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of urinary extracellular vesicles define putative
diagnostic biosignatures for Parkinson’s disease
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Abstract

Background Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been recog-

nized as genetic risk factors for Parkinson’s disease (PD). However, compared to cancer,

fewer genetic mutations contribute to the cause of PD, propelling the search for protein

biomarkers for early detection of the disease.

Methods Utilizing 138 urine samples from four groups, healthy individuals (control), healthy

individuals with G2019S mutation in the LRRK2 gene (non-manifesting carrier/NMC), PD

individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S

mutation (LRRK2 PD), we applied a proteomics strategy to determine potential diagnostic

biomarkers for PD from urinary extracellular vesicles (EVs).

Results After efficient isolation of urinary EVs through chemical affinity followed by mass

spectrometric analyses of EV peptides and enriched phosphopeptides, we identify and

quantify 4476 unique proteins and 2680 unique phosphoproteins. We detect multiple pro-

teins and phosphoproteins elevated in PD EVs that are known to be involved in important PD

pathways, in particular the autophagy pathway, as well as neuronal cell death, neuroin-

flammation, and formation of amyloid fibrils. We establish a panel of proteins and phos-

phoproteins as novel candidates for disease biomarkers and substantiate the biomarkers

using machine learning, ROC, clinical correlation, and in-depth network analysis. Several

putative disease biomarkers are further partially validated in patients with PD using parallel

reaction monitoring (PRM) and immunoassay for targeted quantitation.

Conclusions These findings demonstrate a general strategy of utilizing biofluid EV pro-

teome/phosphoproteome as an outstanding and non-invasive source for a wide range of

disease exploration.
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Plain language summary
Parkinson’s disease (PD) is a pro-

gressive neurological disorder that

affects body movement because

some brain cells stop producing the

chemical dopamine. PD is often not

diagnosed until it has advanced,

making early detection crucial. To

enable early detection, we investi-

gated tiny packages called extra-

cellular vesicles released from a

variety of cells, including the brain

cells, that can be found in urine as a

potential source for diagnosing PD.

These tiny packages contain different

kinds of molecules from inside the

cells. We analyzed urine samples

from 138 individuals and found sev-

eral proteins involved in PD devel-

opment that could be biological

indicators for early detection of the

disease. We used various techniques

to make sure that our findings were

accurate. Our study suggests that

looking at these proteins in urine

could be a good way to detect PD in a

non-invasive manner.
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It has been more than two centuries since Parkinson’s disease
(PD) was described by Dr. Parkinson in 18171. PD is the
second most common neurogenerative disorder after Alzhei-

mer’s disease (AD)2. PD’s most common pathological finding is a
decreased pigmentation in the substantia nigra pars compacta
(SNpc) caused by the death of dopaminergic neurons, leading to
progressive deterioration of motor function3,4. In addition to
motor symptoms, non-motor symptoms may include cognitive
impairment, autonomic dysfunction, hyposmia, and sleep
disturbances5. Currently, PD is incurable and progresses gradu-
ally with symptom deterioration into severe disabilities6. It has
been estimated that PD affects 1 percent of the population over
607. Overall, as many as 1 million Americans are living with PD,
and approximately 60,000 Americans are diagnosed with PD each
year8,9.

While the cause of PD is currently unknown, researchers
speculate that environmental and genetic factors contribute to its
development10. Large-scale genome-wide association studies
(GWAS) have identified 41 independent risk variants for PD in
various cohorts4,11. A subset of patients develops PD because of a
major genetic risk. Specifically, mutations in the Leucine-rich
repeat kinase 2 (LRRK2) gene are found in hereditary forms,
emphasizing the shared molecular pathway driving both familial
and non-familial PD to comprise the most common cause of the
disease12,13. Mutations in LRRK2 have been recognized as genetic
risk factors for sporadic (~1%) and familial forms of PD (~5%)13.
LRRK2 encodes a large protein of 2527 amino acids containing
two functional enzymatic domains, the GTPase and the Ser/Thr
kinase domains, and several protein–protein interaction domains
such as the armadillo, ankyrin, leucine-rich repeat (LRR), and
WD40 domains14,15. Out of many mutations in LRRK2,
Gly2019→Ser (G2019S) mutation in its kinase domain is by far
the most common among caucasians16. Interestingly, some
individuals with the G2019S mutation, known as the non-
manifesting carrier (NMC) group, have not developed PD yet.
Whether they will develop the disease at an older age remains
unclear.

Recent findings regarding the Gly2019→Ser (G2019S) muta-
tion in the LRRK2 kinase domain have uncovered that the
mutation drives changes in vesicular trafficking, autophagy, and
lysosomal dysfunction signaling pathways16. The changes in these
signaling pathways are attributed to the hyperactivation of the
LRRK2 kinase activity assessed by phosphorylation of its sub-
strates, the Rab proteins17. Rab proteins are the main regulators
of important aspects of autophagy and lysosome activity,
including membrane trafficking, vesicle formation, vesicle
movement along actin and tubulin networks, and membrane
docking and fusion. In short, from the evidence above, it is
conceivable that the changes in signaling pathways caused by the
Gly2019→Ser (G2019S) mutation in the LRRK2 kinase domain
may be reflected in extracellular vesicles (EVs). Therefore, EVs
offer a promising source for protein biomarkers in PD.

EVs (primarily exosomes and microvesicles) are lipid bilayer-
coated nanoparticles secreted by all cell types. The secretion of
EVs was initially considered a means of eliminating proteins,
lipids, and RNA from inside the cells18. With accumulating evi-
dence, EVs have become recognized as a very important com-
ponent in intercellular communication19. Recent studies have
reported EVs as a rich resource of biomarkers for the non-
invasive detection of neurodegenerative diseases from biofluids20.
These EV-based disease markers can be identified well before the
onset of symptoms or physiological detection of illness, making
them promising candidates for early-stage PD diagnosis21,22.
Moreover, since phosphorylation events directly reflect cellular
physiological status during neurodegeneration, urinary EVs
represent a highly promising source of phosphoproteins as non-

invasive disease markers23,24. Previous studies from our group
have identified numerous EV proteins and phosphoproteins in
urine and plasma from breast cancer, chronic kidney disease,
kidney cancer, and pancreatic cancer patients25–28.

Furthermore, some other groups already explored the possi-
bility of using EV biofluids, such as cerebrospinal fluid (CSF),
saliva, and plasma, as the source for PD diagnosis. CSF exosomes
from patients with PD and dementia with Lewy bodies contain a
pathogenic species of α-synuclein, which could initiate oligo-
merization of soluble α-synuclein in target cells and confer dis-
ease pathology29. Saliva-derived EVs from PD patients have
elevated levels of oligomeric α-synuclein compared to controls30.
Serum neuronal exosomes of α-synuclein and clusterin could
predict and differentiate PD from atypical parkinsonism31.
Although CSF, saliva, and plasma-derived EVs have been used for
biomarker studies of PD, urine-derived EVs offer another pro-
mising clinically viable matrix for PD detection since urine can be
non-invasively collected frequently in large volumes and repeat-
edly at different time points32. More importantly, although most
urine-derived EVs originate from the kidney and urinary tract, a
substantial proportion of those also originate from distal organs,
including the brain33,34. Moreover, urinary EVs will reflect the
whole physiological changes that happened to the body of PD
patients. Therefore, urine-derived EVs may provide diagnostic
opportunities for PD35,36.

Here we present a strategy for the discovery and development of
proteins and phosphoproteins from urinary EVs as putative diag-
nostic biosignatures for Parkinson’s disease. For the discovery
experiment, we utilized 82 individual urine samples made available
from Columbia University Irving Medical Center (hereinafter
referred to as “Columbia LRRK2 cohort”) under a Michael J. Fox
Foundation (MJFF)-funded LRRK2 biomarker project32 and split
them into 164 analyses (82 proteomics and 82 phosphopro-
teomics). We used our in-house developed unique EVtrap
(Extracellular Vesicles total recovery and purification) approach to
efficiently enrich EVs and coupled it with LC-MS-based detection
and quantitation for accurate urinary EV proteome and phos-
phoproteome analysis37. EVtrap, based on functionalized magnetic
beads with a combination of lipophilic and hydrophilic groups, has
a unique affinity toward lipid bilayer membrane coating EVs.
EVtrap, which binds to the lipid bilayer, enables fast and repro-
ducible EV isolation from urine samples. Our approach success-
fully demonstrates the feasibility of developing biofluid-derived EV
phosphoproteins for disease profiling25,26.

In total, we determined a panel of unique proteins and phos-
phoproteins as novel high-confidence candidates for disease
biomarkers. Disease biomarkers will help diagnose whether a
patient currently has PD. Our large-scale LC-MS analysis efforts
combined with extensive bioinformatics analysis led to the dis-
covery of unique biosignatures for potential Parkinson’s disease
diagnostics. Furthermore, we also analyzed our putative bio-
marker involvement in important disease-relevant pathways,
which might provide new information for PD intervention. These
findings will enhance the discovery and development of novel EV
protein-based biomarkers and help create an effective early-stage
clinical diagnosis strategy for PD. An in-depth understanding of
those biosignature pathways could also lead to the potential
discovery of new drugs for optimal intervention strategies in PD
progression.

Methods
Ethics/patient consent. The study was approved by Columbia
University Irving Medical Center institutional review board (IRB)
no. AAAP9604 and all participants signed informed consent. The
study design and conduct complied with all relevant regulations
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regarding the use of human study participants and was conducted
in accordance with the criteria set by the Declaration of Helsinki.

