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Abstract

Background Differential artery-vein (AV) analysis in optical coherence tomography angio-

graphy (OCTA) holds promise for the early detection of eye diseases. However, currently

available methods for AV analysis are limited for binary processing of retinal vasculature in

OCTA, without quantitative information of vascular perfusion intensity. This study is to

develop and validate a method for quantitative AV analysis of vascular perfusion intensity.

Method A deep learning network AVA-Net has been developed for automated AV area

(AVA) segmentation in OCTA. Seven new OCTA features, including arterial area (AA),

venous area (VA), AVA ratio (AVAR), total perfusion intensity density (T-PID), arterial PID

(A-PID), venous PID (V-PID), and arterial-venous PID ratio (AV-PIDR), were extracted and

tested for early detection of diabetic retinopathy (DR). Each of these seven features was

evaluated for quantitative evaluation of OCTA images from healthy controls, diabetic patients

without DR (NoDR), and mild DR.

Results It was observed that the area features, i.e., AA, VA and AVAR, can reveal significant

differences between the control and mild DR. Vascular perfusion parameters, including T-PID

and A-PID, can differentiate mild DR from control group. AV-PIDR can disclose significant

differences among all three groups, i.e., control, NoDR, and mild DR. According to Bonferroni

correction, the combination of A-PID and AV-PIDR can reveal significant differences in all

three groups.

Conclusions AVA-Net, which is available on GitHub for open access, enables quantitative

AV analysis of AV area and vascular perfusion intensity. Comparative analysis revealed AV-

PIDR as the most sensitive feature for OCTA detection of early DR. Ensemble AV feature

analysis, e.g., the combination of A-PID and AV-PIDR, can further improve the performance

for early DR assessment.
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Plain Language Summary
Some people with diabetes develop

diabetic retinopathy, in which the

blood flow through the eye changes,

resulting in damage to the back of the

eye, called the retina. Changes in

blood flow can be measured by ima-

ging the eye using a method called

optical coherence tomography

angiography (OCTA). The authors

developed a computer program

named AVA-Net that determines

changes in blood flow through the

eye from OCTA images. The program

was tested on images from people

with healthy eyes, people with dia-

betes but no eye disease, and people

with mild diabetic retinopathy. Their

program found differences between

these groups and so could be used to

improve diagnosis of people with

diabetic retinopathy.
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Early disease diagnosis and effective treatment assessment
require quantitative analysis of retinal neurovascular chan-
ges. Diabetes, strokes, hypertension, and vascular disorders

are among the diseases that affect retinal vessels. The blood
vessels show abnormalities in the early stages of diabetic retino-
pathy (DR), including alterations in diameter1,2. During the early
stages of disease development, as well as throughout the process,
arteries and veins are affected differently. Therefore, differential
artery-vein (AV) analysis has been shown to be useful for eval-
uating diabetes, hypertension, strokes, cardiovascular disease, and
common retinopathies3. The addition of AV analysis capabilities
to clinical imaging devices would enhance the accuracy of disease
detection and classification. For differential AV analysis, the first
step is to perform AV segmentation or classification in retinal
images. The AV segmentation has been conducted using a variety
of imaging modalities, including fundus photography, OCT, and
OCTA3. AV segmentation and classification have been mostly
performed on color fundus images3 using feature extraction-
based methods4–6 and machine learning based approaches7–9.
However, fundus images have limited resolution and contrast to
reveal microvascular abnormalities in the retina, particularly
difficult for evaluating smaller capillary level blood vessels around
the fovea10,11.

By providing micrometer scale resolution to visualize retinal
neurovasculature, OCT has been widely used for ophthalmic
research and clinical management of eye conditions12. As one
new modality of OCT, OCTA detects microvascular distortions
associated with eye diseases noninvasively at the capillary
level13. Especially in the 6 mm × 6mm and 3 mm × 3 mm field
of views, the OCTA can provide depth-resolved visualization
of individual retinal layers with the capillary level resolution.
Quantitative analysis of the OCTA images has been extensively
studied for the objective detection and classification of retinal
diseases14–19. Through the identification of capillary vortices
in the deep capillary plexus, Xu et al.20 demonstrated how
to manually distinguish retinal arteries from veins in clinical
OCTA images. Depth resolved OCT profiles were studied by
Kim et al.21 and Adejumo et al.22 for objective AV classification.
Alam et al.17 and Son et al.18 analyzed en face OCT and en face
OCTA features for AV classification using quantitative feature
analysis.

