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Prediction of ciprofloxacin resistance in
hospitalized patients using machine learning
Igor Mintz 1,2, Michal Chowers3,4 & Uri Obolski 1,2✉

Abstract

Background Ciprofloxacin is a widely used antibiotic that has lost efficiency due to extensive

resistance. We developed machine learning (ML) models that predict the probability of

ciprofloxacin resistance in hospitalized patients.

Methods Data were collected from electronic records of hospitalized patients with positive

bacterial cultures, during 2016-2019. Susceptibility results to ciprofloxacin (n= 10,053 cul-

tures) were obtained for Escherichia coli, Klebsiella pneumoniae, Morganella morganii, Pseudomonas

aeruginosa, Proteus mirabilis and Staphylococcus aureus. An ensemble model, combining several

base models, was developed to predict ciprofloxacin resistant cultures, either with (gnostic) or

without (agnostic) information on the infecting bacterial species.

Results The ensemble models’ predictions are well-calibrated, and yield ROC-AUCs (area

under the receiver operating characteristic curve) of 0.737 (95%CI 0.715–0.758) and 0.837

(95%CI 0.821–0.854) on independent test-sets for the agnostic and gnostic datasets,

respectively. Shapley additive explanations analysis identifies that influential variables are

related to resistance of previous infections, where patients arrived from (hospital, nursing

home, etc.), and recent resistance frequencies in the hospital. A decision curve analysis

reveals that implementing our models can be beneficial in a wide range of cost-benefits

considerations of ciprofloxacin administration.

Conclusions This study develops ML models to predict ciprofloxacin resistance in hospita-

lized patients. The models achieve high predictive ability, are well calibrated, have substantial

net-benefit across a wide range of conditions, and rely on predictors consistent with the

literature. This is a further step on the way to inclusion of ML decision support systems into

clinical practice.
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Plain language summary
Ciprofloxacin is an antibiotic com-

monly used to treat various infec-

tions. Due to the frequent use of

ciprofloxacin, bacteria have devel-

oped high rates of resistance to it,

which means they continue to grow,

reducing the effectiveness of treat-

ment. The aim of this study was to

develop computer code to predict

ciprofloxacin resistance in hospita-

lized patients. We used data from

medical records and tests of whether

particular bacteria could be killed by

antibiotics from a large hospital in

Israel to develop the computer code.

The computational model accurately

predicted resistance. This model

could enable antibiotic treatment to

be more appropriately targeted to

patients that would benefit from it

and reduce the amount of bacteria

resistant to ciprofloxacin.
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Antimicrobial resistance (AMR) has developed into a global
public health crisis. AMR often emerges rapidly in bacterial
populations, and the effectiveness of newly introduced

antibiotics can substantially drop after a few years of clinical use1,2.
In settings of high resistance levels, such as treatment of hospita-
lized patients, it may become challenging to find empiric antibiotic
treatments which will be effective, while minimizing collateral
resistance3. Such inappropriate empirical treatment is associated
with the prevalence of AMR4. Despite guidelines5, literature
on collateral damage of antibiotics5,6, and stewardship initiatives7,
the frequency of bug-drug mismatch in empiric treatment often
remains high4,8.

A notable example of a broadly used antibiotic, with increasing
concerns about its resistance frequencies, is ciprofloxacin.
Ciprofloxacin is a fluoroquinolone antibiotic, which has been
widely used since the early 2000s and is currently on the World
Health Organization’s List of Essential Medicines9. Ciprofloxacin
is effective against various gram-negative bacteria, and to a lesser
extent gram-positive bacteria, and is used in the treatment of
urinary tract, respiratory tract, bone and joint, intra-abdominal,
and other infections10,11. Hence, ciprofloxacin has been the drug
of choice for many infections both in in- and out-patient settings.
High consumption rates over decades inevitably increased resis-
tance to the drug12–14, with an additional indirect effect on non-
consumers15, impeding effective therapy16. However, reversion to
high levels of sensitivity to quinolones is rapid upon decrease in
quinolone consumption17. Therefore, minimizing unnecessary
ciprofloxacin use can have substantial public health impact.

The use of machine learning (ML) in the context of AMR has
been rapidly increasing with the availability of electronic medical
records (EMRs) and development of new algorithms. ML models
are potentially nearing the point where they can support clinicians’
decisions of empiric therapy, by providing rapid predictions of
resistance18,19. Hence, constant improvement of the methodology
and outcomes of such models is of high importance. In the context
of ciprofloxacin, prediction models have been scarce and limited to
community-acquired urinary tract infections20, only to intensive
care units21, specific site of infection22, or to specific subsets of
patients23.