Statistics and reproducibility. A total of 138 urine sample bio-
logical replicates were collected. We further divided the samples
into two groups, 82 samples for the discovery experiments and
56 samples for validation experiments. For the initial compre-
hensive discovery experiments, the urine samples were collected
from 21 healthy individuals (Control), 13 healthy individuals with
G2019S mutation (non-Manifesting Carrier/NMC), 28 PD indi-
viduals without G2019S mutation (idiopathic PD/iPD), and 20
PD individuals with G2019S mutation (LRRK2 PD). The 56 urine
samples used for the validation experiments were classified as 33
patients with PD and 23 healthy individuals without genetic
differentiation. All 138 samples were processed separately by
implementing the statistical principles in experimental designs,
including replication, randomization, and blocking when
applicable38. The unpaired Student’s two-tailed t-test was per-
formed to create the volcano plots for potential biomarker dis-
covery and functional annotation analyses. The unpaired two-
sample Wilcoxon test p-values and the one-way ANOVA p-value
were performed to compare the four groups on each violin plot.
The unpaired two-sample Wilcoxon test p-values were calculated
to compare gender and specific proteins.

Sample collection. All 82 urine samples used in the discovery LC-
MS study and 56 urine samples used in the validation experi-
ments were collected at Columbia University Irving Medical
Center (CUIMC) and sent to our lab blindly. The samples were
collected from March 2016 to April 2017 under a Michael J. Fox
Foundation (MJFF)-funded LRRK2 biomarker project32. Each
sample has been uniquely curated for LRRK2 genotype and PD
activity effects.

EV isolation by EVtrap. For each urine sample, approximately
10–15 mL was utilized for EV enrichment by EVtrap. Before the
EVtrap capture, the urine volume was normalized based on the
creatinine levels, a normalizer we found to be optimal for EV
studies. The EVtrap beads were provided by Tymora Analytical
Operations and were utilized and validated as described
previously26–28,37,39. In brief, the frozen urine samples were
thawed in a 37 °C water bath. The samples were then centrifuged
at 2500 × g for 10 min to remove cell debris and large apoptotic
bodies and diluted with EVtrap loading buffer in a 1:10 v/v ratio.
The magnetic EVtrap beads were added directly to the diluted at a
ratio of 20 µL EVtrap beads per 1 mL urine. The mixture was
incubated for 1 h by end-over-end rotation, and the supernatant
was removed using a magnetic separator rack; the beads were
washed with PBS, and the EVs were eluted by a 10 min incuba-
tion with 100 mM triethylamine (TEA, Millipore-Sigma). The
eluted samples were dried entirely in a vacuum centrifuge. For
Western blot analysis, the dried EV samples were lysed directly in
LDS buffer (lower volumes of urine (~0.5–2 mL) were used for
Western blot experiments).

EV isolation by differential ultracentrifugation (UC). The EV
isolation by UC was performed to compare with the EVtrap
method to demonstrate the superior efficiency of isolating urinary
EVs by EVtrap at the beginning of this study. Urine samples
(~1–2 mL) were centrifuged at 10,000 × g at 4 °C for 1 h. Super-
natants were further centrifuged at an ultra-high speed of
100,000 × g (Optima MAX-XP Ultracentrifuge, Beckman Coulter)
at 4 °C for 2 h. Pellets were washed with 1x PBS and centrifuged
at 100,000 × g for 2 h again. Collected pellets were lysed directly in
LDS buffer for Western blot analysis.

Western blot experiments. The Western blot experiments were
carried out to show biological replicates (different patients) rather
than technical replicates (repeats). Therefore, all of the Western
blot experiments were performed only once due to a very limited
amount of rare clinical samples. A small percentage (approxi-
mately 0.5 mL urine sample equivalent for CD9, 1 mL for LRRK2,
and 2 mL for pSer1292-LRRK2) of each purified EV sample was
incubated for 10 min at 95 °C in LDS sample buffer. The
equivalent volume of each sample aliquot was loaded and sepa-
rated on an SDS-PAGE gel (NuPAGE 4–12% Bis-Tris Gel,
Thermo Fisher Scientific). Afterward, the proteins were trans-
ferred onto a low-fluorescence PVDF membrane (Millipore-
Sigma). The membranes were cut according to the appropriate
molecular weights to detect the target proteins or phosphopro-
teins at their corresponding molecular weights. The membrane
was blocked with 1% BSA in TBST for 1 h. The cut membranes
then incubated with rabbit anti-CD9 (clone D3H4P; Cell Sig-
naling Technology) at 1:5,000 ratio, or anti-LRRK2 (clone MJFF2
(c41-2); Abcam) at 1;1000 ratio, or anti-pSer1292-LRRK2 (clone
MJFR-19-7-8; Abcam) at 1:500 ratio overnight in 1% BSA in
TBST (3% BSA in TBST was used for anti-pSer1292-LRRK2). For
the secondary antibody visualization, Goat anti-Rabbit Alexa-
Fluor 800 nm (Thermo Fisher Scientific) was used to bind the
primary antibodies and incubated for 1 h in 1% BSA in TBST.
Lastly, the membrane was scanned by Odyssey near-infrared
scanner (Licor) for signal detection and quantitation. A total of
eight blots were used for each protein target detection. We loaded
internal standards at an identical concentration in each blot to
normalize the signal between the samples and the blots. For CD9
relative quantitation, we extracted EVs from a mixture of several
unrelated samples as an internal control and added as a separate
lane into each gel to enable gel-to-gel relative quantitation of
the signal. For the relative quantitation of LRRK2, we used the
same amount of the recombinant LRRK2 protein purchased from
Thermo Fisher as an internal control for gel-to-gel relative
quantitation of signal. Finally, for pSer1292-LRRK2 relative
quantitation, we carried out in vitro autophosphorylation assay of
the purchased recombinant LRRK2 protein, as described pre-
viously, and loaded the phosphorylated protein as an internal
control for all phospho-LRRK2 Western blot detection
experiments.

For the validation experiments, the membranes were cut
according to the appropriate molecular weights to detect the
target proteins at their corresponding molecular weights before
blocking and incubated with the following primary antibodies:
rabbit anti-CD9 (clone D3H4P; Cell Signaling Technology) at
1:5000 ratio, or rabbit anti-STK11 (clone D60C5; Cell Signaling
Technology) at 1:1000 ratio, or mouse anti-PCSK1N (clone
NP_037403.1; Millipore-Sigma) at 1:1000 ratio, together with
rabbit anti-HNRNPA1 (clone D21H11; Cell Signaling Technol-
ogy) at 1:1000 ratio. For the secondary antibody visualization,
Goat anti-Rabbit or Goat anti-Mouse Alexa-Fluor 800 nm
(Thermo Fisher Scientific) was used to bind the primary
antibodies. An equal amount of pooled urine EVs was loaded
in lane 1 of each gel to normalize the signal between two blots.
The signal for each sample was then normalized to CD9.

LC-MS sample preparation. Phase-transfer surfactant (PTS)
aided procedure was used to lyse the dried EVs and extract
proteins40. First, EVs were resuspended in the lysis solution
containing 12 mM sodium deoxycholate (SDC; Sigma-Aldrich,
cat. no. D6750), 12 mM sodium lauroyl sarcosinate (sarkosyl;
Sigma-Aldrich, cat. no. L9150), 10 mM TCEP-HCl (Sigma-
Aldrich, cat. no. C4706), 40 mM CAA (Sigma-Aldrich, cat. no.
C0267), and phosphatase inhibitor cocktail (Millipore-Sigma, cat.
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no. P2850) in 50 mM Tris·HCl, pH 8.5 (Tris base; Fisher BioR-
eagents, cat. no. BP152-1 and HCl; Fisher Chemical, cat. no.
A144SI-212) by incubating 10 min at 95 °C. During this step, the
proteins were also denatured, reduced, and alkylated. The sam-
ples were diluted fivefold with 50 mM triethylammonium bicar-
bonate and digested with Lys-C (Wako Chemicals, cat. no. 129-
02541) at 1:100 (wt/wt) enzyme-to-protein ratio for 3 h at 37 °C.
For further protein digestion, trypsin (proteomics grade, mod-
ified; Sigma-Aldrich, cat. no. T6567) was added to a final 1:50
(wt/wt) enzyme-to-protein ratio for overnight digestion at 37 °C.
Then, the samples were acidified with trifluoroacetic acid (TFA;
Merck, cat. no. 8082600100) to a final concentration of 1% TFA.
An ethyl acetate (Fisher Chemical, cat. no. E145-4) solution was
added at a 1:1 ratio to the samples. The mixture was vortexed for
2 min and then centrifuged at 20,000 × g for 2 min to obtain
aqueous and organic phases. The organic phase (top layer) was
removed, and the aqueous phase was collected, dried down to
<10% original volume in a vacuum centrifuge, and desalted using
TopTip C18 tips (Glygen Corporation, cat. no. TT2C18)
according to the manufacturer’s instructions. After desalting, the
peptide concentrations were determined by the Pierce Quantita-
tive Peptide Colorimetry assay (Thermo Fisher, cat. No. 23275),
and the samples were further normalized. Each sample was split
into 99% and 1% aliquots for phosphoproteomic and proteomic
experiments, respectively. The samples were dried entirely in a
vacuum centrifuge and stored at −80 °C. For phosphoproteome
analysis, 99% portion of each sample was subjected to phos-
phopeptide enrichment using a PolyMAC Phosphopeptide
Enrichment kit (Tymora Analytical Operations, cat. no. 707)
according to manufacturer’s instructions, and the eluted phos-
phopeptides dried completely in a vacuum centrifuge. The whole
enriched sample was loaded onto LC-MS for phosphoproteomics
analysis, while only 50% of each sample (equivalent to 0.5 µg) was
injected for proteomics.