For clinical deployments of differential AV analysis, the
development of a fully automated method is essential. Using a
convolutional neural network (CNN), Alam et al.23 demonstrated
deep learning AV segmentation with early fusion of en face OCT
image and OCTA images for the first time. Using montaged wide-
field OCTA images, Gao et al.24 developed a unimodal strategy in
deep learning for AV segmentation. Using different approaches,
all above mentioned studies exploring the AV classification or
segmentation have been primarily focused on the detection and
segmentation of large vessels as arteries or veins. Abtahi et al.25

quantitatively evaluated multimodal architectures with early and
late OCT-OCTA fusions, compared to the unimodal architectures
with OCT-only and OCTA-only inputs. They observed that the
OCTA-only architecture with OCTA images as input is sufficient
for robust AV segmentation. Using 3 mm × 3mm OCTA images,
they were able to segment arteries and veins to the capillary level.

All previous studies for differential AV analysis in OCTA were
limited to blood vessel density and caliber quantification. In other
words, previously derived AV maps were in binary format to
separate arteries and veins, without the preservation of signal
intensity, i.e., vascular perfusion information. Recent studies26–28

indicate that OCTA intensity (non-binarized) derived quantita-
tive features such as flux can provide a better sensitivity to detect
vascular perfusion abnormalities, compared to binarized vessel
area density (VAD) analysis. In this study, we present a new

approach to achieve AV segmentation with preserved OCTA
intensity information for AV analysis of the perfusion intensity
density (PID). A deep learning network AVA-Net is developed to
achieve automatic segmentation of AV areas to generate the AVA
map. By multiplying the OCTA image by the AVA map, we can
have the OCTA-AV map that contains the OCTA intensity, i.e.,
vascular perfusion information, with red and blue channels to
separate arterial and venous areas. Using this approach, we can
classify all the visible vessels in the OCTA images at different
orders and scales as arterial or venous. The intersection-over-
union (IoU), Dice coefficient, and segmentation accuracy are used
as the evaluation metrics for the validation of AVA-Net perfor-
mance. Seven new quantitative OCTA features, termed arterial area
(AA), venous area (VA), AVA ratio (AVAR), total PID (T-PID),
arterial PID (A-PID), venous PID (V-PID), and AV PID ratio (AV-
PIDR) are verified for objective detection of DR.

Methods
Data acquisition. The study was approved by the Institutional
Review Board (IRB) of the University of Illinois at Chicago (UIC)
and is in adherence to the ethical standards set forth in the
Declaration of Helsinki. The en face OCTA images used for this
study are 6 mm × 6mm scans collected at UIC. In this study, we
have two different datasets. The training dataset which consists of
104 OCTA images and their ground truths (68 control, 12 mild
DR, 11 moderate DR, and 13 severe DR scans) is planned to be
used for training and validation of the CNN. The test dataset
which consists of 64 OCTA images without ground truths (25
eyes from 17 control participants, 18 eyes from 13 NoDR
patients, and 21 eyes from 18 mild DR patients) is planned to be
used for qualitative testing of the CNN and quantitative analysis
with the focus on early detection of DR. Table 1 summarizes all
participant demographics and diabetes-related parameters in the
test dataset. Control subjects and diabetic patients without and
with DR in different stages were recruited from the UIC retina
clinic. The patients present in this study are representative of a
university population of diabetic patients who require clinical
diagnosis and management of DR. Subjects who were 18 years of
age or older met the inclusion criteria. In addition, diabetic
patients having a diagnosis of Type II diabetes mellitus met the
inclusion criteria for our diabetic cohort. The diabetic patients
were not insulin dependent. Subjects with macular edema, pro-
liferative DR, previous vitrectomy surgery, history of other ocular
disorders other than cataracts or minor refractive error, and
ungradable and low-quality OCT pictures were exclusion criter-
ions. There is no preference between left or right eyes. A board-
certified retina specialist classified the patients as NoDR or different

Table 1 Demographic of the healthy subjects, NoDR and mild
NPDR patients.

