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Abstract

Background The clinical course of COVID-19 patients ranges from asymptomatic infection,

via mild and moderate illness, to severe disease and even fatal outcome. Biomarkers which

enable an early prediction of the severity of COVID-19 progression, would be enormously

beneficial to guide patient care and early intervention prior to hospitalization.

Methods Here we describe the identification of plasma protein biomarkers using an antibody

microarray-based approach in order to predict a severe cause of a COVID-19 disease already

in an early phase of SARS-CoV-2 infection. To this end, plasma samples from two inde-

pendent cohorts were analyzed by antibody microarrays targeting up to 998 different

proteins.

Results In total, we identified 11 promising protein biomarker candidates to predict disease

severity during an early phase of COVID-19 infection coherently in both analyzed cohorts. A

set of four (S100A8/A9, TSP1, FINC, IFNL1), and two sets of three proteins (S100A8/A9,

TSP1, ERBB2 and S100A8/A9, TSP1, IFNL1) were selected using machine learning as multi-

marker panels with sufficient accuracy for the implementation in a prognostic test.

Conclusions Using these biomarkers, patients at high risk of developing a severe or critical

disease may be selected for treatment with specialized therapeutic options such as neu-

tralizing antibodies or antivirals. Early therapy through early stratification may not only have a

positive impact on the outcome of individual COVID-19 patients but could additionally

prevent hospitals from being overwhelmed in potential future pandemic situations.
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Plain language summary
We aimed to identify components of

the blood present during the early

phase of SARS-CoV-2 infection that

distinguish people who are likely to

develop severe symptoms of COVID-

19. Blood from people who later

developed a mild or moderate course

of disease were compared to blood

from people who later had a severe or

critical course of disease. Here, we

identified a combination of three

proteins that were present in the

blood of patients with COVID-19 who

later developed a severe or critical

disease. Identifying the presence of

these proteins in patients at an early

stage of infection could enable phy-

sicians to treat these patients early

on to avoid progression of the

disease.
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The outbreak of the coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was officially declared a global pandemic

on March 11, 2020 by the World Health Organization (WHO).
The first infection was reported by the end of December 2019 and
almost two years later, the WHO reported more than 260 million
confirmed cases of COVID-19, including 5.2 million deaths1. The
clinical course of the disease can range from asymptomatic
infection, mild and moderate disease, to severe and even critical
disease courses with a case-fatality rate of up to 30% in patients
older than 85 years2,3. The underlying factors causing the
remarkable clinical variation of disease course are subject to
intense investigation. While it is well-established that certain
predisposing conditions, above all high age and, secondly, certain
comorbidities4, are associated with an elevated risk for severe
COVID-19, clinical outcomes still vary widely within these
groups and it is not well understood which factors lead to an
adverse outcome5. The identification of sensitive and specific
prognostic biomarkers to predict the clinical trajectory is, there-
fore, crucial to guide clinical care and early intervention to ideally
avoid the necessity of critical care. Several studies have described
differential blood levels of various pro- or anti-inflammatory
cytokines, chemokines and other proteins in sera of severely ill
COVID-19 patients and suggested their use as prognostic mar-
kers for the outcome of SARS-CoV-2 infections or even as
potential therapeutic targets6–9. However, most previous studies
only report the analysis of a few or a single potential bio-
marker(s), which often lack accuracy for a clinical application.
While COVID-19 vaccines have shown to be remarkably pro-
tective against severe disease, insufficient global vaccine coverage,
waning immunity, and the emergence of new variants remain
challenges to prevention and underline the need for effective
COVID-19 treatment strategies. Immune-escape variants such as
the omicron variant, furthermore, render the majority of mono-
clonal antibodies currently used as treatment or post-exposure
prophylaxis in a wide array of patients at risk for severe COVID-
19 ineffective. Due to the shortage of effective therapies against
COVID-19, it is essential to select sensitive and specific bio-
markers that allow in the first days of the disease and prior to an
aggravation of the disease to identify those patients who are at the
highest risk of developing a severe or critical course of disease and
circumvent such a progression by an early treatment.

Here, we describe a study in which plasma levels of potential
biomarkers were measured on antibody microarrays at an early
phase of infection in COVID-19 patients which exhibited after-
wards either a mild to moderate or severe to critical course of
disease. Antibody microarrays are an analysis platform using
antibodies immobilized on a glass slide. Patient samples were
incubated on individual arrays with 1425 antibodies directed
against 998 proteins. We were able to detect significantly differ-
ential plasma levels for 11 biomarkers when comparing mild to
moderate and severe to critical patients during an early phase of
infection in two independent cohorts. A machine learning
approach revealed a combination of four biomarkers with the
highest sensitivity and specificity. Individual markers could be
validated by commercial ELISA assays. As the discovery approach
was already completely immune-based, the biomarker combina-
tions have the potential to be successfully translated into a clinical
diagnostic tool.

Materials & methods
Study design. After obtaining written informed consent, whole
blood samples from SARS-CoV-2 infected individuals, who had
been diagnosed by RT-PCR using a nasopharyngeal swab, were
collected at University Medical Center Hamburg-Eppendorf

(1st cohort) and the Department of Gastroenterology and Infec-
tious Diseases of University Hospital Heidelberg (2nd cohort) at
different timepoints after diagnosis. Both studies were conducted
according to the ethical requirements established by the
Declaration of Helsinki. The 1st study was approved by local
Ethics Committee of the Hamburg Medical Association (ethic
consent number PV7298), while the 2nd study was approved by
the local Ethics Committee of the Medical Faculty of Heidelberg
University Hospital (ethic consent number S-148/2020).

All samples from the 1st cohort were classified into three
phases of infection based on the onset of symptoms: acute (up to
nine days after symptom onset), intermediate (10–21 days after
symptom onset), and late (more than 21 days after symptom
onset). All samples analyzed from the 2nd cohort were collected
during the acute phase of infection.