In this study, we developed an ensemble ML model that pre-
dicts resistance to ciprofloxacin based on hospitalized patients’
EMRs. Importantly, we include as variables relevant frequencies
of resistance within the hospital, and not solely the examined
patient’s EMR. Our models are applied to two settings: assuming
that the infecting bacterial species is unknown (a bacteria-
agnostic dataset) or known (the bacteria-gnostic dataset), with
resulting test-set AUC values of 0.737 (95%CI 0.715–0.758) and
0.837 (95%CI 0.821–0.854).

Furthermore, explainability methods are used to analyze
important predictors of resistance in our ML models.

Methods
Data. Data were retrieved from Meir Medical Center, a hospital in
Israel which serves approximately 600,000 residents. EMRs of
patients who had positive bacterial cultures that were tested for
ciprofloxacin susceptibility between the years 2016-2019 were
retrieved. The data contained information regarding patients’
demographics, functional status, previous antibiotics usage and
previous hospitalization within the previous year, bacterial patho-
gen, and susceptibility results. For gram-negative bacteria in urine
or wound culture, VITEK 2 (bioMerieux, Durham, NC) was used.
For all isolates from blood or for gram-positive bacteria, in urine,
wounds, or blood cultures, disk diffusion with CLSI breakpoints
was used. Bacterial cultures demonstrating intermediate resistance
results were regarded as resistant.

Additional features related to previous infections with resistant
bacteria, previous antibiotic usage, and previous hospitalizations
were engineered from the patients’ EMRs. The final dataset
contained 10,053 susceptibility test results of 5540 patients and 73
variables (see Supplementary Data 1). These data were used to
create two data sets: bacteria gnostic (the whole data) and bacteria
agnostic (without 20 features related to the bacteria). The train-test
split was performed based on calendar time, rather than randomly.
This minimizes chances of “data-leakage”, where training on future
observations holds information on past observations. Furthermore,
such a split emulates a real-world scenario where the model can be
trained up to a certain point and then used in the clinic from that
point onwards, and is considered a form of external validation24–27.
Each dataset was divided into a training set (75% of all samples)
and a test set (25% of all samples), based on the date the culture was
taken (Fig. 1). These datasets are mutually exclusive - all the
presented results were obtained when training the models solely on
the training set, and testing them on the independent test set.

Machine learning algorithms. We used an ensemble of several
ML algorithms, which we term ‘base learners’: LASSO penalized
logistic regression28, random forest29, gradient-boosted trees29, and
neural networks29. The base learners’ hyperparameters were opti-
mized using 200 random searches30 with a five-fold, time series
cross-validation. To improve the predictions of the four base
learners, a stacking technique was applied. In this technique, the
predictions of the base learners are given as inputs to a second-level
learning algorithm (super learner). The super learner was a logistic
regression algorithm trained to optimize the predictions31. We
adopted a process described elsewhere32 to train the super learner
on time series data (Figure S1 in the Supplementary Material). This
resulted in a single ensemble model whose output is the predicted
probability of the culture result to have resistance to ciprofloxacin.
The tuned hyperparameters are shown in Supplementary Data 2.
Model performance was evaluated using the area under the receiver
operating characteristic curve (ROC-AUC) metric. Confidence
intervals (CI) were calculated using 5,000 bootstrap samples of the
test-set data. Model agnostic approximation of the Shapley additive
explanations (SHAP) was performed with “kernel SHAP”33,
employing 300 background samples from the training data and
calculating the SHAP values of the entire test set.

Decision curve analysis. A decision (also known as a utility)
curve analysis, which is increasingly recognized as valuable in
clinical predictive modeling26, was performed using the predic-
tions of our ensemble model on the test-set. A decision curve is a
graphical representation of the trade-offs between the benefits
and costs of a particular treatment or intervention, when admi-
nistered according to a prognostic algorithm. It is used to evaluate
the overall utility of the algorithm by considering both the
magnitude of the benefits and costs of no-treatment and redun-
dant treatment, and the likelihood of these results based on
prevalence of the outcome and the algorithms’ prediction abil-
ities. In such an analysis, the standardized net benefit (sNB) of a
decision is defined by the following equation:34,35

sNB ¼ TPR� FPR
1� f res
f res

pt
1� pt

ð1Þ

where TPR and FPR are the true- and false-positive rates,
respectively; pt is a threshold probability; and f res is the frequency
of resistant infections. In our case, pt is the threshold probability
above which a decision maker (i.e., clinician) is willing to act as if
the infection is resistant to ciprofloxacin. This implies that the
cost of falsely deciding that an infection is susceptible to cipro-
floxacin is pt=ð1� ptÞ fold the benefit of correctly deciding it is
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susceptible to ciprofloxacin. Hence pt=ð1� ptÞ is also termed the
cost-benefit ratio. For example, assume clinicians will not treat an
infection with ciprofloxacin when they know that the probability
of ciprofloxacin resistance is above 0.2, but will treat them with
ciprofloxacin otherwise. The clinicians are hence implicitly will-
ing to inefficiently treat one patient with a ciprofloxacin resistant
infection for every four patients with susceptible infections,
yielding a cost-benefit ratio of 1:4.

