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Abstract

Background Risk for COVID-19 positivity and hospitalization due to diverse environmental

and sociodemographic factors may change as the pandemic progresses.

Methods We investigated the association of 360 exposures sampled before COVID-19

outcomes for participants in the UK Biobank, including 9268 and 38,837 non-overlapping

participants, sampled at July 17, 2020 and February 2, 2021, respectively. The 360 exposures

included clinical biomarkers (e.g., BMI), health indicators (e.g., doctor-diagnosed diabetes),

and environmental/behavioral variables (e.g., air pollution) measured 10–14 years before the

COVID-19 time periods.

Results Here we show, for example, “participant having son and/or daughter in household”

was associated with an increase in incidence from 20% to 32% (risk difference of 12%)

between timepoints. Furthermore, we find age to be increasingly associated with COVID-19

positivity over time from Risk Ratio [RR] (per 10-year age increase) of 0.81 to 0.6 (hospi-

talization RR from 1.18 to 2.63, respectively).

Conclusions Our data-driven approach demonstrates that time of pandemic plays a role in

identifying risk factors associated with positivity and hospitalization.
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Plain language summary
Social, demographic, and environ-

mental factors have been shown to

impact whether a person becomes

infected following SARS-CoV-2

exposure. However, it is unclear

whether the impact of different fac-

tors has changed as the pandemic

has progressed. Here we analyze 360

factors and whether they are asso-

ciated with the proportion of people

being found to be infected with

SARS-CoV-2 across two periods of

time in the UK. Overall, we found that

different risk factors were associated

with testing positive for SARS-CoV-2

infection early in the pandemic com-

pared to later in the pandemic. These

results highlight that public health

priorities should be adjusted as a

consequence of changing risk and

susceptibility to infection as the

pandemic progresses.
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Observational studies of COVID-19 have implicated age,
sex, and sociodemographic, clinical, and environmental
inequalities1,2. Most of this literature, however, does not

consider or contextualize association sizes among the vast array
of potential risk factors or take advantage of the large number of
variables available in current-day biobank-scale studies, poten-
tially missing the fuller picture of COVID-19 susceptibility. Sec-
ondly, association sizes and their strength may change due to
time of sampling of COVID-19. Time of sampling may be an
important parameter as, for example, certain factors may confer
greater or lesser risk for COVID-19 related outcomes (e.g.,
COVID-19 positive test, COVID-19 hospitalization) as time
progresses with newer COVID-19 variants. In fact, some studies
have analyzed certain subsets of risk factors over the course of the
pandemic and found associations that change over time. Roso-
Llorach et al. investigated age, sex, smoking status, socioeconomic
status and comorbidity burden (using the Charlson comorbidity
index3) in association with COVID-19 hospitalization and
mortality-related outcomes (e.g., 30-day mortality [dying within
the 30 days following admission due to COVID-19], transfer to
intensive care unit) in Catalonia, Spain, during February 2020-21.
Roso-Llorach et al. assessed the differences in mortality and
clinical outcomes across four successive waves and found a
notable increase in the proportion of socioeconomically-deprived
patients being hospitalized due to COVID-19 after the first wave3.

Here, to identify robust candidate observational risk factors, we
perform a data-driven search for 360 correlates of COVID-19
positivity and complication across multiple time points in the
pandemic (July 17, 2020 and February 2, 2021) inspired by
“environment-wide association studies” (EWASs) in participants
of the UK Biobank to identify how risk factors change during two
different key time periods in the pandemic. Use of the EWASs
can help to identify variables in large databases for prioritization
of potential correlates between modifiable and non-modifiable
behavior, environmental, and phenotypic factors associated with
an outcome4,5, that may or not be investigated in a study that
investigates a handful of variables at a time6–10. Second, we probe
the variability of associations due to study design and model
choice by performing the “vibration of effects” analysis11 for 13 of
the top exposures identified from our analysis and compare this
variation due to model selection with time of data collection.
Overall, we found that different risk factors were associated with
testing positive for SARS-CoV-2 infection early in the pandemic
(e.g., frequency of shift work) compared to later (e.g., household-
related factors such as presence of son and/or daughter in
household) in the pandemic and age playing a more prominent
role over time.