Disease severity was classified according to the definition of the
WHO-China Joint Mission on Coronavirus Disease10, which is
commonly utilized as a classification, among others by the
Infectious Disease Society of America (IDSA) and the Robert
Koch Institute in Germany. Briefly, these categories are defined
as: mild= no sign of pneumonia; moderate= radiologic evidence
of pneumonia, blood oxygen saturation >93%, no supplemental
oxygen therapy; severe= supplemental oxygen therapy necessary;
critical= respiratory or multi-organ failure. Patient “a” of the 1st

cohort represented a borderline case, who presented a poor
condition with high fever, pneumonia and required hospitaliza-
tion, and whose disease course was judged as clinically severe as
described earlier11.

Microarray analysis. Sample labelling and incubation were per-
formed as previously described in detail12–14. In brief, plasma
samples from COVID-19 patients were labeled at an adjusted
protein concentration for two hours with the fluorescent dye
scioDye 2 (Sciomics, Neckargemünd, Germany). As reference
sample, a pool composed of all samples included in each sample
cohort was used and labeled with a second dye (scioDye 1). After
two hours, the labeling reaction was stopped, and the buffer
exchanged to Phosphate-Buffered Saline (PBS). For improved
assay robustness and differentiation power, each sample was
competitively incubated together with a common reference
sample on one microarray slide in a reference-based dual-color
approach as described in detail before15.

The 53 samples of the 1st cohort were analyzed on 53 scioCD
antibody microarrays (Sciomics) targeting 351 different proteins
by 517 antibodies (Supplementary Data 1). The 94 samples of the
2nd cohort were analyzed on antibody microarrays (Sciomics)
targeting 998 different proteins by 1425 antibodies (Supplemen-
tary Data 2), each in four replicates. All proteins that were
analyzed in the 1st cohort were also analyzed in the 2nd cohort.
Array surfaces were blocked with scioBlock (Sciomics) on a
Hybridization Station 4800 PRO (Tecan, Grödig, Austria) and the
samples were subsequently incubated competitively with the
reference sample using a dual-color approach. After incubation
for three hours, the slides were thoroughly washed with 1x
PBSTT (Phosphate-buffered saline containing Tween and
Triton), rinsed with 0.1x PBS as well as with water and
subsequently dried with nitrogen.

Data acquisition and analysis. Slide scanning was conducted
using a Powerscanner (Tecan, GmbH, Grödig, Austria) with
constant instrument laser power and photomultiplier settings.
Spot segmentation was performed with GenePix Pro 6.0 (Mole-
cular Devices, Union City, USA). The acquired raw data were
analyzed using the linear models for microarray data (limma
3.42.2) package of R-Bioconductor after uploading the median
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signal intensities. For normalization, a specialized invariant
Lowess method was applied16. For both cohorts, a multi-factorial
linear model was fitted using limma, integrating patient age, sex
and comorbidities next to the main factor. For the first cohort,
this main factor combined disease severity and phase, while for
the 2nd cohort, the main factor consisted only of disease severity
as the cohort exclusively consisted of acute phase samples. The
factors age and comorbidities were defined in a binary manner,
detailing age equal to or higher than 60 and presence of at least
one comorbidity, respectively. Differences between sample groups
were calculated based on the fitted group means generated by the
linear model and are presented as log-fold changes (logFC) cal-
culated for the basis 2.

Statistics and reproducibility. p values were obtained from
moderated two-sided t-tests based on empirical Bayes modera-
tion. All presented p values were adjusted for multiple testing by
controlling the false discovery rate according to Benjamini and
Hochberg. Proteins were defined as differentially abundant for |
logFC | > 0.5 and an adjusted p value <0.05. Descriptive data is
depicted by range, mean and standard deviation (SD).

The 1st cohort comprised a total of 53 samples, including 17
acute phase samples (14 mild/moderate, 3 severe/critical), 20
intermediate phase samples (13 mild/moderate, 7 severe/critical)
and 16 late phase samples (10 mild/moderate, 6 severe/critical),
while the 2nd cohort consisted of a total of 94 samples, including
47 matched pairs of mild/moderate and severe/critical samples.

Signal intensity measurements for each antibody and sample
were performed with four technical replicates spaced out across
each microarray. The average estimated inter-replicate correlation
was included into the statistical analysis.

Machine learning. Potential biomarker combinations were
determined via linear support vector machine (linSVM) models
using the SVC implementation of scikit-learn package (0.24.2) in
python (3.8.10)17.

Before the machine learning process, a pre-selection of single
markers was performed based on two criteria. Firstly, the 11
markers which displayed discriminative power based on logFC
and p values obtained from the linear models of both cohorts
were included. Secondly, the top 10 markers according to a
preliminary linSVM coefficient criterion as detailed in Supple-
mentary Table 1 were included for the pre-selection, resulting in a
total of 21 different antibodies detecting 20 protein biomarker
candidates.

From this marker set, all possible combinations of two, three
and four biomarkers were tested to differentiate between patients
with a critical/severe or mild/moderate course of the disease. Due
to the limited size of the data set for machine learning
applications, the performance of a linSVM model for a marker
combination was gauged using ROC AUC estimation in a Leave-
One-Out (LOO) format18. For the calculation of ROC curves,
instead of binary predictions, class probabilities for the class
“critical-severe”, as generated from the predict_proba method of
the SVC implementation, were predicted for each LOO split. This
resulted in one set of predictions per biomarker combination,
which was subsequently compared with the samples’ real labels to
calculate the ROC AUC. In order to keep the trained models
similar across the LOO folds, models were trained with a static
cost parameter C= 1. The robustness of the linSVM models
across the LOO folds was assessed by the coefficient of variation
(CV) of the linear coefficients fitted for each fold. For the
combination S100A8/A9 and CRP the CV was 12.6%, for all other
individual markers and combination the CVs were in the range of
2–6% indicating robust models within the LOO process.