Healthy
subjects

NoDR Mild NPDR

Number of subjects (n) 17 13 18
Number of images (n) 25 18 21
Age (years) 52.4 ± 14.57 56.54 ± 9.21 62.28 ± 12.81
Age range 35–80 40–70 24–78
Sex (male/female) 10/7 4/9 9/9
Duration of diabetes
(years)

− 11.44 ± 5.06 18.10 ± 5.50

Diabetes type − Type II Type II
Quality index (1–10) 8.00 ± 0.89 8.00 ± 1.11 7.43 ± 0.73
HTN prevalence (Y/N) 0/17 11/2 15/3

HTN hypertension.
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stages of NPDR according to the Early Treatment Diabetic Reti-
nopathy Study (ETDRS) staging system. All patients underwent a
complete anterior and dilated posterior segment examination. All
control OCTA images were obtained from healthy volunteers that
provided informed consent for OCT/OCTA imaging. Deidentified
diabetic datasets were obtained for retrospective analysis. The IRB
waived the need for informed consent from the patients, as patient
privacy and confidentiality were maintained according to IRB
guidelines. All subjects underwent OCT and OCTA imaging of
both eyes (OD and OS). One en face OCTA of each eye was used
for this study.

Spectral domain (SD) en face OCTA data were acquired using
an AngioVue SD-OCT device (Optovue, Fremont, CA, USA).
The OCT device had a 70,000 Hz A-scan rate, ~5 μm axial
resolution, and ~15 μm lateral resolution for 6 mm × 6mm scans.
Only superficial OCTA images were used in this study. After
image reconstruction, en face OCTA was exported from the
ReVue software interface (Optovue) for further processing.

Generating ground truths. As reported in previous publication25,
readers can rely on various characteristics in OCTA images to
manually detect arteries and veins accurately in the 6 mm× 6mm
dataset: (1) The presence of the capillary-free zone is associated
with arteries; (2) arteries do not cross other arteries and veins do
not cross other veins, physiologically; (3) vessels can be traced back
proximally and distally to aid in identification; (4) arteries and
veins typically alternate as each vein drains capillary beds perfused
by adjacent arteries. Figure 1a, b show a representative OCTA
image and corresponding manually generated AV map. For gen-
erating AVA maps for the training dataset, the k-nearest neighbor
(kNN) classifier is used to classify background pixels in Fig. 1b as
pixels in arterial or venous areas. Since we segmented all the visible
large vessels in AVmaps and used kNN only to classify background
pixels as pixels in arterial or venous areas, the generated AVAmaps
using kNN are reliable and accurate. They were reviewed and
approved by an ophthalmologist. Considering Euclidean distance
as distance metric and distance-weighted voting, k values between
4 and 25 generate approximately similar and smooth AVA maps.
To minimize the computation cost, the k value of 5 is selected. The
output of the kNN classifier is presented in Fig. 1c with a lighter
tone of blue and red comparing to arteries and veins presented in
Fig. 1b. The union of the arteries and veins with corresponding
arterial and venous areas generate the AVA maps represented in
Fig. 1d. Generating ground truth AV maps for 3 mm× 3mm
OCTA images is discussed in our previous study25. The above-
mentioned procedure can be used to generate ground truth AVA
maps for 3 mm× 3mm OCTA images.

Quantitative features. By multiplying the OCTA image by the
AVA map represented in Fig. 1a and d, respectively, we can have
the OCTA-AV map demonstrated in Fig. 1e. To the best of our
knowledge, for the first time, OCTA-AV maps are introduced in
this paper as images that contain the intensity information of an
OCTA image, with separate red and blue channels for arterial and
venous areas. By using this method, all the vessels at different
orders and scales which are visible in the OCTA images can be
classified as arteries or veins. Figure 1f shows the fovea (diameter
1 mm) and OCTA layer indicator with a white circle and yellow
rectangle, respectively. During image scanning of the macula, the
commercial imaging device detects the fovea center automatically
to keep the fovea at the center of the image. Accordingly, we can
say that the center of the circle is approximately in the center of
the image. Since the foveal avascular zone (FAZ) is devoid of
blood vessels, the arterial and venous area segmentation in this
area is artificial. As with the fovea (diameter 1 mm), the OCTA

layer indicator area at the bottom left corner of the OCTA image
is excluded from the OCTA-AV map as well as the AVA map
presented in Fig. 1g and h, respectively.