Methods
Study population. The UK Biobank cohort is a prospective
cohort including over 500,000 participants of ages 40–69 during
recruitment from 2006–201012. Differences between the UK
Biobank cohort individuals and the general UK population were
studied by Fry et al. in order to better understand sampling
“uncertainty”13. Their study suggested that nonparticipants are
more likely to be male, younger, and live in more socio-
economically deprived areas than UK Biobank participants13.
Information regarding how the UK Biobank data is maintained
and validated can be found at https://biobank.ndph.ox.ac.uk/
~bbdatan/Data_cleaning_overall_doc_showcase_v1.pdf.

We analyzed two non-overlapping subsets of the UK Biobank
[UKB] cohort (total n= 502,628 participants) for which we had
data pertaining to COVID-19 testing for tests administered until
July 17, 2020 and tests administered between July 18, 2020 and
February 2, 2021. COVID-19 testing in the UK was carried out in

two major phases (Pillar I and Pillar II) during the time period we
considered. The first phase (Pillar I) prioritized individuals with
health complications and healthcare workers. We excluded
participants whose ethnicity was not known, yielding samples
of 9268 and 38,837 participants, respectively. The National
Research Ethics Service Committee North West Multi-Centre
Haydock has approved the UKB cohort research and written
informed consent to participate in the study was provided by all
participants14. Approval for the use of this data was approved by
the UK Biobank (project ID: 22881). The Harvard internal review
board (IRB) deemed the research as non-human subjects research
(IRB: IRB16-2145). Formal consent was obtained by the UK
Biobank (https://biobank.ctsu.ox.ac.uk/ukb/ukb/docs/Consent.
pdf).

COVID-19 outcomes. In our investigation, we analyze two major
COVID-19-related outcomes in UKB participants, COVID-19
test positivity, determined with microbiological (reverse
transcriptase-polymerase chain reaction [RT-PCR]) testing14)
and hospitalization due to COVID-19. We defined the outcome
COVID-19 test positivity as the presence of at least one positive
test result for a participant.

Exposures prior to COVID-19 testing. We investigated the
association of 360 “exposures” that included (a) clinical and
diagnostic biomarkers of chronic disease and infection, (b)
“environmental” factors, and (c) self-reported, doctor-diagnosed
health and disease indicators with COVID-19 positivity and
hospitalization. We use data measured during baseline visits
10–14 years (2006–2010) before the COVID-19 time periods.

The 63 real-valued biomarkers spanned five categories
included adiposity and body characteristics (4 biomarkers, e.g.,
body mass index), blood count (23 biomarkers, e.g., white blood
cell count), blood biochemistry (30 biomarkers, e.g., alkaline
phosphatase), cardiovascular function (3 biomarkers, e.g., dia-
stolic blood pressure), and lung function (3 biomarkers, e.g.,
forced vital capacity). Further, we use data measured during
baseline visits (2006–2010). We performed rank-based inverse
normal transformation (INT) to compare their associations
across different models. We performed INT transformation using
the RNOmni package (rankNorm function) with the offset
parameter set to 0.5.15

Second, we investigated the association of 283 environmental
factors in 14 categories (e.g., smoking, estimated nutrients
consumed yesterday, infectious antigens) with COVID-19
positivity and hospitalization. We averaged the quantitative
environmental factors (that fell under the estimated nutrients
consumed yesterday [23 exposures] and infectious antigens [25
exposures] categories) over measurements from multiple
instances or visits. For environmental factors that did not have
many observations in subsequent instances, we used only the data
from the baseline visit (first instance of measurement collected
during 2006–2010) (e.g., environmental factors from the
estimated nutrients yesterday category). We also performed
INT-transformation of these factors (similar to the transforma-
tion of biomarkers) (as was also suggested by Millard et al.16). For
categorical variables (which were also collected from multiple
visits of a participant to the assessment center), we used data from
the baseline visit (first instance of measurement collected during
2006–2010) as this contained the highest number of observations.
Additionally, categorical variables with multiple levels were
converted to sets of binary variables where each binary variable
indicates whether a participant has a given value of this variable
(as was suggested by Millard et al.)16. Ordinal categorical
environmental factor variables were analyzed by treating such
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variables as continuous variables and real-valued quantitative
environmental factor variables were scaled.