Validation of biomarkers. Concentrations of S100A8/A9 in
human plasma samples were measured using the Human
S100A8/S100A9 Heterodimer DuoSet Enzyme-linked Immuno-
sorbent Assay (ELISA) (R&D Systems) according to the manu-
facturer’s protocol. Plasma samples were diluted 1:1000 in PBS
containing 1% BSA in order to allow a measurement within the
detection limits of the ELISA.

CRP was analyzed in plasma samples at the accredited central
laboratory of the Heidelberg university hospital on a Siemens
ADVIA Chemistry XPT System (CRP reagent kit 00829585)
according to the manufacturer’s instructions.

Results
Study population 1st cohort. We analyzed 53 plasma samples
collected longitudinally from 16 COVID-19 patients. The cohort
included eight men and women, respectively, aged between 23
and 85 years (mean: 47 years, SD: 18 years). Since it has been
observed that the course of COVID-19 can deteriorate several
days after the onset of first symptoms, we decided to divide the
disease course into three periods based on days since the onset of
first symptoms: an acute (<10 days) an intermediate (between 10
and 21 days) and a convalescent/late stage (>21 days), for which
we included 17, 20 and 16 samples, respectively (see Fig. 1 for
patient/sample characteristics). In all individuals, the day of first
symptom onset was between February 25th and April 30th, 2020,
and the cohort, therefore, mirrors an early time of the pandemic,
when specific therapies against COVID-19 had not been

Fig. 1 Patient and sample characteristics of the 1st cohort. Characteristics
(age, sex) of individuals included in this study and timepoints of sample
collection after symptom onset. Letters a–p indicate the individual patients.
Male patients are depicted in blue, female patients in red. Circles represent
samples of mild or moderate (MM) patients, squares those of critical or
severe (CS) patients. Acute phase: 14MM and 3 CS samples; intermediate
phase: 13MM and 7 CS samples; late phase: 10 and 6 samples. Dotted
vertical lines indicate 10 days and 21 days after onset of symptoms.
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established. Immuno-modulating or -suppressive conditions and
therapies were recorded for all participants to be able to assess
whether these conditions/treatments influenced our findings. Of
the 16 individuals, 2 were pregnant (patients e and h), one
individual received 7.5 mg prednisolone (patient g), another one
6 mg dexamethasone daily due to underlying comorbidities
(patient o) and one had received tocilizumab as a compassionate
use treatment of COVID-19 (j). The remaining 11/16 patients did
not have any immuno-modulating or -suppressive condition and
did not receive any immunosuppressive therapy.

Discovery of disease severity markers within the 1st cohort. In
order to identify differentially abundant proteins, human plasma
samples from COVID-19 patients with either a mild or moderate
(MM) or a critical or severe (CS) disease course from different dis-
ease phases (acute, intermediate, late) were analyzed on antibody
microarrays targeting 351 different proteins via 517 antibodies.

100 proteins showed a significant differential abundance in CS
compared to MM COVID-19 patients, from which 74 were
higher and 26 lower abundant, while 417 antibodies did not show
a significant difference. When classifying the samples additionally
into different phases, we recorded 58 differentially abundant
proteins in the acute phase (Fig. 2a), 62 in the intermediate
(Fig. 2b) and 65 in the late phase (Fig. 2c). There is a broad
overlap between differentially abundant proteins in CS compared
to MM patients in all three phases of infections, especially
between acute and intermediate phase (Fig. 2d). However, there
are proteins that only show differential abundance during a
specific phase of infection.

The 100 differentially abundant proteins were identified based
on fitted group means generated by a linear model and thereby
adjusting means for age, sex and comorbidities. This allows the
identification of biomarkers associated specifically with severity
and phase of disease and minimizes the chance of identifying
biomarkers associated with any of these confounders.

All analyzed proteins with their respective logFC and p values
in CS and MM patients in the three disease phases are listed in
Supplementary Data 1. For each protein, the Uniprot Entry-
Name and ID is listed together with the logFC and adjusted
p values as illustrated in Fig. 2. Out of these 100 proteins, 14 top
candidates were identified discriminating acute CS and acute MM
patients at a |logFC | > 1.0 and a significance level of adj.p < 0.05
(Fig. 3). Additionally, CD4 exhibited a high significance in
intermediate phase CS patients compared to intermediate phase
MM patients (Fig. 2b). Most of the selected top candidates were
able to discriminate between patients with a CS and MM course
of disease in the acute phase within this sample set (Fig. 3).
Differences in protein levels observed in the acute phase vanished
for a high number of targets within the course of disease,
especially for proteins higher abundant in CS (Fig. 3). A certain
heterogeneity was observed in the patient cohort in this analysis
and is illustrated by the following examples. The stripchart for
CD4 illustrates that this difference is mainly driven by two
samples which both belong to the same patient. Similarly,
differences in ICAM1 abundance might be strongly influenced by
a single CS sample with extremely high ICAM1 levels, while
differences in TNR8 levels can be explained by low levels in one
CS sample and additionally high levels in all samples from one
MM patient in all three phases of the infection. These examples
highlight that some of the differences observed within the
comparatively small 1st cohort might be driven by certain patients
and therefore only be present in individuals or a subpopulation.
To validate the identified targets and select biomarkers, that are
not only present in individuals or subpopulations, a second larger
and more heterogeneous cohort was analyzed.

Study population 2nd cohort – predicting a severe COVID-19
disease. In order to assess specifically the potential to predict a
severe COVID-19 disease already at an early stage of the disease,
a second cohort was included in the study. The cohort consisted
of 94 plasma samples from COVID-19 patients during the acute
phase of disease (<10 days after the onset of first symptoms). At
this stage of the disease the patients had no severe symptoms and
were not in need for intensive care or hospitalisations. From these
94 patients, 47 patients later had a critical or severe course of
disease, while 47 age and sex matched patients had a mild to
moderate disease course only. The characteristics of these samples
are summarized in Table 1. All patients survived the infection and
did not receive COVID-19 specific medication prior to sample
collection.