LC-MS analysis. Both proteomic and phosphoproteomic samples
were spiked with an 11-peptide indexed Retention Time internal
standard mixture (Biognosys) to normalize the LC-MS signal
between the samples. All samples were captured on a 2-cm
Acclaim PepMap trap column (PN 164535, Thermo Fisher Sci-
entific) and separated on a heated 50-cm Acclaim PepMap col-
umn (PN 164942, Thermo Fisher Scientific) containing C18 resin.
The mobile phase buffer consisted of 0.1% formic acid (FA;
Sigma-Aldrich, cat. no. F0507) in HPLC grade water (buffer A)
with an eluting buffer containing 0.1% formic acid in 80% (vol/
vol) acetonitrile (ACN; Fisher Scientific, cat. no. A955-4) (buffer
B) run with a linear 60-min gradient of 6–30% buffer B at a flow
rate of 300 nL/min. The UHPLC was coupled online with a
Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific).
The mass spectrometer was run in the data-dependent mode, in
which a full-scan MS (from m/z 375 to 1500 with the resolution
of 60,000 at m/z 200) was followed by MS/MS of the 15 most
intense ions (30,000 resolution at m/z 200; normalized collision
energy—28%; automatic gain control target (AGC)—2E4, max-
imum injection time—200 ms; 60 s exclusion].

Parallel reaction monitoring (PRM). Peptide samples were
dissolved in 10.8 μL 0.05% TFA & 2% ACN and injected 10 μL
into the UHPLC coupled with a Q-Exactive HF-X mass spec-
trometer (Thermo Fisher Scientific). The mobile phase buffer
consisted of 0.1% formic acid in HPLC grade water (buffer A)
with an eluting buffer containing 0.1% formic acid in 80% (vol/
vol) acetonitrile (buffer B) run with a linear 60-min gradient of
5–35% buffer B at a flow rate of 300 nL/min. Each sample was
analyzed under PRM with an isolation width of ±0.8 Th. In these

PRM experiments, an MS2 level at 30,000 resolution relative to
m/z 200 (AGC target 2E5, 200 ms maximum injection time) was
run as triggered by a scheduled inclusion list. The inclusion list
included peptides that have been manually picked and compared
to PeptideAtlas41,42. Higher-energy collisional dissociation was
used with 28 eV normalized collision energy. PRM data were
manually curated within Skyline-daily (64-bit) 22.1.9.208
(6839020bd)43.

LC-MS data processing. The raw files were searched directly
against the human Swiss-Prot database with no redundant
entries, using Byonic (Protein Metrics) and Sequest search
engines loaded into Proteome Discoverer 2.3 software (Thermo
Fisher Scientific). MS1 precursor mass tolerance was set at 10
ppm, and MS2 fragment tolerance was set at 20 ppm. In the
processing workflow, search criteria for both search engines were
performed with full trypsin/P digestion, a maximum of two
missed cleavages allowed on the peptides analyzed from the
sequence database, a static modification of carbamidomethylation
on cysteines (+57.0214 Da), and variable modifications of oxi-
dation (+15.9949 Da) on methionine residues and acetylation
(+42.011 Da) at N terminus of proteins. Phosphorylation
(+79.996 Da) on serine, threonine, or tyrosine residues was
included as the variable modification for phosphoproteome
analysis. The false-discovery rates of proteins and peptides were
set at 0.01. All protein and peptide identifications were grouped,
and any redundant entries were removed. Unique peptides and
unique master proteins were reported. Finally, the proteomic
results were further normalized against common urine EV pro-
teins to account for any other variations in urine concentration.

Label-free quantitation analysis. The label-free quantitation
node of Precursor Ions Quantifier in the consensus workflow
through the Proteome Discoverer v2.3 (Thermo Fisher Scientific)
was used to quantify all data. For the quantification of proteomic
and phosphoproteomic data, the intensities of peptides were
extracted with initial precursor mass tolerance set at 10 ppm,
fragment mass tolerance at 0.02 Da, minimum peak count as 1,
maximum RT shift as 5 min, PSM confidence FDR of 0.01 as
strict and 0.05 as relaxed, with hypothesis test of t-test (back-
ground based), protein abundance based ratio calculation, 100 as
the maximum allowed fold-change, and site probability threshold
of 75. The abundance levels of all peptides and proteins were
normalized to the spiked-in internal iRT standard. For calcula-
tions of protein abundance, the sum of sample abundances of the
connected peptide groups was added together and used for
downstream analysis.

Bioinformatics analysis. All clinical sample data were analyzed
using the Perseus software (version 1.6.5.0)44. The normalized
intensities of proteins and phosphoproteins were extracted from
Proteome Discoverer search results and log-based 2 transformed
for quantifying both proteomic and phosphoproteomic data. The
abundances were categorized into four different categories:
Control, NMC, iPD, and LRRK2 PD. The proteins or phospho-
proteins with detected abundances of more than 70% in each
category were kept. It was done to keep the proteins and phos-
phoproteins detected in at least one category. The imputation for
the missing abundances was performed by assigning small ran-
dom values from the normal distribution with a downshift of 1.8
SDs and a width of 0.3 SDs. Very low abundances normally cause
missing values.

All abundances for each protein or phosphoprotein were
further normalized by subtracting the median from each protein
or phosphoprotein abundance. Then, the unpaired Student’s
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two-tailed t-test was performed, and the difference in averages
was calculated for the three comparisons. Various packages in R
3.5.045, including but not limited to ggplot2 3.3.146, ggpubr
0.3.047, EnhancedVolcano 1.7.648, pROC49, Vennerable 3.050,
and Circlize 0.4.951, and also Cytoscape 3.8.052 (an open-source
software platform for visualizing complex networks) were used
to visualize the data. For the volcano plots, the x-axis is the
log(2) fold-change on averages, and the y-axis is the log(10) of
the p-value. Volcano plots were created for each comparison
with cutoff values of permutation-based FDR= 0.05
(−log10(0.05)= 1.30) and log base 2 fold-change= 0.5, which
equals ~1.414 fold-change. The Venn diagrams were created
based on the upregulated proteins or phosphoproteins in the
volcano plots. The violin plots were generated by focusing on
significant proteins and phosphoproteins from the overlapped
area in the Venn diagrams. The unpaired two-sample Wilcoxon
test p-values and the one-way ANOVA p-value were included
on each of the violin plots. The unpaired two-sample Wilcoxon
test p-values were shown for the comparison between gender
and specific proteins. The correlations between potential
biomarker expressions with gender, age, disease duration, and
MoCA were created with a minimal 0.6 for R2 and a maximal
0.05 for p-value calculated using t-distribution with n-2 degrees
of freedom as thresholds. Lastly, STRING v11.553 and
IPA54 (QIAGEN Inc., https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis) were used to analyze the
protein–protein interactions and validate their respective
protein roles in hallmark PD pathways.

Division Into training set and test set, feature selection, and
predictive analyses. One hundred thirty-eight unique subjects
were divided randomly into the discovery and validation
experiments. In total, 82 subjects were categorized into the main
experiment, further divided into training (57 subjects) and test
sets (25 subjects). Fifty-nine subjects were used for the validation
experiments, consisting of parallel reaction monitoring and
Western blot experiments. To facilitate the top feature selection
using machine learning, we created volcano plots for each com-
parison in training set with cutoff values of unpaired Student’s
two-tailed t-test p-value= 0.05 (−log10(0.05)= 1.30) and log
base 2 fold-change= 0.5, which equals to ~1.414 fold-change. For
the discovery experiment, we first performed feature selection on
the biomarker candidates. The goal was to discover disease bio-
markers in an independent manner. Disease biomarkers are
upregulated in iPD and LRRK2 PD compared to HC and NMC.
For the feature selections, machine learning, and predictive ana-
lyses, we utilized various packages, such as python 3.8.855, conda
4.13.056, jupyter-notebook 6.3.057, pandas 1.4.358, numpy
1.20.159, matplotlib 3.3.460, plotly 5.6.061, sklearn 1.1.162, mlxtend
0.20.063, and xgboost 1.6.164. Instead of using a simple one-shot
feature selection technique that usually yields a sub-optimal
solution, we used a two-step feature selection process that gen-
erates better performance: backward feature elimination followed
by exhaustive feature selection65. We deployed backward feature
elimination, which removes, one feature at a time, those features
that did not have a meaningful effect on the dependent variable or
prediction of output. Then, we deployed exhaustive feature
selection, which aims at finding the best-performing feature
subset by searching across all possible feature combinations (a
brute-force method) until the desired number of features is left.
Specifically, this number was determined by observing the
increase in performance (accuracy) with the increase in the
number of final selected features (in which it is diminishing
return). For the 48 potential disease biomarkers, we performed
feature selection as follows: 48 features -> backward feature

elimination -> 14 features -> exhaustive feature selection -> 6
features. At the end of the feature selection, we discovered a list of
the top six disease biomarkers.

Next, we performed a hyperparameters selection process which
included a randomized search followed by an exhaustive search
on a random forest classifier with 10-fold cross-validation
utilizing the top six disease biomarkers. In particular, we searched
over the following set of hyperparameters: ‘n_estimators,’
‘max_features,’ ‘max_depth,’ ‘min_samples_split,’ ‘min_sample-
s_leaf,’ and ‘bootstrap’ in which we validated the result by using
10-fold cross-validation.

The best set of hyperparameters for disease biomarkers is as
follows: ‘bootstrap’: True, ‘max_depth’: 4, ‘max_features’: ‘auto’,
‘min_samples_leaf’: 3, ‘min_samples_split’: 3, ‘n_estimators’: 320.