The sNB of the model merges all the above-mentioned
parameters into a single number for each threshold, and hence
produces a curve. This curve is compared to two simple decision
strategies: assuming that every infection is resistant (all resistant)
and that no infection is resistant (all susceptible). The sNB can reach
a maximum value of 1, equivalent to assuming that all resistant and
susceptible cases are treated correctly (TPR= 1 and FPR= 0).

Analyses were performed with Python 3.736, using the following
packages: Numpy 1.20.337, Pandas 1.3.538 and Scikit-learn 1.0.139

for data processing; Scikit-learn, XGBoost 1.5.040, and Tensorflow
2.4.141 for modeling; Matplotlib 3.5.042 for plotting; and SHAP
0.40.043 for variable influence.

Ethics approval. The study was approved by the Institutional
Review Board (Helsinki) Committee of Meir Medical Center.

Since this was a retrospective study, using archived medical
records, an exemption from informed consent was granted by the
Helsinki Committee.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
We trained four base learners, and an ensemble model composed of
these base learners, to predict ciprofloxacin resistance for six bac-
terial species. The demographics and basic clinical characteristics
corresponding to the cultures’ patients are shown in Supplementary
Data 3. We note that K.pneumoniae and M.morganii had a higher
proportion of resistant samples in the test set, which potentially may
harm predictions. Regardless, our algorithms were able to generalize
successfully and achieve high ROC-AUC scores.

ROC-AUC scores and calibration plots were calculated for all the
base learners (Fig. 2a, b). The ensemble consistently outperformed
all base learners, on both datasets, achieving high ROC-AUC
scores. For the bacteria-agnostic dataset, the ROC-AUC scores
were 0.716 for the neural network, 0.736 for the logistic regression
(LASSO), 0.719 for the random forest, 0.729 for the XGBoost and

Fig. 1 Ciprofloxacin resistance time-trends stratified by bacterial species. Points connected by solid lines are the average monthly ciprofloxacin resistance
frequencies. The dotted horizontal lines represent the average resistance in the training and test sets, which are separated by the black vertical lines.
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0.737 (95% CI 0.715-0.758) for the ensemble. On the bacteria-
gnostic dataset the scores were 0.82 for the neural network, 0.835
for the LASSO, 0.812 for the random forest, 0.832 for the XGBoost
and 0.837 (95% CI 0.821–0.854) for the ensemble. Furthermore,
our ensemble models were well-calibrated (Fig. 2c, d).

In an effort to improve the ensemble’s transparency and gain a
better comprehension of the variables influencing its predictions,
we used Kernel SHAP. This method estimates the contribution of
each variable to the model’s prediction by approximating their
SHAP values33. These SHAP values allow us to understand the
magnitude and direction of influence of variables, which implies
variable importance (Fig. 3).

For the agnostic dataset, the five most influential variables in
the bacteria agnostic dataset, as measured by the mean absolute
SHAP values (Fig. 3a), were: previous resistance to ciprofloxacin
in the past 60 days, whether the patient arrived from an insti-
tution, recent resistance to any antibiotic in same type of units
(e.g., internal medicine or orthopedic units), previous resistance
to ciprofloxacin during the previous 61–180 days, and recent
resistance to any antibiotic in the hospital. Analogously, the five
most influential variables in the bacteria gnostic dataset were
(Fig. 3b): average resistance of the same bacterial species to any
antibiotic in the past 30 days, across the hospital; the number of
previous fluoroquinolone resistant infections the patient had in

the past 60 days; whether the bacterial species was P. aeruginosa;
and the number of non-ciprofloxacin antibiotics that the same
bacterial species had resistance to in the past 60 days, in the same
patient. In both agnostic and gnostic settings, higher values of the
influential variables consistently yielded positive influence on the
ensemble’s prediction, as can be seen by the swarm plots of the
SHAP values (Fig. 3). This is simply the result of our coding of
the binary variables (i.e., deciding which variable levels are set to
zero or one) as risk factors.