Analysis of markers for prediction of a severe course of a
COVID-19 disease within the 2nd cohort. To identify additional
protein markers and verify the findings from the initial cohort,
the 94 plasma samples from the 2nd cohort were analyzed on
antibody microarrays targeting 998 different proteins by 1425
antibodies.

In this cohort, 51 proteins were differentially abundant in
patients with a CS or MM course of the disease, from which 46
were higher abundant and five lower abundant, while 947
proteins did not show a significant difference (Fig. 4). Proteins
positively associated with a severe course of the COVID-19
disease (positive logFC), such as CRP, S100A8/A9 (detected by
two different antibodies), FGF2 and SLAF1, while FINC, TSP1,
MMP2, IL5 and S10AD (negative logFC) were less abundant in
plasma of patients with a severe or critical course of the disease.
All analyzed proteins with their respective abundance in CS and
MM patients are listed in Supplementary Data 2. For each
protein, the Uniprot Entry-Name and ID is listed together with
the logFC and adjusted p values.

For a mechanistic understanding of proteins altered in a CS
course of the disease, the differential proteins were subjected to a
protein interaction analysis using the STRING database (Supple-
mentary Fig. 1)19. The interaction pointed specifically to a
regulation of many S100 family proteins such as S100A8/A9
and S100B in combination with HMBG1. Furthermore, the
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway can be seen as one of the central axes in
Supplementary Fig. 1.

Biomarkers predictive for disease severity markers in both
study cohorts. From the 14 top candidates identified within the
1st cohort, the two proteins FGF2 and I13R2 were also differen-
tially abundant in the 2nd cohort at a significance cutoff of adj.p-
value <0.05. In total, eleven biomarkers were identified as pre-
dictive biomarkers for a severe COVID-19 disease in both study
cohorts (Fig. 5, Table 2).

For the analysis of the 2nd cohort, microarrays targeting a
broader range of proteins were used in order to assess additional
biomarker candidates such as CRP. All biomarkers analyzed

Table 1 Sample characteristics of the 2nd cohort.

critical/severe mild/moderate

Number of samples 47 47
Mean age (SD) 60.2 (13.4) 60.2 (12.7)
Age range 23–80 30–82
male/female 66%/34% 66%/34%
mean days after onset of
symptoms (SD)

6.3 (2.1) 6.0 (2.3)
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within the 1st cohort were also included in the analysis of the 2nd

cohort. Within this set, we identified the following five additional
biomarkers as top candidates with a |logFC | > 1.0 and a
significance level of adj.p < 0.05: CRP, FINC, TSP1, CALB1 and
ANGP2. In addition, the two biomarkers MUC1 and CCL3
reached the significance threshold in the 2nd larger cohort only.

ELISA reproduces findings of antibody array-based discovery.
To prove transferability of our findings to other assay platforms,
the array data for CRP of the larger study cohort were compared

with clinical CRP data obtained at sample collection. In addition,
the biomarker candidate S100A8/A9 exhibiting the second
strongest discriminative power was chosen for such inter-assay
comparison using a commercially available ELISA kit. Antibody
array data and ELISA data exhibited a Pearson correlation coef-
ficient of 0.905 for S100A8/A (Fig. 6c) and of 0.955 for CRP
(Fig. 6d).

Also, in terms of discrimination power, the performance of the
antibody array platform could be reproduced by ELISA. By
applying a cutoff of 1.45 µg/ml for S100A8/A9 measured by
ELISA, a specificity of 83% and a sensitivity of 89% were

Fig. 2 Venn diagram and volcano plots illustrating the number, degree and significance of differential protein expression in the 1st cohort. The volcano
plots visualize the p values (adjusted for multiple testing) and corresponding log-fold changes (logFC) of the identified protein biomarker candidates. A
significance level of adj. p value= 0.05 is indicated as a horizontal red line. Absolute logFC cutoffs of |logFC | > 0.5 are indicated as vertical lines. 53 plasma
samples from 16 COVID-19 patients were analyzed and divided into an acute (a) an intermediate (b) and a late stage (c), for which we included 18, 20 and
16 samples, respectively. Proteins with a positive logFC had a higher abundance in CS samples, proteins with a negative value in MM samples. d: Venn
diagram listing the differential proteins and their numbers in the respective phases. Green numbers and protein IDs indicate proteins more abundant in CS
patients and red numbers and IDs proteins with higher abundance in MM patients.
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achieved. A cut off of 14.5 µg/ml for CRP measured by ELISA
resulted in a specificity of 73% and a sensitivity of 89%.

Biomarker combinations selected via machine learning for
accurate disease severity prediction. In order to assess the
diagnostic accuracy of the two top protein biomarker candidates,
receiver operating characteristic (ROC) curves were generated for
both the antibody array derived data and the ELISA data. For
CRP, the area under the curve (AUC) was 0.837 based on the
antibody array data and 0.866 for the ELISA data (Fig. 7). The
biomarker S100A8/A9 can predict a severe or critical COVID-19
disease at an AUC of 0.827 based on the antibody array data and
0.886 based on the ELISA data (Fig. 7). At a sensitivity of 90%, a
specificity of 59.6% can be reached for CRP and of 48.9% for
S100A8/A9 based on the antibody array data. ROC curves for the
two proteins are in good coherence for ELISA and antibody array
data with the ELISA data slightly outperforming the data derived
from highly multiplex antibody arrays (Fig. 7).

In order to further improve the diagnostic accuracy, especially
in terms of sensitivity, potential biomarker combinations were
determined via machine learning models. As linear support
vector machines (linSVM) are easily interpretable and can be
easily transferred into a diagnostic assay format, in our approach
we focused and described models selected based on linSVMs
rather than tree-based models like XGBoost.