Third, we considered 14 health and disease indicators in 6
categories (“overall health rating”, “diabetes diagnosed by
doctor”, “cancer diagnosed by doctor”, “vascular/heart problems
diagnosed by doctor”, and “blood clot, DVT, bronchitis,
emphysema, asthma, rhinitis, eczema, allergy diagnosed by
doctor”) with COVID-19 positivity and hospitalization. More-
over, we considered baseline demographic variables in our
analysis including sex, age, age squared, assessment center,
ethnicity, average total household income after tax, and 40 genetic
principal components. Similarly, for these variables we used data
from the baseline visit (first instance of measurement collected
during 2006–2010).

Data-driven association to identify risk factors associated with
future COVID-19 positivity and hospitalization. Niedzwiedz
et al. report that Poisson regression may be preferred over logistic
regression as odds ratios are often misinterpreted and Poisson
regression allows for relative risks to be reported. As mentioned
by highly cited COVID-19 papers (e.g.,2), using robust standard
errors will help ensure “accurate estimation of p-values”. Zou
shows error for estimated relative risk will be overestimated when
Poisson regression is applied to binomial data. Therefore, Zou
suggests robust standard errors may be an optimal solution to
help overcome overestimation. We used Poisson regression (with
log link) models with robust standard errors to associate each of
the 360 factors and COVID-19 positivity (individually), while
adjusting for sex, age, age squared, assessment center, ethnicity,
average total household income after tax, and 40 genetic principal
components (computed and provided by the UK Biobank). The
model can be represented as log (π(xi))= Exposure + Age + Age
+ Sex + Assessment Center + Income + Genetic Principal
Component 1 + Genetic Principal Component 2+… + Genetic
Principal Component 40 + log(ti) where we assume that subject i
has an underlying risk for a COVID-19 related outcome that is a
function of xi, as π(xi). As Zou mentions, “since π(xi) must be
positive, the logarithm link function is a natural choice for
modeling π(xi)”17 and log(ti) is the offset of time in years between
date of baseline visit and date of first positive COVID-19 test17.

The approach of using robust standard errors involves
correcting the original model-based standard errors using the
variation of the difference between observed outcome values and
predicted values from the model (or the residuals)17,18 Moreover,
Mansournia et al. note the reason why this approach is also
referred to as sandwich estimation18. Mansournia et al. mention
that the terms corresponding to the variance based on the
residuals is “sandwiched” in between the terms corresponding to
the variance based on the model18. For details on the
mathematical derivation of the approach, please see Zou
et al.17.We report risk ratios and adjusted corresponding p-values
for multiple comparisons using the false discovery rate (FDR)
approach19. Also, we perform a sensitivity analysis running
logistic regression and estimating odds ratios for COVID-19
positivity across both timepoints.

Additionally, testing strategy during the time periods con-
sidered may confound the associations we observe. Given that
there were two major phases of the testing strategy (Pillar I and
Pillar II) where the first phase prioritized individuals with health
complications and healthcare workers, it was unclear which tests
performed on UK Biobank participants corresponded to Pillar II
versus Pillar I; therefore, we ran a sensitivity analysis to adjust for
criteria that were used to prioritize individuals to be tested—
healthcare workers and people with health complications. More-
over, it has been shown by Williamson et al.20 that health

complications most associated with COVID-19-related death
earlier in the pandemic include obesity and diabetes. In order to
account for testing strategy-related confounding effects, we
additionally adjust for healthcare worker status, BMI (body mass
index), diabetes, haematological malignancies (lymphoma, leuke-
mia, multiple myeloma, myelofibrosis or myelodysplasia, and
other haematological malignancy) and usage of immunosuppres-
sants (see Supplementary Table 2 for medication codes used to
identify immunosuppressants21) in addition to the baseline
demographic covariates in the aforementioned analysis.

Similarly, we investigated the association of all 360 risk factors
with COVID-19 hospitalization.