In the randomized search, we searched across 200 different
combinations of hyperparameters and then created the hyper-
parameter grid encompassing the optimal sampled hyperpara-
meter combination from the randomized search. An exhaustive
search was used to select the best-performing set of hyperpara-
meters from the generated grid. Finally, we repeatedly train a
Random Forest Classifier with the selected features and selected
set of hyperparameters as obtained from the above processes 50
times. After that, we evaluate each of the constructed models
using accuracy, confusion matrix, and ROC curve. To summarize
the results over all trials, we compute the mean and 95%
confidence interval of each evaluation metric.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Urine EV phosphoproteomics study design and sample quality
control for PD biosignature development. For decades, scien-
tists have been focusing on PD genotype marker discovery. In the
case of LRRK2-G2019S mutation diagnosis alone, people are often
found to either have the mutation in their genome without even
experiencing PD (non-manifesting carrier/NMC) or do not have
the mutation in their genome although they are suffering from
PD (idiopathic PD/iPD). Furthermore, whether people with
diagnosed NMC will develop PD later in their lives remains
unclear. Multiple recent studies have shown that analysis of
proteins and phosphoproteins, in many cases, provides a better
snapshot of cellular processes and disease progression than
genomic or transcriptomic investigations66–69. Proteome/phos-
phoproteome profiling efforts have already demonstrated sub-
stantial advantages for disease diagnosis and prediction of
treatment response70–73. This is particularly true for kinase-
dependent conditions and kinase inhibitor drugs74–76. Using this
study design, we have further confirmed what is already known in
the PD research community—that genotype markers are unreli-
able. Therefore, there is a critical need to shift the focus to
developing protein- and phosphoprotein-based biomarkers for
PD detection instead. Since the LRRK2-G2019S mutation alters
the phosphorylation activity and these changes are reflected in
extracellular vesicles, this supports the rationale behind using EVs
as promising biosignature sources for PD diagnosis. Moreover,
considering that many phosphorylation events directly reflect
cellular physiological status, urinary EVs represent a highly
promising source of proteins and phosphoproteins as non-
invasive PD markers23,24. This is further reinforced by the recent
studies showing Parkinson’s disease relevance of LRRK2 phos-
phorylation in urinary EVs77–79 and LRRK2-G2019S mutation
influence on neat urine proteome80.
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Urine samples were collected at Columbia University Irving
Medical Center (CUIMC) from four cohorts with or without PD
and with or without the common G2019S mutation in the LRRK2
gene32. The samples were collected from March 2016 to April
2017 under a Michael J. Fox Foundation (MJFF)-funded LRRK2
biomarker project. The participants underwent clinical evaluation
of their cognitive functions using the Montreal Cognitive
Assessment (MoCA) and motor skills using the Unified
Parkinson’s Disease Rating Scale part III (UPDRS-III). This
sample cohort has been uniquely curated for in-depth analysis
and comparison of LRRK2 genotype and activity effects on PD
as previously described32,81. These 138 samples were divided into
three groups: the discovery experiment (82 samples) and two
validation experiments (56 samples) (Fig. 1). We were fully
blinded to the identity of all samples until after the complete
analysis. These four groups—control, NMC, iPD, and LRRK2 PD
—were the major components of this biosignature study design.
The demographic information for all samples is provided in
Table 1.

To evaluate the quality of samples and demonstrate the superior
efficiency of isolating urinary EVs by EVtrap, we first selected a
few representative samples and analyzed them using Tunable
Resistive Pulse Sensing (TRPS), Western blotting with anti-CD9

and anti-LRRK2 antibodies, and LC-MS analyses. Nanoparticle
size and distribution analysis with qNano (TRPS) of EVtrap- and
ultracentrifugation (UC)-enriched urine EV samples both demon-
strated a similar range of the isolated EVs, with the majority being
in the 100–200 nm range (Supplementary Fig. 1a, b). Here, EVtrap
showed a higher concentration of isolated EVs, as demonstrated in
a previous publication37. Similarly, the detection of CD9 and
LRRK2 target proteins by Western blot from five randomly
selected urine samples revealed a significant increase in signal
levels for both proteins after EVtrap isolation compared to UC
(Supplementary Fig. 1c). Finally, to show the repeatability of our
analytical procedure (from EVtrap enrichment to LC-MS
analysis), we split a random human urine sample into six aliquots
and processed them separately for LC-MS analysis. The raw
intensities were log-based 2 transformed, filtered (70% quantifica-
tion), and imputed before the coefficient of variation (CV)
calculation. Supplementary Fig. 2a demonstrates the outstanding
repeatability of the procedure, with almost all of the proteins
detected and quantified across all six samples falling under 10%
CV) and the vast majority under 5% CV (complete proteomics
data in Supplementary Data 1). Moreover, we identified 90 EV
markers from the top 100 EV markers and common EV proteins
as listed in ExoCarta, such as CD9, CD63, and CD81, which were

Fig. 1 The development and validation of biomarker signatures for the diagnosis of Parkinson’s disease. A total of 138 urine samples were divided into
two groups: the discovery and validation experiments. The urine samples were processed using our in-house (I) EVtrap for EV isolation and (II) PolyMAC
(where applicable) for phosphopeptides enrichment. In the discovery experiment, the available 82 clinical urine samples were further randomly distributed
into training and test sets for biomarker prediction. We proposed categorizing the potential biomarkers as the potential biomarkers for PD regardless of the
LRRK2-G2019S mutation. Utilizing machine learning, we discovered the top disease biomarkers. Furthermore, we also trained our model using the 10-fold
cross-validation and unbiasedly estimated the predictive ability of the test set. For biomarker validation, another 56 clinical urine samples were divided into
two groups for parallel reaction monitoring (PRM) and immunoassay analysis. HC healthy control, NMC non-manifesting carrier, iPD idiopathic Parkinson’s
Disease, LRRK2 PD LRRK2 Parkinson’s Disease, PD Parkinson’s Disease.
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included as minimal information for studies of extracellular
vesicles 2018 (MISEV 2018)82,83. MISEV 2018 guidelines also
proposed that it is more appropriate to show depletion than to
expect a binary presence/absence of proposed urine negative
markers in urinary EVs. To show the depletion of high-abundant
free urine proteins after EVs isolation, the raw intensities for all
quantified proteins in 12 samples (six pairs of direct urine and
urinary EVs isolated using EVtrap, where each pair was from the
same urine sample with the same volume) were log-based 2
transformed, filtered (six minimal valid values in at least one
group), and imputed before the fold-change calculation. As
expected, we showed in Supplementary Fig. 2b that some of the
most abundant proteins in urine, such as ALB (Fold-change=
−181), UMOD (Fold-change=−65), and AMBP (Fold-change=
−596), were significantly depleted in urinary EVs (paired
Student’s two-tailed t-test p-values were shown, see Supplemen-
tary Data 1 for complete data)84.

Urinary EVs as prominent sources of potential PD biomarkers.
We processed 82 urine samples individually for the discovery
experiment following the illustrated workflow in Supplementary
Fig. 2c using approximately 10–15 mL of each urine after nor-
malization by creatinine concentration. As the first step, we
employed EVtrap to capture the complete EV profile from the
urine samples using the synthesized magnetic beads described
previously37. After EV lysis and protein digestion, a small portion
of each sample (~1%) was used for direct proteomic analysis, and
the rest (~ 99%) was used for phosphoproteomic analysis. We
carried out phosphopeptide enrichment using our in-house
developed dendrimer-based PolyMAC method on the remain-
ing majority of each sample and analyzed by LC-MS. Indexed
Retention Time Standard containing 11 artificial synthetic pep-
tides was added to all proteomic and phosphoproteomic samples
for improved peptide quantitation and reproducibility.

Our urinary EV proteomic and phosphoproteomic analyses
identified and quantitated 4476 unique proteins from 46,240
peptide groups and 2680 unique phosphoproteins from 10,620
phosphopeptide groups (see Fig. 2a for identified features and
Fig. 2b for quantified features, Supplementary Data 2 and 3). We
evaluated whether our identified EV proteins and phosphopro-
teins were a good source for PD assessment. We compared our
data with the brain-specific RNA-seq data downloaded from the
Human Protein Atlas website85. We used 2587 proteins classified
as brain-elevated from the Human Protein Atlas dataset to
compare our EV protein and phosphoprotein data. We found
that 8.9% of our EV proteins were denoted as brain-elevated
(Supplementary Fig. 3). While the brain is likely a minimal source
of EV proteins in urine86, this finding strengthens our hypothesis
that urinary EV proteins and phosphoproteins are great
candidates as potential biomarkers for PD.

We normalized both the proteome and phosphoproteome data
based on internal standards. Figure 2c, d confirmed that the data

had been effectively normalized with a coefficient of variation
(CV) of less than 20%. Before we divided the discovery
experiment data into the training and test sets, we performed
gene ontology, clinical parameter correlation, and pathway
analyses using the complete data (n= 82).

Functional annotation identifies immune response, comple-
ment activation, and vesicle-mediated transport as the most
prominent etiologies of PD in urine EVs. We identified the
upregulated proteins and phosphoproteins in NMC, iPD, and
LRRK2 PD groups against the controls along with LRRK2 PD vs.
NMC and LRRK2 PD vs. iPD (permutation-based FDR < 0.05
and log base 2 fold-change > 0.5, which equals to ~1.414 fold-
change, see Supplementary Data 4 for the complete proteomic
data and Supplementary Data 5 for the complete phosphopro-
teomic data). The most interesting single feature among all
upregulated proteins and phosphoproteins was PRDX3. PRDX3
protein, a hydrogen peroxide scavenger produced by mitochon-
dria, was significantly overexpressed in LRRK2 PD vs. NMC
(Fold-change= 580, p-value= 4.05E-14) and in LRRK2 PD vs.
iPD (Fold-change= 665, p-value= 5.07E-22), respectively (see
Fig. 3a, b, see Supplementary Data 4 for table format). Similar to
PRDX3, KLK6, TRIM17, TPT1, VCAM1, and LILRB1 were also
upregulated in both comparisons. Focusing on the upregulated
proteins, we performed gene ontology analysis (Gene Ontology,
KEGG, and Reactome Pathways) to understand the correlation
between all upregulated proteins and PD. We utilized the
STRING database (v11.5) for biological process gene ontology
analysis53. The gene ontology analyses were set with a threshold
FDR of 5% after Benjamini–Hochberg correction. Gene ontology
results are shown in Fig. 3c and Supplementary Fig. 4 and listed
in Supplementary Data 6.