From the many evaluated linSVM signatures, we present the
ten models yielding the highest performance based on their AUC
for signature lengths of two, three and four proteins, respectively,
within Supplementary Table 2 and highlighted four of these

models within Table 3 and Fig. 7. The identified models were
compared to a combination of the top single protein biomarker
candidates S100A8/A9 and CRP as well as their combination. The
combination of the two biomarkers revealed an AUC of 0.830 and
a specificity of 46.8% at a sensitivity of 90% and thereby a similar
performance as the individual markers. For other combinations
selected from the linSVM models, the overall performance and
especially the sensitivity could be improved. A combination of
S100A8/A9 with the protein TSP1 yielded an AUC of 0.872,
thereby showing the highest AUC of all marker panels consisting
of two biomarkers. If ERBB2 is added to this marker panel, the
AUC is further improved to 0.898. A higher AUC of 0.913 was
reached with one other panel of the three biomarkers S100A8/A9,
TSP1 and IFNL1. A further addition of FINC to this marker panel
increases the AUC to 0.928 with a slightly lower specificity at a
sensitivity of 95% as compared to the two selected three protein
biomarker panels. For a detection of a severe disease course using
the four marker panels highlighted in Fig. 7, a sensitivity of 90%
could be reached at specificities of 78.7%, 80.9%, 78.7% and
83.0%, respectively (Table 3), clearly outperforming all individual
protein markers as well as the combination of S100A8/A9 and
CRP.

Discussion
The presented study aimed to find sensitive and specific bio-
markers to identify patients at high risk of developing a severe or
critical course of COVID-19 within an early phase of infection
and prior to the onset of severe symptoms. Antibody microarray
analysis of samples, taken during the acute phase of COVID-19

Fig. 3 Stripcharts representing individual array values for all proteins selected as top candidates in the 1st cohort. Each protein is measured by four
replicate spots per array and is represented by their mean. The y-axis illustrates the log2 ratio of the individual samples and a reference sample while the
x-axis is divided based on clinical course of disease of the patient (CS and MM) as well as phase of infection. 53 plasma samples from 16 COVID-19
patients were analyzed and divided into an acute (A) an intermediate (M) and a late stage (L), for which we included 18, 20 and 16 samples, respectively.
Acute CS and MM samples are highlighted in red and blue respectively. Diamonds indicate arithmetic sample group means. Whiskers indicate one
standard deviation, calculated based on arithmetic means. Empty circles indicate the group coefficients fitted by the linear model with additional factors
sex, age and comorbidities, which were used for logFC and p value calculation.
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infection, within the 1st cohort revealed 58 proteins with an
altered abundance in patients which later developed a critical or
severe (CS) disease. Analysis of samples from COVID-19 patients
from the 2nd cohort on antibody microarrays revealed 51 proteins
as biomarkers to predict a critical or severe (CS) course of a
COVID-19 disease, 46 of these were higher and seven lower
abundant. All samples analyzed in the 2nd cohort were collected
during the acute phase of infection as we specifically aimed to
identify biomarkers in an early phase of infection since they may
help to identify patients at risk for a severe disease course at an
early disease stage and thereby allow for stratification of patients,
inform optimal treatment and monitoring strategies and ulti-
mately improve disease outcome. While a panel of laboratory
indicators of severe disease have been identified, such as creati-
nine levels, neutrophil counts, C-reactive protein (CRP)20 and
D-dimer levels21, these values represent rather unspecific markers
of an increased inflammatory state and/or organ dysfunction. In
employing a broader approach, the detailed description of dif-
ferentially abundant protein levels in MM vs. CS patients using
high-content antibody arrays as described here does provide a
more complete picture.

Some of the biomarkers elevated in the acute phase of CS
patients that have been identified within both analyzed cohorts
have already been associated with COVID-19 disease progression
in previous studies. S100A8/A9, also known as calprotectin, is a
heterodimer involved in neutrophil-related inflammatory pro-
cesses. Several studies have shown a correlation between S100A8/
A9 and disease severity of COVID-19 with increased S100A8/A9

levels being associated with poor clinical outcomes such as sig-
nificantly reduced survival time9,22–26. Plasma levels of fibroblast
growth factor 2 (FGF2) were previously reported to be associated
with severe disease and Intensive Care Unit (ICU) admission27.
In addition, FGF2 was found to be up-regulated in lungs of
patients who died from COVID-1928. Zhang et al. discovered two
novel severe-disease-specific monocyte subsets as potential pre-
dictors and therapeutic targets for severe COVID-1929.
Amphiregulin (AREG), a protein identified within this study, is
expressed by these subsets of monocytes, which can explain
increased AREG levels in CS patients. It has been shown that an
increase in IL-2 can be associated with a high viral load and a
severe course of the disease resulting from a hyperinflammatory
state30. We have furthermore found that levels of insulin-like
growth factor 1 receptor (IGF1R) were elevated in acute CS
within the 1st cohort and IGF1 levels were elevated within the 2nd

cohort. This is of particular interest since the IGF1/ IGF1R
pathway has been implicated in immune regulation. Consistent
with our observations, higher levels of IGF1R have been identified
in severe and critical COVID-19 using RNAseq in a recently
published pre-print31. Since elevated plasma levels of IGF1 and
IGF1R have been observed in early acute respiratory distress
syndrome (ARDS)32, it has been suggested that IGF1 may be a
potential target in the treatment of COVID-19-related ARDS33.

