s disease plasma biomarkers
changed in patients with other comorbidities or family histories.
Especially in patients with hypertension, the values of all five
biomarkers increased. Furthermore, the integrated models had
higher accuracy in participants without comorbidities or family
histories, which suggests that clinicians should pay attention and
take those factors into consideration when using the models. As a
limitation, although the sample size was the largest in China to
our knowledge, it was smaller than some American and European
studies such as ADNI and BioFINDER.

Recently, several studies reported computational models to
predict the diagnostic effectiveness of AD using supportive vector
machine, logistic regression, Bayes classifier, random forest, and
decision tree algorithms13,48,54. In our study, we selected decision
tree models for four reasons. First, comparing to other machine
learning methods, a decision tree is easy to understand and
interpret. As a white-box model, the detailed structure and
Boolean logic of a decision tree can be clearly visualized. Sec-
ondly, training a decision tree model requires much fewer data
than other machine learning models, which usually require
thousands of entries to avoid over-fitting. Thirdly and most
importantly, in our case, decision tree models outperform other
models in accuracy and stability. It provides the perfect balance
within the accuracy and interpretability trade-off. Lastly, decision
tree models are also not susceptible to missing values. A small
portion of participants in our study didn’t complete all

neuropsychological assessment examinations. Machine learning
models such as supportive vector machine have difficulties
handling those missing values.

We present an innovative approach to accurately predict brain
Aβ pathology by integrated models combining plasma bio-
markers, APOE genotypes, cognitive test scores and key demo-
graphics. The models were established in a Chinese cohort and
were validated in an independent western cohort (ADNI). The
prediction accuracy of models in MCI population was the highest
(AUC= 0.97). This non-invasive and easily accessible method
may have many applications which can help early identification
of potential Alzheimer’s disease patients, enrollment of Alzhei-
mer’s disease drug clinical trials and assessment of Alzheimer’s
disease treatments.

Data availability
The ADNI dataset used in this study were stored at https://ida.loni.usc.edu. The other
raw participant data were restricted to protect the privacy of individuals, so the data are
not publicly available, and these data are available from the authors upon reasonable
request and with permission from Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital.

Code availability
The source code that support the findings of this study is available on GitHub at https://
github.com/WXDX-DA/AbetaPrediction and on Zenodo at https://zenodo.org/record/
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