The abnormal glycation and glycosylation seem to be more
common than previously thought in PD and may underlie
inflammation and mitochondria-induced oxidative stress in a
feed-forward mechanism87. Furthermore, since PD patients’ CSF
appears to have a specific metabolomic signature that reflects
alterations in glycation or glycosylation, it was not surprising to
discover that some biological process alterations involving
glycosylation were also enriched in the patients’ urine EVs87,88.
Interestingly, we discovered that the glycoside metabolic process
was upregulated in NMC (Supplementary Fig. 4a). As seen in
Supplementary Fig. 4b, cytolysis, in which various reducing
agents, including dopamine, inhibit, was also enriched in iPD89.
The fact that dopamine production is diminished in PD supports
the observed increase in cytolysis. In addition, the immune
response and the complement activation, which is a part of the
innate immune system, are both enhanced in iPD. Complement
activation, a major inflammatory mechanism in PD, on
melanized neurons tends to increase in the PD substantia nigra90.
When investigated using magnetic resonance imaging, the signal
intensity of melanized neurons in the substantia nigra pars

Table 1 The summary of cohort demographics and clinical characteristics for all 82 patients whose samples were used in the
discovery experiment.

Demographics Control NMC iPD LRRK2 PD Overall

Age (range; years) 69.4 (59–85) 58.5 (37–83) 66.1 (45–82) 69.7 (56–90) 66.6 (37–90)
Gender (Female/Male) 10/11 6/7 12/16 9/11 37/45
Disease duration (range; years) N/a N/a 0–18 1–26 0–26
MoCA 27.7 (24–30) 28.5 (27–30) 27.2 (23–30) 26.2 (8–30) 27.3 (8–30)
UPDRS-III 1.1 (0–5) 0.8 (0–3) 17.5 (5–38) 21.1 (1–53) 11.5 (0–53)

The range units for age and disease duration are in years (see Supplementary Data 11 for more details). The groups include healthy individuals (control), healthy individuals with G2019S mutation in the
LRRK2 gene (non-manifesting carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S mutation (LRRK2 PD).
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Fig. 2 The summary of identification and quantification for all 82 patients. a The bar graphs and overlapped Venn diagram of unique identified proteins
and phosphoproteins. b Cleveland Dot Plots for all quantified proteins and phosphoproteins. Both c proteomic and d phosphoproteomic data were
normalized based on internal standards. Most quantified proteins and phosphoproteins had a CV of less than 20%. Normalized quantified data in the
training set were then analyzed using feature selection to find potential biomarkers for PD. The box plots were derived from 21 HC, 13 NMC, 28 IPD, and 20
LRRK2 PD. For the lines in box plots: the line inside the box is the 50th percentile (median), the bottom and top of the box are the 25th and 75th
percentiles, the whiskers are the 95% confidence interval, and any outliers are shown as open circles.
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Fig. 3 Protein and phosphoprotein biomarker network and pathway analysis. Volcano plots were created for a LRRK2 PD vs. NMC (20 and 13 individuals,
respectively) and b LRRK2 PD vs. iPD (20 and 28 individuals, respectively) comparisons with cutoff values of permutation-based FDR= 0.05 and log base
2 fold-change= 0.5, which equals to ~1.414 fold-change. c GO analyses for LRRK2 PD compared to iPD samples. d A circos plot and e the IPA pathway
analysis of the protein and phosphoprotein disease markers.
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compacta in PD patients was greatly reduced, suggesting that the
increase of complement activation contributes to PD
development91. Cellular catabolic and carbohydrate derivative
catabolic processes were upregulated in LRRK2 PD (Supplemen-
tary Fig. 4c). Cell adhesion molecule binding, lysosome, leukocyte
transendothelial migration, and adaptive immune system were
enhanced in LRRK2 PD (Fig. 3c).

Disease-related EV protein and phosphoprotein biomarkers
are prominently involved in the autophagy pathway. All of the
following pathway analyses have been previously reported to be
involved in PD onset and progression, but not by the direct
experimental evidence of the pathogenic mechanism performed
in this study. As potential disease markers, HNRNPA1, IDE, and
STK11 proteins are shown to be involved in certain pathways that
are important in PD progressions, such as protein targeting to
peroxisome, AMPK signaling pathway, leukocyte activation, and
mRNA splicing (Fig. 3d, see Supplementary Data 7 for
protein–protein interactions). These markers also interact closely
with PRKACA, VDAC1, VDAC2, and VDAC3, known to be PD-
related92. Moreover, four top disease markers, PCSK1N,
HNRNPA1, pPLA2G4A, and pLTB4R, are known to be involved
in such important PD pathways as neuronal cell death, neu-
roinflammation, autophagy, and formation of amyloid fibrils
(Fig. 3e; see Supplementary Data 8 for more details). From the
Ingenuity Pathway Analysis (IPA), the upregulation of IDE leads
to neuronal cell death activation, while the upregulation of STK11
indirectly leads to autophagy activation. PLA2G4A and LTB4R
phosphoproteins were shown to be involved in downstream
GPCRs and MAPK signaling pathways (Supplementary Fig. 5a;
see Supplementary Data 9 for table format). Meanwhile, the
presence of NEU1, a lysosomal enzyme and a disease marker,
supports the emerging concept that PD is a lysosomal disorder93

(Supplementary Fig. 5b; see Supplementary Data 9 for table for-
mat). Furthermore, the overexpression of PLA2G4A, LTB4R, and
NEU phosphoproteins can trigger the autophagy pathway, one of
the hallmark pathways in PD (Supplementary Fig. 5c; see Sup-
plementary Data 10 for more details). Interestingly, NEU1 sh-
owed two contradicting downstream effects. The overexpression
of low-density lipoprotein (LDL)-cholesterol by NEU1 inhibited
autophagy. On the other hand, the inhibited expression of high-
density lipoprotein (HDL)-cholesterol by NEU1 triggered
autophagy. In Supplementary Fig. 5c, PLA2G4A is shown to
indirectly activate autophagy, supporting the fact that PLA2G4A
activation leads to the impairment of autophagy flux by directly
increasing lysosomal membrane permeabilization (LMP)94. The
interactions of LTB4R/RAC1/PAK1/p38 MAPK are also known
to activate autophagy.

Correlation of proteome and phosphoproteome profiles with
clinical parameters. We investigated any correlations between
the expression of the proteins and phosphoproteins with age,
gender, disease duration, MoCA score, and UPDRS-III score of
the patients (see Supplementary Data 11 for the cohort demo-
graphics and clinical characteristics). There is increasing evidence
that sex is an important factor in the development of PD95. In
men, the risk of developing PD is nearly twice as high as in
women. However, women have a higher mortality rate and faster
disease progression96. MoCA was initially designed to evaluate
mild cognitive impairment associated with AD to assess memory,
executive functions, and verbal fluency, among others, and can be
applied in a short period of time97. The test has been used for the
cognitive evaluation of patients with PD to identify cognitive
deficits. MoCA scores range between 0 and 30, where a score of
26 or over is considered normal. UPDRS-III scoring method

evaluates the patient’s motor skills ranging from 0 to 108, with
108 being the worst.

We found that the expression levels of ENPEP, GDPD3, NAGA,
NEDD4L, QPRT, and SCAMP3 proteins in urine EVs were
significantly higher (p-value < 0.05, calculated using the unpaired
two-sample Wilcoxon test) in males than in females (Supplemen-
tary Fig. 6a). There were positive correlations in the expression of
FUT6 (R2= 0.83, p < 0.05) and HAO2 (R2= 0.90, p < 0.005)
proteins with age in the female NMC group, as seen in
Supplementary Fig. 6b. Meanwhile, the expression of ALPL protein
was negatively correlated with disease duration in the female iPD
group (Supplementary Fig. 6c). Related to the MoCA scores in the
male NMC group, we found a positive correlation in CAPN5 and
HNRNPA1 proteins, and a negative correlation in ENPEP,
GDPD3, and GPD1L proteins (Supplementary Fig. 6d). Additional
significant correlations between protein abundance levels, MoCA
scores, and gender are shown in Supplementary Fig. 6d.

At the phosphoprotein level, pNEU1 abundance was positively
correlated with age in the female NMC group (R2= 0.86,
p < 0.01) (Supplementary Fig. 7a). DTD1 phosphorylation was
positively correlated with MoCA in the female NMC group
(Supplementary Fig. 7b). pANXA11 and pHLA-B were negatively
correlated with MoCA in the male NMC group, while there were
positive correlations for CYSRT1, LTB4R, and TJP3 phospho-
proteins. In addition, MoCA in female NMC was negatively
correlated with the expression of CYSRT1 phosphoprotein.
Lastly, the pLTBR4 level in the male LRRK2 PD group was
positively correlated with MoCA.

Furthermore, we assessed the correlations of UPDRS-III scores
with the protein and phosphoprotein intensities in iPD and
LRRK2 PD patients versus those in healthy individuals. We found
several proteins and phosphoproteins depicted in Fig. 4a
and Supplementary Fig. 8 to be positively and negatively
correlated with UPDRS-III and many that are moderately
correlated with the UPDRS-III (0.5 < Pearson correlation < 0.7).
Significantly correlated proteins with an FDR of 5% after
Benjamini–Hochberg correction and Pearson correlation of more
than 0.5 are labeled in the volcano plots. Lastly, Fig. 4b shows
three proteins, PEBP4, NEDD4L, and KLK6, with higher than 0.7
Pearson correlation scores, denoting a strong correlation with
UPDRS-III. These correlation data need to be further validated,
and their relevance to PD evaluated in a translational manner.