Using the AVA maps and OCTA-AV maps, we can conduct
the quantitative analysis for control, NoDR, and mild DR stages.
The area of arterial or venous areas can be quantified using the
AVA maps. As two novel quantitative features, the percentage of
the arterial or venous areas in the total area can be defined as
arterial area (AA) or venous area (VA). Therefore, AA and VA
can be calculated as follows

αA ¼ 100 ´
AA

AT
ð1Þ

αV ¼ 100 ´
AV

AT
ð2Þ

where AA, AV, and AT are arterial, venous, and total area in AVA
maps, respectively, and αA and αV are AA and VA, respectively.
To calculate AA or VA, the number of pixels in the arterial or
venous area can be divided by the number of total pixels
multiplied by 100. Since the summation of arterial and venous
areas are the total area, mathematically we have the following
relationship between AA and VA

αA ¼ 100� αV ð3Þ
We also can define the arterial-venous area ratio (AVAR), αAV,

as follows

αAV ¼ AA
AV

¼ αA
αV

ð4Þ
Most commonly, the binarized OCTA images are used to

calculate VAD, also known as vessel density (VD), perfusion
density (PD), blood vessel density (BVD), and capillary
density13,29. VAD in binarized OCTA images is the ratio of the
area occupied by vessels divided by the total area converted to a
percentage. In this paper, using the OCTA-AV maps that contain
the OCTA intensity information, we define perfusion intensity
density (PID) as a novel quantitative feature that does not require
binarization with any thresholding method. The mean of the pixel
intensities converted to a percentage in the total area, arterial
area, and venous area can be defined as total PID (T-PID), arterial
PID (A-PID), and venous PID (V-PID), respectively. So, T-PID,
A-PID, and V-PID can be calculated as follows

PT ¼ 100
255

´
summation of intensities in the total area

total number of pixels
¼ 100

255
´

1
AT

∑
AT

I ð5Þ

PA ¼ 100
255

´
summation of intensities in arterial areas
total number of pixels in arterial areas

¼ 100
255

´
1
AA

∑
AA

I ð6Þ

PV ¼ 100
255

´
summation of intensities in venous areas
total number of pixels in venous areas

¼ 100
255

´
1
AV

∑
AV

I ð7Þ

where PA, PV, and PT are A-PID, V-PID, and T-PID, respectively,
and I is intensity values in OCTA-AV maps. T-PID represents
quantitative feature calculation without differentiation of the AV
areas, while A-PID and V-PID represent quantitative features
after AV area segmentation for differential AV analysis. The
arterial-venous PID ratio (AV-PIDR), PAV, can also be defined as
the division of the A-PID by V-PID as formulated bellow

PAV ¼ PA
PV

ð8Þ
To the best of our knowledge, we defined seven new

quantitative OCTA features (AA, VA, AVAR, T-PID, A-PID,
V-PID, and AV-PIDR) related to AVA maps and OCTA-AV
maps that can be used for quantitative analysis of diseases at
different stages. The processes for calculating these quantitative
features are shown in Fig. 1i–n, with blue arrows and boxes. We
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Fig. 1 Illustration of basic procedures for generating AVA map from OCTA image and calculating quantitative features. a OCTA image. b Manually
generated AV map. c Output of kNN classifier. d AVA map. e OCTA-AV map. f Fovea and OCTA layer indicator in the OCTA-AV map. g OCTA-AV map
excluding the fovea and OCTA layer indicator area. h AVA map excluding the fovea and OCTA layer indicator area. i Arterial area. j Venous area. k Total
area shows the summation of arterial and venous areas with white color. l Arterial area of the OCTA image. m Venous area of the OCTA image. n Total
area of the OCTA image excluding the fovea and OCTA layer indicator area. Calculating quantitative features is indicated by blue arrows and boxes. OCTA
optical coherence tomography angiography, AV artery-vein, kNN k-nearest neighbor, AVA arterial-venous area, AVAR αAV, arterial-venous area ratio, AA
αA, arterial area, VA αV, venous area, A-PID PA, arterial perfusion intensity density, V-PID PV, venous perfusion intensity density, T-PID PT, total perfusion
intensity density, AV-PIDR PAV, arterial-venous perfusion intensity density ratio.
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are going to report these quantitative features in the whole image
for control, NoDR, and mild DR subjects to show their
importance. These quantitative features can also be measured
and reported in other regions of the OCTA images such as
parafovea and perifovea, as well as their quadrants, however, that
is beyond the scope of this paper.