Also, we sought to quantify the difference in exposure
associations with COVID-19 positivity between time points. We
executed a Poisson regression (with log link) models for
individual exposures (as described above) with an additional
interaction term between each exposure and the time point
variable (codified as a dummy variable to indicate the first [tests
until July 17, 2020] or second time point [tests between July 18,
2020 and February 2, 2021]). We also report risk ratios for each
interaction term and adjusted corresponding p-values for multi-
ple comparisons using the false discovery rate (FDR) approach19.

Probing the variation of associations due to model choice via
“vibration of effects”. Next, we executed a large sensitivity
analysis to examine the fragility of associations due to model and
covariate choice, in a large sensitivity analysis called the vibration
of effects (VoE)11,22 for the top 12 exposures (ascertained by FDR
values) identified from our analysis. Through our data-driven
exposure-wide approach, we identified 12 FDR-significant expo-
sures (FDR-corrected p-value in top 10 percentile) in the initial
time period, including 1) “Apolipoprotein A”, 2) “Own accom-
modation outright”, 3) “Nitrogen oxides air pollution; 2010”, 4)
“Current frequency of shift work”, 5) “Townsend deprivation
index at recruitment”, “Body mass index (BMI)”, “HDL choles-
terol”, “Urban (less sparse) home area population density”,
“Qualifications (no education)”, “Son and/or daughter (including
step-children) in household”,“Exposure to tobacco smoke outside
home”, and “Alcohol intake frequency”. Given the computational
complexity of running all possible models for all significant
exposures, we selected the 12 exposures that included ones that
were prominently featured (FDR in top 10 percentile) in our
analysis) and mostly did not include multiple exposures from the
same category (for example we did not include “nitrogen dioxide
air pollution; 2010”). The set of varying adjustments in the
models included the 12 exposures and the “baseline” variables
that we kept in all models were gender, age, age squared,
assessment center, ethnicity, and average total household income
after tax. We performed the VoE analysis in the context of the 12
exposures as varying adjustments by running models with all
possible combinations of adjustments from the set of 12 expo-
sures. We ran a total of 8192 (212) models, while keeping the
sample size (n= 2821) the same for all (as it has been suggested
previously4)). We used Poisson regression models (with log link)
to associate variables with COVID-19 positivity and extracted
beta-estimates to compute risk ratios (RR). The heuristic that we
used for computing VoE was as defined by Patel et al.4.

Statistics and reproducibility. All data processing and sub-
sequent analyses were done using R Version 3.6.1 on O2 which is
a high-performance computing cluster at Harvard Medical School
that runs on Linux. We made our code accessible at (https://
github.com/stejat98/UKB_COVID_XWAS) and on Zenodo
(https://doi.org/10.5281/zenodo.7542752)23. Summary statistics
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(including risk ratios, FDR-corrected p-values, sample sizes, etc.)
can be found in Supplementary Data 1–10.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Baseline characteristics. The baseline characteristics of the UK
Biobank (UKB) cohort participants are reported in Supplemen-
tary Data 1. Out of 9268 individuals tested in the UKB cohort for
COVID-19 until July 17, 2020, results from 1544 patients (16.7%)
were positive. Out of the 38,837 participants tested in the UKB
cohort for COVID-19 between July 18, 2020 and February 2,
2021, results from 8539 patients (22%) were positive. Of the 1544
patients that tested positive until July 17, 2020, 1011 (65.5%) were
hospitalized and 243 (15.7%) died (Supplementary Data 2).
Overall, age was significantly associated with COVID-19 posi-
tivity (Risk Ratio [RR] for a 10 year increase in age: 0.807, 95%
CI: [0.757, 0.86], FDR: 1.03 × 10−9), in addition to geographic
proxy variables (assessment centers) such as Glasgow (7.91,
[4.62,13.5], 1.78 × 10−12) among cases tested until July 17, 2020
[Table 1].

Of the 8539 patients that tested positive until February 2, 2021,
2150 (25.2%) were hospitalized and 169 (1.98%) died (Supple-
mentary Data 2). Similar to the results from the previous time
point, age was significantly associated with COVID-19 positivity
(Risk Ratio [RR] for a 10 year increase in age: 0.595, 95% CI:
[0.581, 0.610], FDR < 1 × 10−64), in addition to geographic proxy
variables (assessment centers) such as Cardiff (6.37, [5.15, 7.88],
7.99 × 10−64) and Swansea (10.5, [8.03, 13.8], 6.33 × 10−64)
among cases tested until February 2, 2021 [Supplementary
Data 3].