Finally, we have performed a decision curve analysis (see
Methods). Figure 4 shows that relying on predictions of our
models can be at least as beneficial as assuming that every
infection is resistant to ciprofloxacin, or assuming that every
infection is sensitive to ciprofloxacin, for all cost-benefit ratios.

Discussion
In this study, we developed two ensemble ML models to predict
resistance to ciprofloxacin of hospitalized patients’ infections. The
first model was trained on the bacteria agnostic dataset, i.e., without
any knowledge of the infecting bacterial species. This represents the
most common situation before the start of antibiotic treatment.
The second ensemble was trained on the bacteria gnostic dataset,
i.e., with primary information of the infecting bacterial species.

Fig. 2 ROC curves and calibration plots for bacteria-agnostic and bacteria-gnostic datasets. a ROC curve for bacteria-agnostic dataset, b ROC curve for
bacteria-gnostic dataset c calibration plot for bacteria-agnostic dataset, d calibration plot for bacteria-gnostic dataset. ROC-AUC results of each model,
on the test set, are presented within a and b. The colors represent different algorithms, where the black bold lines are the results of the ensemble model.
Data points presented on the calibration plots are aggregated by deciles of predicted probability.
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Both models achieved high ROC-AUC metrics on an independent
test set: 0.737 (95%CI 0.715–0.758) and 0.837 (95%CI 0.821–0.854)
for the agnostic and gnostic datasets, respectively, and were well
calibrated. Moreover, a decision curve analysis revealed that
implementing our models can be beneficial in a wide range of cost-
benefit considerations of withholding vs prescribing ciprofloxacin.

Our ML models include several innovative components in the
field of AMR prediction. First, we use a super learner that is trained
to effectively combine the outputs of several base learners. This
increases our final ROC-AUC by up to 0.025 with respect to the
base-learners. Second, we incorporate variables representing recent

and local resistant patterns within the hospital, in addition to a
specific patient’s EMR. Consequently, and despite the limited ability
to compare such results between different settings, our models
achieve high predictive abilities relative to previous studies20,21.
Importantly, our models perform well on a very heterogeneous
dataset, comprising various bacterial species, sample sources and
multiple departments of the hospital. For example, Feretzakis
et al.21 predicted ciprofloxacin resistance using data from a single
internal medicine department, conditioned on the sample’s Gram
stain result, and reached an ROC-AUC of 0.72621. Yelin et al.20

predicted ciprofloxacin resistance only in outpatients, strictly using

Fig. 3 SHAP values of the ensemble model for the five most influential variables in the agnostic and gnostic datasets. agnostic (a), gnostic (b). The
absolute SHAP values are presented in the left column. A swarm plot is presented in the right column, wherein colors (from blue to red) correspond to
variable values (from low to high), whereas the influence of those variables on the log-OR of predictions is given on the x-axis. Previous resistance to
ciprofloxacin 60—whether the patient had a ciprofloxacin resistant infection in the past 60 days. Resistance to any antibiotic in similar units - past 30 days
moving average of resistance to any antibiotic in the same type of units (orthopedic, gynecology etc.). Previous resistance to ciprofloxacin 61-180—
whether the patient had a ciprofloxacin resistant infection in the 61-180 days prior to drawing the culture. Resistance to any antibiotics in hospital—past
30 days moving average of resistance to any antibiotic in the hospital. Resistance of the same bacterial species to any antibiotic - past 30 days moving
average across the hospital. Resistance of other species to fluoroquinolones - the past 60 days, in the same patient. Non-ciprofloxacin resistance—number
of non-ciprofloxacin antibiotics that the same bacterial species was resistant to in the last 60 days, in the same patient.

Fig. 4 agnostic and gnostic decision curves. agnostic (a), gnostic (b). The standardized net benefit is plotted against the threshold probability and cost-
benefit ratio of deciding that an infection is resistant to ciprofloxacin. Curves of the benefit when assuming all infections are susceptible (dashed horizontal
line), all infections are resistant (black curve), and relying on the ensemble model predictions (red curve) are plotted. Positive differences in standardized
net benefit of the model predictions vs the all resistant and all susceptible curves are shaded in red.
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urine samples, and limited to three bacterial species, reaching a
ROC-AUC of 0.8320. Other studies either did not calculate ROC-
AUC23,44 or used cultures derived from a single sample source22,23,
a single bacterial species44, or a single hospital unit45.

An additional advantage of our ensemble modeling approach is
built-in model calibration. Due to the logistic transformation the
single-model outputs undergo, we are able to provide an output
of well-calibrated probabilities of resistance. Prescribing anti-
biotics forces the clinician to make a compromise between
patient’s care and population-level consequences46. Hence, pro-
viding clinicians with unbiased probabilities of resistance can
facilitate incorporation of other considerations into their decision.
However, we note that continuous outputs from antibiotic pre-
scription decision-support systems have been suggested to pro-
mote over-prescription of antibiotics, and hence decisions on
output forms should be made with caution47.