Statistical analyses. For the statistical analysis of quantitative
features, due to the limited dataset size, we treated each eye as a
single observation for some subjects with images of both eyes. We
performed the Shapiro–Wilk test to check if quantitative features
are normally distributed. We used χ2 tests to assess the dis-
tribution of sex and hypertension among different groups. Age
and quality index distributions were compared using analysis of
variance (ANOVA). One-versus-one comparison of quantitative
features between different groups was performed by the unpaired
two-sided Student’s t test. We also applied the Bonferroni cor-
rection to compare the difference in mean values of the quanti-
tative features. P < 0.05 was considered statistically significant.

AVA-Net architecture. For fully automated AVA segmentation in
en face OCTA images, we propose the AVA-Net, a U-Net-like
architecture, illustrated in Fig. 2. The input of the AVA-Net is the
grayscale OCTA image. The OCTA image contains the informa-
tion of blood flow strength and vessel geometry features. Since
there are two classes for segmentation: arterial areas and venous
areas, this is a binary segmentation problem. So, the output of
AVA-Net is a single-channel grayscale image in which arterial
pixels are denoted by 1 and venous pixels are denoted by 0. In this
article, they are shown in blue and red colors for better demon-
stration. The overall design of the AVA-Net is composed of an
encoder to extract features from the image and a decoder to con-
struct the AVA map from the encoded features. The encoder
includes 5 encoder blocks to reduce the image resolution by down-
sampling. As shown in Fig. 2b, encoder blocks composed of two
3 × 3 convolution operations, 4 dilated convolution operations in
parallel with dilation rates from 2 to 5, a concatenation operation,
and a max-pooling operation with a pooling size of 2 × 2.

On the other hand, the decoder is composed of 5 decoder
blocks, followed by 2 CBR (Conv - Batch Normalization - ReLU)
blocks, and final convolutional operation with a sigmoid
activation function. As shown in Fig. 2b, CBR block is composed
of a 3 × 3 convolution operation, followed by a batch normal-
ization and a ReLU activation function. The decoder blocks are
composed of 2 CBR blocks, up-sampling, and concatenation
operation that concatenate generated features with features
coming from encoders blocks by skip connections. In all the five
levels, the features prior to the max-pooling operation in the
encoder blocks is transferred to the decoder blocks by skip
connections. These feature maps are then concatenated with the
output of the up-sampling operation in the decoder block, and
the concatenated feature map is propagated to the successive
layers. These skip connections allow the network to retrieve the
information lost by max-pooling operations. Details of the
different operations in the AVA-Net layers are presented in Fig. 2.

Loss function. In this study, the CNN was trained using IoU
loss30 or Jaccard loss to directly optimize the IoU score, the most
commonly used evaluation metric in segmentation31. For multi-
class segmentation, it is defined by

LIoU ¼ 1� ∑C
c¼1∑

N
i¼1g

c
i s
c
i

∑C
c¼1∑

N
i¼1ðgciþsci�gci s

c
i Þ

ð9Þ

where gci is the ground truth binary indicator of class label c of
voxel i, and sci is the corresponding predicted segmentation

probability. N is the number of voxels in the image and C is the
number of classes. Since we have two classes, this is a binary
segmentation problem. So, we have

LIoU ¼ 1� ∑N
i¼1gisi

∑N
i¼1ðgiþsi�gisiÞ

ð10Þ

Training process. AVA-Net architecture was trained using the
Adam optimizer with a learning rate of 0.0001 (β1= 0.9,
β2 ¼ 0:999, ϵ ¼ 10�7) to have a smooth learning curve for the
validation dataset. With the IoU loss function, mini-batch sizes of
28 were utilized for the training. The training process takes up to
5000 epochs when the model performance stops improving on
the validation dataset. One epoch is defined as the iteration over 3
training batches. To avoid overfitting, data augmentation meth-
ods are applied on the fly during training, including random
flipping along horizontal and vertical axes, random zooming,
random rotation, random image shifting, random shearing, ran-
dom brightness shifting. As retinal vessels in OCTA images have
diverse tree-like patterns and differing vessel diameters, and
because images can be taken from different locations of right and
left eyes with diverse quality, the above-mentioned data aug-
mentation methods could help improve the generalization cap-
ability of the CNN for segmenting unseen images. Since our data
is limited, the 5-fold cross-validation procedure is used for CNN
evaluation after shuffling the data based on the patient’s eye.
Therefore, in each fold, the network was trained with 80 percent
of the images, and evaluation was performed on the other
20 percent of the images.