We have identified the checkpoint inhibitor OX-2 membrane
glycoprotein (OX2G)/CD200 to be less abundant in CS patients.
OX2G negatively regulates the immune response in order to
prevent excessive inflammation34. The inhibition of OX2G was
described to have a positive effect on coronavirus infection by
restoring interferon production and increasing virus clearance35.
The cytokine CSF1 (macrophage colony-stimulating factor) plays
an important role in the proliferation and differentiation of
macrophages and monocytes and promotes the release of
proinflammatory chemokines36. CSF1 was already identified as a
biomarker involved in the main biological processes leading to
severe COVID-19 manifestations and was assumed to reflect
levels of lung inflammation37. Another biomarker identified
within our study to be elevated in severe COVID-19, but not
reported before, is ALCAM (Activated Leukocyte Cell Adhesion
Molecule, CD166), which plays a role in transmigration of
monocytes across pulmonary endothelium and in T-cell
activation38. The ALCAM pathway has been shown to be up-
regulated in patients with severe asthma39. Recently, Rébillard
et al. suggested that ALCAM could be used as a therapeutic target
in COVID-19 outcome due to its biological function and asso-
ciation with respiratory diseases40. Within the 1st cohort CD28, a
co-stimulatory molecule on T-cells required for T-cell activation,
was increased in CS patients during the acute phase of infection.
These levels decreased again during the intermediate and late
stage of CS patients in the 1st cohort. Decreased levels of CD28 on
CD4+ and CD8+ T-cells in severe COVID-19 have previously
been described and it has been suggested that this observation
may be due the initial state of hyperinflammation and -activation
in severe COVID-19 and a resulting state of immune
exhaustion41, which is consistent with the observations made in
our study.

The low number of patients included in the 1st cohort is a
limitation that needs to be acknowledged. We have analyzed a
total of 53 samples from 16 different patients of which only five
showed a severe or critical course of disease. Still, as outlined
before also the findings from the 1st cohort correlate quite well
with earlier reports on biomarker candidates to predict COVID-
19 progression. As age and certain comorbidities are a risk factor
for a critical or severe COVID-19 disease, we controlled for these
aspects in the definition of the 2nd study cohort. In this cohort not
all marker candidates from the first cohort could be confirmed.

Fig. 4 Protein biomarker candidates from the 2nd cohort to predict a
severe or critical disease in acute phase. Plasma samples from 94 COVID-
19 patients during the acute phase of disease were analyzed on antibody
microarrays to identify differentially abundant proteins between patients
with either a mild or moderate (MM, n= 47) or a critical or severe (CS,
n= 47) disease course. The volcano plot visualizes the p values and
corresponding log-fold changes (logFC). A significance level of adj. p
value= 0.05 is indicated as a horizontal red line. Absolute logFC cutoffs of
|logFC | > 0.5 are indicated as vertical lines. Proteins with a positive logFC
had a higher abundance in CS samples, proteins with a negative value in
MM samples. Two different antibodies against S10A8/A9 were included on
the microarray, with both antibodies showing significant differences
between CS and MM samples.
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Fig. 5 Biomarkers to predict a severe / critical disease in both study cohorts. The y-axis illustrates log2(sample / reference) values after subtracting the
group mean of the respective MM samples per cohort/protein, thus setting the mean value of MM samples as a baseline. Within the 1st cohort 18 samples
(MM= 17; CS= 3) were analyzed, while 94 sample (MM= 47; CS= 47) were analyzed within the 2nd cohort. The x-axis is divided based on clinical
course of disease of the patient (CS and MM). Only acute CS and MM samples are shown. Diamonds indicate arithmetic sample group means. Whiskers
indicate one standard deviation, calculated based on the arithmetic means. Empty circles indicate the group coefficients fitted by the linear model with
additional factors sex, age and comorbidities, which were used for logFC and p value calculation.
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This might be due to the fact that some differential protein levels
have been driven by individuals. Another explanation might be
that these proteins are connected to age or certain comorbidities
and thereby not exhibit a significance in the 2nd cohort control-
ling for these potential cofounding factors with a case-control
design.

All identified proteins might be promising biomarkers to detect
individuals at a high risk for developing severe COVID-19 during
an early phase of infection. Up-regulated protein levels in CS
patients, observed in the acute phase, showed decreasing abun-
dance during the intermediate and late phase for some targets
when analyzing longitudinal samples from the 1st cohort. Since all
CS patients within this study survived COVID-19, these markers,
as well as markers identified in the intermediate phase of the
disease might be promising markers for therapy monitoring.

For the analysis of the 2nd cohort, antibody microarrays tar-
geting a broader range of proteins were used in order to gain
more comprehensive insights into plasma protein profiles con-
nected with the onset of severe COVID-19. A protein interaction
analysis of the biomarkers to predict a critical or severe course of
the disease, revealed the JAK/STAT pathway as one of the central
axes in the protein interaction network. A JAK/STAT activation is
frequently seen in infectious diseases and a sign for immune cell
activation and proliferation. Drugs targeting the JAK/STAT
pathway are currently under consideration as treatment options
in COVID-1942. In addition, the protein interaction analysis
revealed a regulation of many S100 family proteins such as
S100A8/A9 and S100B in combination with HMBG1. Other
mechanisms and pathways identified in the protein interaction
network of the biomarker candidates are part of a systemic
response to a severe viral infection. This systemic response

comprises the activation of many immune cell types as well as
complex regulations of growth factors and soluble inflammatory
mediators, including IL15, I13R2 (HGNC: IL13RA2), CD47 and
TSP1 (HGNC: THBS1).

As a response protein to inflammation, CRP was identified in
the 2nd cohort as one of the top individual markers Although
CRP is a rather unspecific inflammation marker, it has widely
been published as a prognostic biomarker for COVID-19
progression43, and we were able to reproduce these published
data by our array platform as well as by an ELISA performed in a
routine clinical diagnostics laboratory. Scotto et al. showed in
correlation with our findings that MUC1 (Mucin-1) is a reliable
indicator of pulmonary function, reported an association with
poorer outcome and death in COVID-19 patients and therefore
suggested MUC1 as a sensitive parameter to stratify the risk of
severe respiratory failure and death in COVID-19 patients44. As
in our study, enhanced expression of CCL345,46 and ANGP247

were also described as predictive factors in differentiating
COVID-19 patients and determining severity of disease.