Top disease biomarkers were selected and evaluated using 10-
fold cross-validation. The discovery experiment, which included
samples from 21 healthy individuals (control), 13 healthy indi-
viduals with G2019S mutation in the LRRK2 gene (non-mani-
festing carrier/NMC), 28 PD individuals without G2019S
mutation (idiopathic PD/iPD), and 20 PD individuals with
G2019S mutation (LRRK2 PD), were randomly divided into two
groups: 70% training set and 30% test set for biomarker selection
and predictive ability estimation (Fig. 1, Table 2 for HC, NMC,
iPD, and LRRK2 PD patient distributions). The median nor-
malization was performed on the training set so that all abun-
dances in the four groups had the same median. After passing
thresholds and robust normalizations, we obtained and quantified
a total of 2127 qualified unique proteins and 1153 qualified
unique phosphoproteins.

From these curated training data, we generated six volcano
plots for comparisons between NMC, iPD, and LRRK2 PD
groups against the control samples with cutoff values of unpaired
Student’s two-tailed t-test p-value= 0.05 (−log10(0.05)= 1.30)
and log base 2 fold-change= 0.5, which equals to ~1.414 fold-
change (Supplementary Fig. 9a, b; see Supplementary Data 12 for
the proteome results, Supplementary Data 13 for the
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phosphoproteome results, and Supplementary Data 14 for
overlapping proteins and phosphoproteins). Here, the volcano
plots were created to facilitate the top feature selections using
machine learning rather than finding significant features; there-
fore, multiple hypothesis corrections were not used as the cutoff.
We need to emphasize that machine learning did not differentiate
top biomarkers based on whether they were statistically
significant; rather, machine learning made predictions by finding
patterns within the data. The upregulated proteins and phospho-
proteins overlapped in Venn diagrams. As mentioned previously,
we investigated potential biomarkers identified as disease
markers. We denoted disease markers as upregulated in PD
regardless of the LRRK2-G2019S mutation (both iPD and LRRK2
PD groups). The upregulation of the disease biomarkers could
indicate that a patient currently has PD. A single protein
biomarker might be involved in several already-known diseases.
To offer a better diagnostic value, we proposed to quantify a set of
several biomarkers rather than a single diagnostic protein.

We first performed feature selection to select the top disease
biomarkers. Instead of using a simple one-shot feature selection

technique that usually yields a sub-optimal solution, we used a
two-step feature selection process that generates better perfor-
mance: backward feature elimination followed by exhaustive
feature selection (See Table 3 for the list of feature selection
inputs and the intermediate results after backward feature
elimination and before exhaustive feature selection, see Supple-
mentary Data 15 for more details of feature selection inputs)65.
By utilizing this two-layer method, we could identify the top six
disease biomarkers. Disease biomarkers are upregulated in iPD
and LRRK2 PD compared to HC and NMC. The final selected
disease biomarkers are shown in Fig. 5a, b and listed in Fig. 5c.
Here, as expected, the iPD and LRRK2 PD groups clustered
together, as well as the HC and NMC groups. The violin plots of
the selected disease biomarkers are shown in Fig. 5d. Henceforth,
we would label those biomarkers listed in Fig. 5c as top
biomarkers; meanwhile, we would designate those biomarkers
listed in Table 3 but not listed in Fig. 5c as potential biomarkers.
We optimized our hyperparameters and trained our model using
the random forest classifier with 10-fold cross-validation by
utilizing the top six disease biomarkers. Lastly, we trained our
model by utilizing the 10-fold cross-validation.

Disease biomarkers were substantiated using classification
models, PRM-MS targeted mass spectrometry, and Western
blot experiments. After the careful feature selection and hyper-
parameters as described above, we tested our constructed model
using accuracy scores, confusion matrixes, and receiver operating
characteristic (ROC) curves, as depicted in Fig. 6. A confusion
matrix evaluates one classifier with a fixed threshold, while the
ROC evaluates that classifier over all possible thresholds. The area
under the ROC curve (AUC) provides the performance mea-
surement across the classification threshold. A higher true-
positive percentage and a lower false-positive percentage will

Fig. 4 Correlations with clinical parameter, UPDRS-III. a Pearson correlation scores and associated FDR-values [−log10] of all protein intensities with the
UPDRS-III scores; 20 LRRK2 PD and 21 HC were included. Significantly correlated proteins with an FDR of 5% after Benjamini–Hochberg correction are
labeled. b The scatterplots of three biomarkers with strong Pearson correlation scores (>0.7).

Table 2 The discovery experiment cohort distribution for
machine learning.

Training set Test set

HC 15 6
NMC 9 4
iPD 19 9
LRRK2 PD 14 6

The number of HC, NMC, iPD, and LRRK2 PD patients after being randomly divided into the
training and test sets.
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produce better AUC results. Normally, in the medical field, an
AUC of 70–80% is considered acceptable, 80–90% is considered
good, and 90–100% is considered excellent98. For example, the
AUC for the top six disease biomarkers is 94.3%, with 87.60%
confusion matrix accuracy (Fig. 6a, b). This panel would result in
a 94.3% likelihood that the doctor will correctly distinguish a PD
patient from a healthy patient based on finding the six biomarkers
at an elevated level in the urinary EVs. Certainly, these findings
need to be verified with a much more expanded validation cohort.

Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS)
and Western blot are both commonly used for the initial
validation of potential biomarkers. We selected several of our top
disease biomarkers and urinary exosome markers for further
validation. Quantitative assays based on PRM-MS for the disease
markers were performed with a new set of urine EV samples from
23 patients with PD and 13 healthy individuals (see Supplemen-
tary Data 11 for the cohort demographics and clinical
characteristics). All of the samples used in the validation
experiments came from a new cohort of patients. In this PRM-
MS experiment, we targeted several top EV markers, proteins
involved in PD pathways, proteins known to be PD biomarkers,
several potential disease biomarkers (those biomarkers which
were not chosen as top biomarkers by a feature selection), and
finally, the top disease biomarkers (see Supplementary Table 1 for
the target list, see Supplementary Data 16 for the inclusion list).
Due to limited volumes of the new urine samples, we could only
target protein biomarkers.

One out of two targeted top disease biomarkers, HNRNPA1, was
observed to be significantly upregulated in patients with PD
compared to healthy individuals (Fig. 7, see Supplementary Data 16
for the table format). HNF4A, whose mRNAs were found to be
upregulated in the blood of 51 PD patients vs. 45 controls using
quantitative PCR assays, was significantly upregulated in PD
(p < 0.01). Meanwhile, APP, whose mRNAs have been shown as
blood biomarkers of PD, was also significantly upregulated in PD
(p < 0.05, Fig. 7)99. Interestingly, the upregulation of CD9, CD63,
and CD81 agreed with the previous finding that these three EV
markers’ median fluorescence intensity (MFI) on the surface of
plasma-derived EVs was significantly higher in PD compared to
HC (p < 0.05)100. FN1, one of the proteins normally found to be co-
purified with EVs, was also upregulated in PD patients (p < 0.01).

We further performed an immunoassay with this new cohort
of urine EV samples from 10 patients with PD and 10 healthy
individuals. Three disease markers, HNRNPA1, PCSK1N, and
STK11, were noticeably upregulated in patients with PD
compared to healthy individuals (Supplementary Fig. 10a, b,
and see Supplementary Data 16 for the table format).

LRRK2 and its Rab substrates signaling are altered but not
significant PD biomarkers. Lastly, we explored whether some
Rab phosphoproteins, which are known to be direct substrates of

LRRK2 and identified in EVs, would be altered across different
groups in the Columbia LRRK2 cohort. Therefore, we also
investigated the direct LRRK2 activation in these urine EV
samples in addition to new biomarker discovery. LRRK2 is
known to phosphorylate a subgroup of Rab proteins, and LRRK2-
G2019S mutation has been previously shown to increase the
phosphorylation of its Rab substrates16. Rab proteins are master
regulators of membrane trafficking, orchestrating vesicle forma-
tion and vesicle movement along actin and tubulin networks, as
well as membrane docking and fusion—all critical aspects of
autophagy and lysosome biology16. First, we performed Western
blot analyses of all 82 urine samples, quantifying CD9 (common
exosome marker), LRRK2, and pSer1292-LRRK2 signal in the
EVs captured by EVtrap (Supplementary Fig. 11a, see Supple-
mentary Data 17 for table format). pSer1292, an LRRK2 autop-
hosphorylation site, indirectly reflects LRRK2 activation101. We
normalized and compared the signal between all samples using a
recombinant autophosphorylated LRRK2 protein as an internal
standard77. As expected, the normalized CD9 signal did not show
a significant difference between the sample groups (Supplemen-
tary Fig. 11b), while the expression of LRRK2 in LRRK2 PD was
significantly higher than in the control samples (p= 0.028).
Unfortunately, it was challenging to detect the pSer1292-LRRK2
signal in most samples, caused by a meager amount of this
modified protein in the samples and/or a lower antibody sensi-
tivity. Due to undetectable signals in most samples, we did not
find any significant difference in the pSer1292-LRRK2 phos-
phorylation level itself (Supplementary Fig. 11b). We also com-
pared the Western blot quantitative result with the mass
spectrometry data (Supplementary Fig. 11c). While not all of the
differences observed in these Western blot and mass spectrometry
experiments showed statistically significant changes, there was an
apparent trend of higher LRRK2 signal in the G2019S groups
(NMC and LRRK2 PD) in both the Western blot and mass
spectrometry data. Interestingly, the LRRK2 overall phosphor-
ylation level (sites other than Ser1292) is lower in NMC and
significantly lower in LRRK2 PD than in the control group.
Indeed, the low level of phosphorylated LRRK2 in EVs might
explain why it was challenging to detect pSer1292-LRRK2 signals
in the Western blot.