Our models’ predictions were analyzed using SHAP values,
which can aid in assessing the influence of different covariates on
predictions when applying complex ML models48. We note that
SHAP values contain inherent flaws49 in approximating the
impact of variables on predictions, and certainly do not aim to
estimate causal effects. Despite these drawbacks, SHAP values can
be useful for validating model outcomes against prior knowledge
of risk factors and increase models’ transparency. This can in turn
facilitate increasing clinicians’ trust in using ML decision support
systems in their practice50.

The results of our SHAP analyses are indeed consistent with
the literature. Highly influential variables on the ensemble
models’ predictions were related to previous infections containing
resistant bacteria, either to ciprofloxacin or other antibiotics.
Previous resistance to ciprofloxacin is an obvious risk factor for
current resistance20,51,52. However, the importance of previous
resistance to other antibiotics may be explained by cross-
resistance53–55, or confounding by the patients’ exposure to
resistant bacteria or to antibiotics. Patients’ origin (home, another
hospital, nursing home, medical clinic, or other) had substantial
influence on predictions and was also found to be an important
variable by others22,56. This is a known risk factor, as antibiotics
are administered more frequently in medical facilities and nursing
homes, leading to high selection for resistance57. Local resistance
frequencies, which we introduced into the data as moving
averages of resistance frequencies, were also found to be highly
influential on prediction. This is consistent with previous research
and clinical use of local antibiograms, representing the suscept-
ibility patterns of different bacteria58. Furthermore, our moving
average of resistance frequencies is potentially more sensitive to
resistance trends than yearly or monthly antibiograms. In the
gnostic model, P. aeruginosa was selected as an influential vari-
able. This stems from the binary encoding of the bacterial species,
which defined the reference species as E. coli. Since P. aeruginosa
was the second-most common bacterial species in the dataset, and
was less resistant than E. coli (Supplementary Data 3), it was
determined to be influential in reducing the predicted probability
of a resistant infection. Finally, age was not deemed by our
models as a highly important variable for ciprofloxacin resistance,
in contrast to previous ML research 20 and classic retrospective
studies51,52. This could potentially be attributed to the relatively
old population in our study, especially when compared to studies
on outpatients, which contain more heterogeneous cohorts.

Our study has several limitations. First, our dataset lacks
relevant community-related patient information, such as antibiotic
consumption in the community57, and antibiotic consumption
in the patients’ surroundings, including neighborhoods15

and households59. Our models can be easily extended to accom-
modate these covariates, which will likely further improve the
models’ predictive abilities. Second, our models are not necessarily

immediately generalizable to other settings, or even the same
setting, in different time periods. Variations in patients’ demo-
graphics, antibiotic consumption, and the dynamic nature of AMR
may lead to variation in risk factors over space and time60,61. For
example, as we mention above, our data has under-representation
of younger patients. This may be manifested in our model and
needs to be taken in consideration when predicting resistance in
young patients. Retraining of the models on site-specific data will
likely be required to fine-tune predictions in different settings.
However, the rates of ciprofloxacin resistance and patient covari-
ates in our dataset are comparable with those of hospitalized
patients in other developed countries62. We therefore expect a
reasonable degree of consistency in our results, if our models would
have been developed on a dataset from comparable settings.

Conclusions
The models developed in this study represent a further step on
the way to inclusion of ML decision support systems into clinical
practice. Improvement of such models depends on advances in
algorithm development, specific feature engineering, and the
augmentation of the quantity and quality of EMR data. As we
have shown, modern ML models can achieve high prediction
while autonomously imparting high influence to risk factors that
are known to be clinically relevant to AMR. Hopefully, future
studies can further leverage the presented models and the vast
EMR data available to improve prediction of AMR and conse-
quently reduce antibiotic misuse.

Data availability
Raw data is proprietary but can be made available upon reasonable request from the
authors: The data pertains to the patient’s electronic medical records. These are private
and cannot be shared without approval from Meir Medical Center’s IRB. Upon request,
the authors and the individuals interested in accessing the data can write a formal request
to the aforementioned IRB and seek its approval.

For the source data used to plot the resistance trends (Fig. 1), see Supplementary
Data 4. For the source data used to plot the ROC curves, calibration and net benefit
(Figs. 2 and 4) see Supplementary Data 5. For the source data used to plot SHAP (Fig. 3)
see Supplementary Data 6.

Code availability
The code is available at http://github.com/igormintz/cipro63.
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