Individual biomarker candidates with the highest log-fold
change in the 2nd cohort exhibited also the highest diagnostic
accuracy with an AUC of 0.83. Still, this performance might not be
sensitive enough, especially in a larger study population with a
higher number of mild and moderate cases. Therefore, machine
learning approaches were applied to select ideal marker combina-
tions for improved AUC as well as sensitivity. To this end, linear as
well as decision tree approaches were tested. While tree-based
approaches based on XGBoost had a slightly better performance,
we decided to focus on linear approaches based on linSVM, as
linear models can be more easily reproduced for the setup of a
multiplex assay aiming at in vitro diagnostic certification.

Table 2 Most important identified biomarkers within at least one of both cohorts.

Target Uniprot Name Uniprot ID 1st cohort 2nd cohort

logFC adj.p-val logFC adj.p-val

common targets S100A8/A9 S10A8_HUMAN/S10A9_HUMAN P05109/P06702 1.59 0.013 1.71 6.4 × 10−14

FGF2 FGF2_HUMAN P09038 2.43 5.8 × 10−6 1.31 1.7 × 10−5

SLAF1 SLAF1_HUMAN Q13291 2.41 3.7 × 10−4 1.79 2.1 × 10−5

CD47 CD47_HUMAN Q08722 1.75 5.3 × 10−4 1.25 2.4 × 10−4

CXCR5 CXCR5_HUMAN P32302 2.94 3.7 × 10−4 1.25 9.6 × 10−4

I13R2 I13R2_HUMAN Q14627 1.64 3.5 × 10−6 0.99 2.7 × 10−3

CD81 CD81_HUMAN P01889 1.54 0.038 0.82 2.7 × 10−3

AREG AREG_HUMAN P31997 1.84 8.6 × 10−3 1.30 3.5 × 10−3

TNR16 TNR16_HUMAN P08138 2.40 1.0 × 10−4 1.09 8.9 × 10−3

IL2 IL2_HUMAN P60568 2.72 3.4 × 10−4 1.03 0.010
BTLA BTLA_HUMAN Q7Z6A9 1.27* 1.6 × 10−3* 1.15 0.016

important targets 1st cohort I13R1 I13R1_HUMAN P78552 2.30 2.3 × 10−7 ns ns
IL15 IL15_HUMAN P40933 2.86 1.6 × 10−6 ns ns
CD166 CD166_HUMAN Q13740 2.50 1.9 × 10−6 ns ns
IGKC IGKC_HUMAN P01834 −1.74 1.9 × 10−6 ns ns
CSF1 CSF_HUMAN P09603 2.74 1.6 × 10−5 ns ns
CD28 CD28_HUMAN P10747 3.12 2.3 × 10−5 ns ns
IGF1R IGF1R_HUMAN P08069 2.69 5.9 × 10−5 ns ns
OX2G OX2G_HUMAN P41217 −2.17 6.0 × 10−5 ns ns
CCL19 CCL19_HUMAN Q99731 −1.93 6.9 × 10−4 ns ns

important targets 2nd cohort CRP CRP_HUMAN P02741 na na 2.79 4.3 × 10-15

FINC FINC_HUMAN P02751 na na -0.98 3.7 × 10-5

TSP1 TSP1_HUMAN P07996 na na -0.55 1.7 × 10-4

MUC1 MUC1_HUMAN P15941 ns ns 1.74 1.0 × 10-4

CALB1 CALB1_HUMAN P05937 na na 1.37 8.5 × 10-4

CCL3 CCL3_HUMAN P10147 ns ns 1.49 2.7 × 10-3

ANGP2 ANGP2_HUMAN O15123 na na 1.28 6.3 × 10-3

*BTLA logFC and p-values (p-val.) for the 1st cohort are from the intermediate phase of infection.
ns not significant.
na not available; target was not analyzed in this cohort.
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Due to the larger sample size of the 2nd cohort and the
divergence in selection of samples in the two studies – matched
mild/moderate and severe/critical cases in respect to age, gender,
and days after onset of symptoms only in the 2nd cohort -, the 2nd

cohort was used for the linSVM approach to select biomarker
combinations discriminating between patients with CS and MM
disease courses at a higher accuracy than individual protein
biomarkers. A combination of the four proteins S100A8/9, FINC,
IFNL1 and TSP1 (AUC= 0.928) as well as of the three proteins
S100A8/A9, TSP1 and ERBB2 (AUC= 0.898) but also of the two
protein biomarkers S100A8/A9 and TSP1 (AUC= 0.872) out-
performed individual biomarkers such as S100A8/A9 (AUC:
0.827) or CRP (AUC: 0.837) clearly. FINC and TSP1 levels were
not measured within the 1st cohort but were significantly higher
in MM patients as compared to CS patients within the 2nd cohort.
From the proteins with specific importance in the biomarker