The IoU and Dice coefficient metrics, also known as the
Jaccard Index and F1 Score, respectively, are mostly used in image
segmentation. Therefore, in addition to segmentation accuracy,
IoU and Dice coefficient were used as the evaluation metrics for
evaluating the AVA segmentation, by comparing the predicted
AVA maps with manually labeled ground truths.

The training was performed on a Windows 10 computer using
NVIDIA Quadro RTX 6000 Graphics Processing Units (GPU).
The CNN was trained and evaluated on Python (v3.9.6) using
Keras (2.6.0) with Tensorflow (v2.6.0) backend. Training every
fold of AVA-Net took about 10 h with the mentioned resources.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
AVA-Net performance. We performed 5-fold cross-validation on
the training dataset, using 80 percent of the images for training
and 20 percent of them for validating AVA-Net. Table 2 presents
the average and standard deviation of the IoU and Dice, as well as
accuracy for AVA-Net. In Fig. 3, the visual results of the AVA
segmentation achieved by AVA-Net for six (three control, one
mild, one moderate, and one severe samples) validation samples
in the training dataset are illustrated. Figure 3 presents OCTA
images, ground truth of AVA maps, predicted AVA maps, the
ground truth of OCTA-AV maps (GT-OCTA-AV maps), and
predicted OCTA-AV maps in the rows from top to bottom,
respectively. It can be concluded that the predicted AVA maps for
healthy and NPDR subjects are highly consistent with the ground
truth. That means AVA-Net is able to detect and classify arteries
and veins, and their corresponding areas. However, there are
some incorrect segmentations that are shown by yellow rectangles
in Fig. 3. The visual performance of AVA-Net for segmenting
representative OCTA images in the test dataset is presented in
Fig. 4.
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Quantitative analysis. Studying the test dataset with demo-
graphic details presented in Table 1, no statistically significant
differences were found between the different groups with regards
to age, quality index, and sex (ANOVA, p= 0.077, ANOVA,
p= 0.079, and χ2 test, p= 0.305). Furthermore, there was no
difference in hypertension across diabetes groups (χ2 test,
p= 0.92). Between the diabetic groups, there was a significant
difference in the duration of diabetes (Student’s t test, p= 0.019).
The diabetic patients in this study were not insulin dependent.

The AA, VA, AVAR, T-PID, A-PID, V-PID, and AV-PIDR in
the whole image for the test dataset are calculated as described in

section 2.3 using the AVA maps predicted by the AVA-Net and
OCTA-AV maps produced after that. Shapiro–Wilk test indicated
that all features were normally distributed. Thus, we performed
individual pairwise comparisons using an unpaired two-sided
Student’s t test. Significant differences between groups corre-
sponding to P < 0.05, P < 0.01, and P < 0.001 are denoted by *, **,
and ***, respectively. To reduce the occurrence of false positives
in multiple hypothesis testing, we applied a Bonferroni correction
as a conservative method for probability thresholding. Applying
the Bonferroni correction, the statistical significance of the P
value between the three groups was adjusted as P < 0.0167, and
significant differences are denoted by the † symbol. Figure 5
presents the boxplots of the AA, VA, and AVAR for control,
NoDR, and mild DR subjects in the whole image. Based on Eq.
(3), the summation of AA and VA is 100. Thus, an increase in AA
means a decrease in VA with the same value. Thus, the P values
related to AA and VA features are identical. We observed a 3.6%
increase in whole image AA for the mild DR group compared to

Fig. 2 AVA-Net architecture. a overview of the blocks in AVA-Net architecture. b the individual blocks that comprises AVA-Net. In this figure, Conv, f, s, d,
and nf stand for convolution operation, number of filters in the convolution, strides of the convolution, dilation rate of the convolution, and number of filters
specified for the corresponding block, respectively. OCTA optical coherence tomography angiography, AVA arterial-venous area, CBR Conv - Batch
Normalization – ReLU.

Table 2 Performance results of AVA-Net.

Mean (±std dev)

IoU (%) Dice (%) Accuracy (%)
78.02 (±0.54) 87.65 (±0.34) 86.33 (±0.20)
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the control group. While VA decreased by 4.0% for the mild DR
group compared to the control group. The AVAR analysis in
Fig. 5b further confirms the observation with an increase of 7.6%
for the mild DR group. The Bonferroni correction indicates that
none of these above-mentioned changes are significant.