From the urine EV LC-MS analyses, we identified 34 Rab
GTPases, 12 of which are known LRRK2 substrates, and eight
phosphorylated Rab GTPases (Supplementary Table 2). After in-
depth statistical normalization and qualification, we quantified 15
Rab GTPases (10 LRRK2 substrates) and four phosphorylated
Rab GTPases. We observed that Rab2A (p < 0.003) and Rab10
(p= 0.037) were significantly upregulated in LRRK2 PD
compared to the control samples (Supplementary Fig. 12a).
Rab2A’s involvement in retrograde trafficking and particle
recycling from Golgi back to the endoplasmic reticulum (ER)
shows the role of this protein in the organellar homeostasis
pathway to prevent misfolded proteins from entering the Golgi

Table 3 Input disease biomarkers for machine learning.

Input disease biomarkers

ABCA1 ERBB2 ➤ HNRNPA1 ➤ PCSK1N STK11 pCLIC6 ➤ pLTB4R ➤ pPRR15
ACAT2 FABP3 IDE PGM2 TGM3 pDKC1 pNEU1 pSPPL2B
C4BPA FAM151A IGF1 RALA UCHL1 pDYNC1LI1 ➤ pPLA2G4A pSSB
C6orf211;ARMT1 FLOT1 ITCH RPS4X UGP2 pEDN1 ➤ pPPFIA1 pTBC1D9B
CAPN5 FUT6 KLK10 SAA4 VASP pFNBP1 pPRG4 pTJP3
CC2D1A GALNT7 NCCRP1 SLC22A13 pCLDN14 pLAD1 pPRKAR2A pTMPO

List of the feature selection inputs (potential biomarkers) for disease biomarkers. Intermediate results after backward feature elimination and before exhaustive feature selection are bolded and italicized.
The top biomarkers are marked with ➤.
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apparatus6. Thus, the upregulation of Rab2A in LRRK2 PD,
which may promote retrograde trafficking machinery, may be the
α-synuclein aggregation stress response.

Rab10 is a well-known substrate of LRRK2, and in vitro assays
suggested that PD-related neurodegeneration may start by LRRK2-
G2019S increasing phosphorylation of Rab10102. It is also known
that Rab10 is involved in LRRK2 and other Rabs relocalization103.

Therefore, it is not surprising that Rab10 was present at higher
levels in the LRRK2 PD group EVs (Supplementary Fig. 12a).
Interestingly, Rab17 protein was qualified to be one of our
progression markers, although currently, the role of Rab17 in PD
progression is not fully understood. At the phosphoprotein level,
only Rab12 (p < 0.005) was significantly upregulated in LRRK2 PD
(Supplementary Fig. 12a). Rab12 is an LRRK2 endogenous

Fig. 5 The selected top disease biomarkers acquired from the training set. a The training set’s heatmap of top potential protein and phosphoprotein
biomarkers (Training set: 15 HC, 9 NMC, 19 iPD, and 14 LRRK2 PD). b The heatmap of top potential protein and phosphoprotein biomarkers on the test set
(Test set: 6 HC, 4 NMC, 9 iPD, and 6 LRRK2 PD). c The table summary of the top disease biomarkers. d Violin plots of the statistically upregulated proteins
and phosphoproteins from the training set in PD regardless of the LRRK2-G2019S mutation (disease markers). The heatmap was clustered by Euclidean
distance and average method. The unpaired two-sample Wilcoxon test p-values and the one-way ANOVA p-value were calculated on each of the violin
plots. The red stars above the violin plots indicate a statistically significant difference in the mean compared to those without the red star (p-value < 0.05).
For the lines in box plots inside the violin plots: the line inside the box is the 50th percentile (median), the bottom and top of the box are the 25th and 75th
percentiles, and the whiskers are the 95% confidence interval.
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substrate that plays a role in endosomal lysosome sorting,
degradation, and autophagy103.

We also investigated the correlation of the identified Rab GTPase
expression levels with age, gender, disease duration, and MoCA
scores with the new biomarkers. As seen in Supplementary Fig. 12b,
the expression of Rab1A protein in females was significantly higher
than in males with p < 1e-12. In contrast, Rab1B (p < 0.0005),
Rab3D (p < 0.005), and Rab7A (p < 0.05) were expressed at higher
levels in males than females. We also observed that the expression
level of Rab2A protein in female iPD individuals was positively
correlated with age (R2= 0.68, p < 0.001) (Supplementary Fig. 12c).
Meanwhile, the expression of Rab17 protein in female iPD
individuals was positively correlated with MoCA (R2= 0.63,
p < 0.005) (Supplementary Fig. 12d). As noted before, these
correlations need to be reproduced and evaluated further to better
understand their significance.

Discussion
Mass spectrometry (MS)-based biofluid proteome analysis and
quantitation have recently gained renewed interest and excite-
ment in disease profiling efforts. The approach offers immea-
surable potential for innovative biomarker discovery. However,
successful translation from MS data to human disease profiling
remains limited. This limitation is partly due to the complexity of
biofluids, which have a very large dynamic range and are typically
dominated by a few highly abundant proteins. To date, scientists
have been concentrating on finding PD biomarkers in EVs of
biofluids such as CSF and plasma without paying much attention
to the importance of urinary EVs as a potential source of
biomarkers104. Here, we report in-depth analyses of proteome
and phosphoproteome in urinary EVs and demonstrate the via-
bility of developing proteins and phosphoproteins as potential

disease biomarkers. We present an MS-based strategy that
includes isolating EV particles from human urine utilizing
EVtrap, enrichment of EV phosphopeptides, in-depth LC/MS
analysis, and robust bioinformatics evaluation for biomarker
discovery and qualitative verification (Fig. 1). After we showed
that our EV isolation method was reproducible and successfully
depleted high-abundant free urine proteins, we analyzed EV
samples from patients with LRRK2-G2019S mutation (NMC),
idiopathic PD (iPD), and LRRK2 PD compared to healthy indi-
viduals to identify candidate disease biomarkers. In total, we
identified and quantified 4476 unique proteins from 46,240
peptide groups and 2680 unique phosphoproteins from 10,620
phosphopeptide groups (Fig. 2a, b). Then, the proteins and
phosphoproteins identified were normalized and analyzed to be
statistically useful for further downstream analyses (Fig. 2c, d).

To show the robustness of our EV isolation method and
downstream analyses, we identified PD-relevant features sup-
ported by the literature. Among the upregulated proteins, PRDX3
was significantly overexpressed in LRRK2 PD vs. NMC and
LRRK2 PD vs. iPD comparisons (Fig. 3a, b). LRRK2-G2019S
mutation has been shown to increase the phosphorylation of
PRDX3, causing inhibition of endogenous peroxidases and
increasing neuronal cell death105; however, interestingly, we did
not detect the presence of PRDX3 phosphoprotein in urinary
EVs. Similarly, KLK6, TRIM17, TPT1, VCAM1, and LILRB1
were also significantly upregulated in both comparisons, with
KLK6 and LILRB1 also upregulated in LRRK2 PD vs. Control. In
humans, the KLK6 protein is expressed at high levels in the
nervous system and is one of the few most abundant serine
proteases in the CSF, where it is secreted at mg/L levels106.
Interestingly, KLK6 degrades α-synuclein and prevents its poly-
merization, suggesting that the nervous system secreted KLK6
through EVs to slow down α-synuclein degradation, and as a

Fig. 6 Unbiased estimation of predictive ability of urinary proteomes and phosphoproteomes on the test set. Receiver operating characteristic (ROC)
curve and the confusion matrixes for the Random Forest Classifier model to classify 15 positive (Parkinson’s Disease) vs. 10 negative (Normal) individuals
(a). In the ROC curve, the dotted diagonal line indicates random performance, and the light blue area represents the 95% confidence interval. The
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) scores with their 95% confidence intervals are shown
for PD vs. Normal (b).
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result, PD progression continues. Overexpression of TRIM17
increases α-synuclein expression107. Moreover, TPT1 mRNA is
highly expressed in human substantia nigra with PD108. A sig-
nificantly elevated expression of VCAM1 was observed in the
blood of PD patients suggesting the role of VCAM1 in neu-
roinflammation and PD progression109. Recently, LILRB1 was
discovered as a potential diagnostic signature for PD110.

For LRRK2 PD vs. NMC, IGF1, PCSK1N, and STK11 were
significantly upregulated (Fig. 3a). The upregulation of IGF1 in
our data matches the discovery that IGF1 was significantly
increased in PD patients compared to HC in serum111. Mean-
while, STK11 upregulation indirectly leads to autophagy activa-
tion (Fig. 3e). These three proteins might give important insights
into possible disease progression, especially when considering the
possible confounding factor by age (Table 1). For LRRK2 PD vs.
iPD, HSPA1A, HSPA1B, ECM1, GBA, NEDD4L, and GDPD3
were upregulated (Fig. 3b). Through microarray analysis on
substantia nigra tissue, heat shock protein HSPA1A and HSPA1B
were found to be upregulated in PD, indicating that this may be a
common response to attenuate the adverse effects of misfolded
protein112. ECM1 was also shown to be upregulated in the CSF
samples of PD patients113. Interestingly, one of the most common
genetic risk factors for PD is having a mutated GBA gene114.

In addition, it has been hypothesized that aging-related
metabolic changes could contribute to the progression and
onset of PD115. Therefore, it is not surprising to see that cellular
catabolic and carbohydrate derivative catabolic processes were

upregulated in LRRK2 PD (Supplementary Fig. 4c). Moreover,
since LRRK2 substrates are involved in membrane trafficking,
vesicle-mediated transport was also found to be enhanced in
LRRK2 PD. Figure 3c comparison provides an interesting dis-
covery about the difference between iPD and LRRK2 PD gene
ontology. In this evaluation, cell adhesion molecule binding,
lysosome, leukocyte transendothelial migration, and adaptive
immune system were enhanced in LRRK2 PD. Lysosome activity
was upregulated due to LRRK2 substrates’ involvement in lyso-
some sorting, degradation, and autophagy103. Leukocyte trans-
endothelial migration, which is crucial for innate immunity and
inflammation, and the adaptive immune system, which is carried
out by lymphocytes, were enriched, indicating the potential that
LRRK2-G2019S mutation could further amplify the already pro-
inflammatory function of LRRK2 in inflammasome activity116.
Although the expression of LRRK2 is mainly thought of in the
context of neurons, it is also discovered to be highly expressed by
immune cells such as monocytes, macrophages, and B cells, where
LRRK2 direct substrate-mediated vesicle trafficking is heavily
involved in their immune response initiation116,117.