signatures identified by machine learning, FINC (Fibronectin) has
not yet been published as a biomarker for severe COVID-19,
however it has been identified in inflammation and sepsis as a
negative acute-phase protein, with a low level of FINC indicating
a poor prognosis for a patient48. For Thrombospondin-1 (TSP1)
we did not identify any report as a COVID-19 disease severity
biomarker, however TSP1 protein levels were shown to be up-
regulated in the serum of infected asymptomatic individuals as
compared to negative individuals49. In lung cancer patients, lower
TSP1 levels are associated with a higher lymph node involvement
in lung cancer50. IFNL1 levels were slightly higher in MM
patients as compared to CS patients within the 2nd cohort.
Although differences in IFNL1 were not significant as an indi-
vidual biomarker, IFNL1 was selected by the linear SVM
approach selecting combinations of biomarkers to improve sen-
sitivity and specificity as compared to a single biomarker. Lambda
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Fig. 6 Validation of microarray data. Plasma samples from 94 COVID-19 patients during the acute phase of disease (2nd cohort) were analyzed by ELISA,
to validate differentially abundant proteins between patients with either a mild or moderate (MM, n= 47) or a critical or severe (CS, n= 47) disease
course. Stripcharts representing individual S100A8/A9 (a) and CRP (b) ELISA measurements. The y-axis displays the log2 of the measured protein
concentration while the x-axis is divided based on the later clinical course of disease of the patient (CS and MM). Triangles and whiskers indicate means
and one standard deviation of the sample groups with critical/severe or mild/moderate course of the disease respectively. Possible cut-offs with a
sensitivity of 89% are indicated by dotted grey lines. c, d Scatter plots demonstrate a high correlation between discovery antibody microarray data (y-axis)
and ELISA validation (x-axis) with Pearson’s r > 0.9.
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IFNs such as INFL1 are produced as a response to a viral infec-
tion and act in mucosal barriers, e.g. in the respiratory tract. The
concentrations of lambda IFNs induced in the serum of non-ICU
COVID-19 patients were shown to be higher than in ICU
COVID-19 patients51. Additionally, it was shown that IFNL1
restricts SARS-CoV-2 replication in cellular models of viral
infection when administered preventively and/or
therapeutically52. In MERS-CoV, lambda IFN greatly limits viral
replication, and may be a key cytokine for better therapeutic
outcomes against MERS-CoV infection in the respiratory tract53.

All machine learning approaches were performed using data
based on log-ratios of sample and reference as derived from the
antibody array platform. Such multiplex antibody array data

proved very valuable for machine learning, as, contrary to many
other platforms, there is no issue of missing data.

As demonstrated for the two individual top biomarker candi-
dates S100A8/A9 and CRP, the array data could be very well
correlated (r > 0.9) and reproduced by commercial ELISA. In a
direct comparison by a side-to-side ROC analysis of array and
ELISA data, the ROC curves for S100A8/9 and CRP originating
from the ELISA data slightly outperformed the antibody array
data. These differences are likely a result of a combination of
factors, such as a more complex experimental layout (reference-
based), different laboratory procedures, in particular adjustment
of bulk protein concentrations for plasma samples, and data
normalization on the side of the array data.

Nonetheless, these findings indicate a very good transferability
of the results of this study to routine platforms for protein ana-
lysis with a low risk of false-positive findings. This direct trans-
ferability of results to other immune based platforms used in
routine diagnostics such as ELISA is a major advantage of anti-
body array-based proteomics. Additional advantages of the
antibody microarray platform include the highly simultaneous
screening of several hundred (1st cohort) and more than a
thousand (2nd cohort) proteins from less than fifty microliters of
plasma sample in a comparably high throughput, and sensitivity
levels enabling a robust cytokine profiling from complex samples
without the need of an intensive sample depletion and fractio-
nation as required in mass spectrometry-based approaches.

Based on the Sciomics antibody microarray platform we were
able to identify plasma protein biomarkers to predict a severe
COVID-19 disease, selected protein biomarker combinations
with an accuracy suitable for a clinical application and validated

Fig. 7 Estimation of diagnostic accuracy for disease severity prediction. For the individual protein biomarkers S100A8/A9 and CRP, ROC curves of ELISA
data as well as coherent multiplex antibody array data were aligned. Marker combinations of 2–4 proteins were selected from linSVM models, which
outperform the individual biomarker candidates and exhibit a high accuracy with an AUC of up to 0.928. Area under the ROC curve (AUC) is presented for
each biomarker or combination.

Table 3 Specificities at given sensitivities for selected
individual biomarkers and biomarker combinations.

Biomarker/Biomarker
Combination

AUC Specificity at a Sensitivity of

95% 90% 85% 80%

S100A8/A9 0.827 19.1% 48.9% 74.5% 76.6%
CRP 0.837 34.0% 59.6% 70.2% 76.6%
S100A8/A9+ CRP 0.830 46.8% 46.8% 74.5% 76.6%
S100A8/A9+ TSP1 0.872 70.2% 78.7% 78.7% 80.9%
S100A8/
A9+ TSP1+ IFNL1

0.913 80.9% 80.9% 83.0% 83.0%

S100A8/
A9+ TSP1+ ERBB2

0.898 74.5% 78.7% 85.1% 85.1%

S100A8/
A9+ TSP1+ FINC+ IFNL1

0.928 63.8% 83.0% 87.2% 87.2%
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two of the individual protein biomarkers by commercial assays.
The identified proteins are promising biomarkers to predict dis-
ease severity during an early phase of SARS-CoV-2 infection. The
evidence that is available to date suggests that these markers are
connected to mechanisms involved in disease progression to
severe COVID-19 as well as in other infectious disease models.
Individually or collectively, these markers can identify patients at
high risk of developing a severe and critical course of disease and
can inform treatment and clinical care choices.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The authors declare that all logFC data, generated during the microarray analysis are
available within the paper and its supplementary information files (Supplementary
Data 1 and Supplementary Data 2). Raw red and green signal intensities and the resulting
normalised M-values of both cohorts are deposited at ArrayExpress (1st cohort: E-
MTAB-12779 Discovery and systematic assessment of early biomarkers that predict
progression to severe COVID-19 disease - 1st cohort; 2nd cohort: E-MTAB-12777
Discovery and systematic assessment of early biomarkers that predict progression to
severe COVID-19 disease - 2nd cohort). Data for reproducing the figures is available
within the supplementary data 3.

Code availability
Microarray raw image files were processed using GenePix Pro 6.0 and statistical analysis
was performed using the limma package (3.42.2) in R (3.6.3) as outlined in detail in a
publication describing the data analysis routines for antibody microarray analyses16.
Machine learning procedures were performed using the scikit-learn package (0.24.2) in
python (3.8.10) according to the methodology described in the Materials & Methods
section. The code was published and can be accessed via the following DOI: 10.5281/
zenodo.775989518.
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