The boxplots of the T-PID, A-PID, V-PID, and AV-PIDR for
control, NoDR, and mild DR groups in the whole image are
presented in Fig. 6. T-PID and A-PID respectively showed 6.1
and 7.2% decreases from control to mild DR groups but no
significant differences between control and NoDR eyes. We
observed a 7.4% decrease in V-PID for mild DR groups compared
to the NoDR group. Differential AV PID analysis reveals that the
A-PID decreases, but V-PID increases in NoDR subjects
compared to control subjects. Because of the opposite AV changes,
the relative AV-PIDR shown in Fig. 6b provides a sensitive metric
to differentiate control, NoDR, and mild DR groups from each
other. We observed 5.1 and 2.6% decreases in the whole image AV-
PIDR, respectively, for NoDR andmild DR groups compared to the
control group, and a 2.6% increase from NoDR to mild DR groups.
Based on the Bonferroni correction, changes in A-PID from control
to mild DR and changes in AV-PIDR from control to mild DR and

from NoDR to mild DR are significant. According to Bonferroni
correction, A-PID and AV-PIDR together can show significant
changes in all three pairs.

Discussion
Differential AV analysis has been demonstrated to be important
for evaluating diabetes, hypertension, strokes, cardiovascular
disease, and common retinopathies3. The addition of AV analysis
capabilities to clinical imaging devices would enhance the accu-
racy of disease detection and classification. The segmentation of
AV has been conducted using a variety of imaging modalities,
including fundus photography, OCT, and OCTA. Traditional
OCT and fundus images are limited in their ability to detect
microvascular abnormalities at capillary level. As a new OCT
modality, OCTA provides a noninvasive method of detecting
microvascular distortions associated with eye diseases with
capillary level resolution. Using feature extraction-based methods
and machine learning based approaches, all previous studies
exploring the AV classification or segmentation have been pri-
marily focused on the detection and segmentation of large vessels
as arteries or veins.

Fig. 3 Comparative illustration of the AVA segmentation performance achieved by AVA-Net trained on the training dataset. Each column shows a
different sample. Row 1 OCTA images. Row 2 Ground truth AVA maps. Row 3 Predicted AVA maps by AVA-Net. Row 4 GT-OCTA-AV maps generated by
multiplying the OCTA images by ground truth AVA maps. Row 5 predicted OCTA-AV maps generated by multiplying the OCTA images by predicted AVA
maps. Yellow rectangles indicate some areas that are segmented incorrectly. DR diabetic retinopathy, OCTA optical coherence tomography angiography,
AVA arterial-venous area, AV artery-vein, GT ground truth; Scale bar is 1 mm.
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In this study, we employed a deep learning network AVA-Net
for AVA segmentation in OCTA. By multiplying the OCTA
image by the AVA map generated by AVA-Net, we have the
OCTA-AV map that contains highly detailed vasculature maps of
the OCTA image, with separate red and blue channels for arterial
and venous areas. In other words, using this method, we can
segment all the vessels in the OCTA image up to the capillary
level as arterial and venous. By using the OCTA-AV map, all
OCTA-related features previously reported in the literature such
as VAD, vessel length density (VLD), vessel diameter index
(VDI), vessel tortuosity (VT), and branchpoint density (BD) can
be calculated separately for arterial and venous areas to check the
effectiveness of the AV analysis.

For fully automated AVA segmentation using OCTA images,
we have developed the AVA-Net, a U-Net-like architecture. U-
Net-like architectures are commonly used for biomedical image
segmentation because they produce reliable and highly accurate
results with small datasets. In AVA-Net, we employed encoder
blocks containing dilated convolutional operations connected to
decoder blocks. We used accuracy, Dice score, and IoU metrics to
assess the AVA-Net performance. The results of the cross-
validation study revealed the AVA-Net performed well in AVA
segmentation by achieving an accuracy of 86.33% and a mean
IOU of 78.02%, and a mean Dice score of 87.65% on the vali-
dation dataset. Qualitatively AVA-Net has a good AVA seg-
mentation performance on the validation and test dataset.

Fig. 4 The performance of the AVA-Net on representative samples in the test dataset. Each column shows a different sample. Row 1 OCTA images. Row
2 Predicted AVA maps by AVA-Net. Row 3 predicted OCTA-AV maps. DR diabetic retinopathy, NoDR diabetic patients without DR, OCTA optical
coherence tomography angiography, AVA arterial-venous area; Scale bar is 1 mm.