Furthermore, the emerging system/network analysis has revo-
lutionized novel mechanism discovery and promising drug tar-
gets. Our literature-based network analysis of the gene expression
involving these potential biomarkers has revealed the connections
between our biomarkers and critical pathways that could lead to
PD development. Here, we showed that the four top disease
markers, PCSK1N, HNRNPA1, pPLA2G4A, and pLTB4R, are

Fig. 7 Targeted quantitation of disease biomarkers. A top disease biomarker, HNRNPA1, was validated in 23 patients with PD and 13 healthy individuals
using PRM-MS (p-value < 0.05). HNF4A and FN1 were also significantly upregulated in PD (p-value < 0.01). The Student’s two-tailed t-test calculated all p-
values. For the lines in box plots: the line inside the box is the 50th percentile (median), the bottom and top of the box are the 25th and 75th percentiles,
and the whiskers are the 95% confidence interval.
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indeed involved in PD pathways such as neuronal cell death,
neuroinflammation, autophagy, and formation of amyloid fibrils
(Fig. 3e). We also showed that some proteins and phosphopro-
teins sustained positive or negative correlations with gender, age,
disease duration, MoCA, and UPDRS-III. Most interestingly,
Fig. 4 displayed PEBP4, NEDD4L, and KLK6 with higher than 0.7
Pearson correlation scores, indicating a strong positive correla-
tion with UPDRS-III. However, we need to emphasize that these
correlations with the clinical parameters do not automatically
mean causation. Some relevant correlations between the proteins
and phosphoproteins and the clinical parameters should be stu-
died further to provide more information.

In total, we discovered a panel of high-confidence putative dis-
ease biomarkers, which were substantiated using ROC, machine
learning, and in-depth network analysis. The top disease bio-
markers, PCSK1N, HNRNPA1, pPLA2G4A, pLTB4R, pPRR15,
and pPPFIA1, could be employed for PD detection in a non-
invasive way using a simple urine collection (Fig. 5). Our machine
learning technique generated an AUC of 94.3%, a confusion matrix
accuracy of 87.60%, and a sensitivity of 1 for the top six disease
biomarkers (Fig. 6). Higher sensitivity is more important than
specificity for early disease diagnosis. Here, we successfully cate-
gorized every individual with PD in the test set as PD patients.
Given the performance of our machine learning model, there is a
potential and feasible clinical application of using the classifier as a
diagnostic tool for PD. The machine learning code used for feature
selections, model training, and predictive analyses is available in
Zenodo (https://doi.org/10.5281/zenodo.7679354) and could be
easily adapted for other disease classifications118. Several potential
disease biomarkers have also been validated using targeted
approaches—PRM andWestern blot, includingHNF4A, FN1, APP,
APOM, STK11, CD9, CD63, CD81, and PCSK1N (Fig. 7, Supple-
mentary Fig. 10a, b). The PRM-MS is a more powerful method to
validate the biomarkers; meanwhile, the immunoassay validation is
only semi-quantitative and can be used to look at the overall profile
differences between healthy and PD individuals rather than as an
absolute measurement. Together, the extensive data on these
potential biomarkers might serve as a future of PD detection in a
non-invasive and more cost-effective manner and as a resource to
the research community for further studies. In other words, this
platform represents a foundational resource for the emerging field
of accurate and reproducible proteomic biomarker discovery.

We also directed considerable attention to LRRK2 kinase and
its Rab substrate proteins in urinary EVs. This project involved

two groups of patients with LRRK2-G2019S mutation, a feature
present in some PD patients. However, it is known that the
mutated LRRK2 does not necessarily lead to PD onset, and many
individuals live with this mutation without developing Parkin-
son’s disease. This study found a minor increase in LRRK2 pro-
tein amount and its overall phosphorylation level in PD patients’
urine EVs (Supplementary Fig. 11). Similarly, a few select Rab
proteins showed an increased EV signal in total protein amount
and phosphorylation level in PD cases (Rab2A, Rab10, pRab12;
Supplementary Fig. 12a). However, none were selected as the
optimal potential biomarkers for PD diagnosis. This finding
further underscores the reality that Parkinson’s disease is highly
complicated, with multiple signaling pathways involved in its
pathology. While LRRK2 kinase is known to be involved in PD
progression, detecting LRRK2 and its direct substrates in urinary
EVs may not provide sufficient differentiation between cases. As
carried out in this study, a more global analysis, which may or
may not be directly influenced by LRRK2 activity, is needed to
determine the most statistically significant biomarkers. We
advocate that such a comprehensive analysis with highly stringent
bioinformatics data validation gives us the best opportunity to
discover the most optimal differentiating markers.

Urinary EV proteomics data would generate comprehensive
information; however, phosphoproteomics data would provide a
more complete picture of the state of the disease. One of the most
significant challenges in urinary EV phosphoproteomics
exploration is the sometimes-limited volume of urine samples.
Here, we could not validate the urinary EV phosphoproteomics
results due to the lower volume availability of the new sample
batch. Especially in this case, the number and volume of available
urine samples from the Columbia University Irving Medical
Center (CUIMC) were limited because each patient must be
deeply curated to detect the presence of the G2019S mutation.
Therefore, we recognize that another more sensitive method to
evaluate urinary EV phosphoproteins using lower urine volumes
has to be developed to overcome this challenge. Currently, our lab
is focusing on overcoming this specific challenge. Furthermore,
we acknowledge the limitations of our Western blot experiments.
Rather than showing technical replicates (repeats), the Western
blot experiments were designed to show biological replicates
(different patients) to demonstrate the variation across indivi-
duals. Therefore, all of the Western blot experiments were per-
formed only once due to a very limited amount of rare clinical
samples. In addition, the ladder on the blots was not visible

Table 4 The summary of all important biomarkers discovered in this study.

Type of biomarkers Putative biomarkers Visualized data

Biomarkers of LRRK2 PD vs. control RAB2A, RAB10, pRAB12 Supplementary Fig. 12a
Biomarkers of LRRK2 PD vs. NMC PRDX3, KLK6, TRIM17, TPT1, VCAM1, LILRB1, IGF1, PCSK1N, STK11 Fig. 3a
Biomarkers of LRRK2 PD vs. iPD PRDX3, KLK6, TRIM17, TPT1, VCAM1, LILRB1, HSPA1A, HSPA1B,

ECM1, GBA, NEDD4L, GDPD3
Fig. 3b

Biomarkers with strong correlation with
UPDRS-III

PEBP4, NEDD4L, KLK6 Fig. 4

Top disease biomarkers chosen by machine
learning

PCSK1N, HNRNPA1, pPLA2G4A, pLTB4R, pPRR15, pPPFIA1 Fig. 5

Disease biomarkers validated using PRM-
MS

HNRNPA1, HNF4A, FN1, APP, APOM, STK11, CD9, CD63, CD81 Fig. 7

Disease biomarkers validated using WB HNRNPA1, PCSK1N, STK11 Supplementary Fig. 10a, b
Biomarkers expressed significantly higher in
males

ENPEP, GDPD3, NAGA, NEDD4L, QPRT, SCAMP3, RAB1B, RAB7A,
RAB3D

Supplementary Figs. 6a and 12b

Biomarkers expressed significantly higher in
females

RAB1A Supplementary Fig. 12b

The listed putative biomarkers were discovered using various approaches, such as Pearson correlation analyses, machine learning, parallel reaction monitoring (PRM-MS), Western blot (WB), and
statistical analyses of the protein or phosphoprotein expressions.
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because the membrane was cut at the proper molecular weight of
the correct target proteins to enable us to run multiple antibody
blots from the same samples. Moreover, there is no agreement
upon loading control for EV samples. When possible, we were
able to include CD9 as a marker of isolated EVs to measure the
general level of EVs in each urine sample.

In summary, we have developed several comprehensive putative
biomarker panels of proteins and phosphoproteins in urinary
extracellular vesicles as biosignatures for Parkinson’s disease
diagnosis (Table 4). Our putative biomarker panels, supported by
prior literature and several validation experiments, offer a great
opportunity for further extensive validation studies to translate
these potential non-invasive signaling biomarkers as PD bio-
markers from urinary EVs. The study highlights our ability to
isolate and identify thousands of unique proteins and phospho-
proteins from relatively small volumes of urine samples by utilizing
the EVtrap EV enrichment approach. These findings further vali-
date the underlying principle that this strategy could be valuable for
exploring existing resources in a wide range of diseases. Finally, we
expect our immediate results, followed by extensive evaluation and
validation of the new markers in the clinical setting, could improve
these patients’ medical outcomes and quality of life.

Data availability
The mass spectrometry raw data files and Proteome Discoverer search results for EVtrap
repeatability, high-abundant free urine protein depletion, and the discovery experiments
have been deposited in the MassIVE database (https://massive.ucsd.edu/ProteoSAFe/static/
massive.jsp) and can be accessed via dataset identifier: MSV000085800 | PXD020475. The
PRM raw data files and the Skyline file have been deposited in the Panorama Public (https://
panoramaweb.org/pd.url). The ProteomeXchange ID reserved for these data is PXD032175.
The source data have been provided in files named “Source Data 1” and “Source Data 2”
located inside the zipped “Source Data” folder.

Code availability
Custom Python code used for feature selections, model training, and predictive analyses,
along with the README file, input files, and expected results, have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.7679354)118.
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