Fig. 5 Boxplot of area related quantitative features for control, NoDR, and mild DR groups. a boxplot of AA and VA. b boxplot of AVAR. *Significant at
P < 0.05. Each box indicates the interquartile range (top: the third quartile; bottom: the first quartile) with the whiskers extending to the most extreme
points and with a horizontal line and cross mark indicating the median and mean, respectively. The number of samples used for the analysis is NControl= 25,
NNoDR= 18 and Nmild= 21. AV artery-vein, AA arterial area, VA venous area, DR diabetic retinopathy, NoDR diabetic patients without DR.
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However, there are some areas of incorrect segmentation as
shown in Fig. 3 by yellow rectangles. AVA-Net performance can
be improved by using larger datasets collected from patients with
different diseases using different OCTA devices in different fields
of view.

The AVA maps generated by AVA-Net are used to define three
quantitative features, AA, VA, and AVAR, which are mathema-
tically related. These quantitative features were calculated for the
healthy control, NoDR, and mild DR groups. Our results indicate
that quantitative features are significantly different between the
control and mild DR groups. The mean AA value of healthy eyes
in the whole image is 52.6%. This is significantly increased in
mild DR eyes at 3.6%. The mean AVAR value for healthy eyes
increased from 1.12 to 1.20 in mild DR eyes.

For AV analysis of the vascular perfusion density in OCTA-AV
maps, four different quantitative features are also derived, named
T-PID, A-PID, V-PID, and AV-PIDR, which do not require any
thresholding method for binarizing the OCTA-AV maps.
According to Fig. 6, significant decreases in T-PID, A-PID, and
AV-PIDR were observed in mild DR eyes when compared with
healthy eyes. Compared to NoDR eyes, V-PID showed a sig-
nificant decrease in mild DR eyes. Compared to healthy eyes,
NoDR eyes showed no differences in T-PID as a quantitative
feature without differentiation of the AV areas, which is asso-
ciated with total vessels, but showed decreases in A-PID and
increases in V-PID. As a result of these opposite AV changes, the
AV-PIDR, which is the ratio of the A-PID to the V-PID, is a
sensitive quantitative feature to distinguish healthy, NoDR, and
mild DR eyes from each other. The effectiveness of differential
AV analysis can be seen here. Our results show that AV-PIDR of
the NoDR and mild DR groups decreased by 5.1 and 2.6%,
respectively, compared to the control group with a mean AV-
PIDR value of 0.944. We also observed a 2.6% increase from
NoDR to mild DR groups in the whole image AV-PIDR. Bon-
ferroni correction indicates significant changes in A-PID from
control to mild DR and in AV-PIDR from control to mild DR
and from NoDR to mild DR. The combination of A-PID and AV-
PIDR can provide supplementary information to each other and
demonstrate significant changes in all three pairs according to
Bonferroni correction. Therefore, we anticipate that ensemble
analysis of AVA and PID features will allow robust detection and
classification of DR and other eye diseases. A limitation of this
study is the limited dataset size, therefore for some subjects both
eyes were included in the statistical analysis of quantitative

features. There may be some correlation between right and left
eyes due to genetics and environmental factors.

Conclusions
A deep learning network AVA-Net has been developed for
robust AVA segmentation in OCTA images. The OCTA-AV
map, which preserves perfusion intensity information for
improved AV analysis, could be readily generated by multi-
plying the OCTA images by the AVA maps. Three area features,
i.e., AA, VA, and AVAR were derived from the AVA maps,
while four PID features, i.e., T-PID, A-PID, V-PID, and AV-
PIDR were derived from the OCTA-AV maps. The three area
features can reveal significant differences between the control
and mild DR but cannot separate NoDR from mild DR and
control groups. The PID features, T-PID and A-PID can dif-
ferentiate mild DR from control but cannot separate NoDR
from control and mild DR groups. V-PID can differentiate mild
DR from NoDR but cannot separate control from NoDR and
mild DR groups. In contrast, the AV-PIDR can disclose sig-
nificant differences among all three groups, i.e., control, NoDR,
and mild DR. According to Bonferroni correction, the combi-
nation of A-PID and AV-PIDR can demonstrate significant
differences among all three groups.

Data availability
The source data, i.e., the numerical results underlying the graphs and charts presented in
the main figures, is provided as Supplementary Data 1. Training and test dataset images
may be obtained from the corresponding author upon reasonable request.

Code availability
The deep learning architectures, AVA-Net, are publicly available on GitHub32.
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