Data-driven identification of risk factors associated with future
COVID-19 positivity. We systematically associated environ-
mental factors, biomarkers, and health indicators with COVID-19
positivity for two different samples during two different time-
points: before and inclusive of July 17, 2020 and between July 18,
2020 and February 2, 2021 (Fig. 1). We identified 31 significant
exposures (27 environmental factors and 4 biomarkers) (Fig. 2,
Supplementary Data 4) and 36 significant exposures (34 envir-
onmental factors and 2 biomarkers and health indicators) (Fig. 3,
Supplementary Data 5) that had FDRs in the top 10 percentile of
all associations tested with thresholds of FDR-corrected p-value
of less than 0.141 and FDR-corrected p-value of less than
1.94 × 10−4 respectively at each time (Supplementary Figs. 1, 2).
It is also important to note that while we tested the same number
of exposures (360) for both timepoints we had low sample sizes
for 45 exposures that were all infectious antigens, leaving 315
exposures to report results for this first time point. As exposures
associated with COVID-19 positivity varied between time points,
we systematically quantified the difference in relative risk ratios of
exposures between the two samples by testing for the interaction
between each exposure variable and the time point variable and
reported interaction term risk ratios. We identified 35 exposures
with a FDR-corrected p-value in the top 10 percentile across all
360 exposures tested for the interaction effect with time point
(Supplementary Data 6). The interquartile range of the interac-
tion term Risk Ratios is 0.857 and 1.31. We also observed an
overall negative trend between the difference in RRs and the RRs
for the first timepoint (07/17/2020) in Fig. 4, thereby indicating
an overall decrease in the association sizes between the two
samples. T
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We begin by describing exposures found in each sample
separately. For individuals sampled before July 17, 2020, the top
significantly associated factor (in terms of FDR-significance) was
“current frequency of shift work” (e.g.24) (RR [for a 1 standard
deviation (SD) change in relative frequency of shift work]: 1.16,
95% CI: [1.10, 1.23], FDR: 8.20 × 10−6, ΔAUC [Full Model AUC -
AUC of baseline demographic covariates-only model]:
8.79 × 10−3 [0.679–0.67]) (Supplementary Table 1 for distribu-
tion of COVID-19 prevalence across shift work categories). For
individuals who report they always conduct shift work, the
prevalence of COVID-19 positivity was 28.6% and for individuals
who report that they never conduct shift work, the prevalence of
COVID-19 positivity was almost half that reported always, 15.2%.

However, and on the other hand, we did not find “current
frequency of shift work” to be significantly associated with cases
tested between July 18, 2020 to February 2, 2021 (RR [for a
1 standard deviation (SD) change in relative frequency of shift
work]: 1.01, 95% CI: [0.989, 1.03], FDR: 0.564). The interaction
term RR was 0.891 (FDR: 6.80 × 10−4), which corresponded to a
significant decrease by a factor of 10.9% as time progressed
between the two samples.

We found that the “current frequency of shift work” is
associated with positivity in the early time period. However, the
association could be influenced by the type of worker, such as a
healthcare worker. We tested the association of current frequency

of shift work in the healthcare worker (HCW) sample and
compared it to the association in non-HCW sample. We found
the associations to be similar between non-HCW (RR: 1.11, 95%
CI: [1.04, 1.18], p-value: 2.63 × 10−3) and HCW-only (RR: 1.18,
95% CI: [1.05, 1.32], p-value: 3.79 × 10−3) samples, indicating
that being a healthcare worker is independent of the association
between frequency of shift work and COVID-19 positivity.

Other top factors include “nitrogen oxides air pollution
measured in 2010” (RR: 1.14 [for a 1 SD change in nitrogen
oxide air pollution], 95% CI: [1.08, 1.21], FDR: 4.16 × 10−4,
ΔAUC: −2.18 × 10−4 [0.648–0.649] and “nitrogen dioxide air
pollution also measured in 2010” (RR [for a 1 SD change]: 1.15,
95% CI: [1.08, 1.23], FDR: 6.88 × 10−4, ΔAUC: −1.29 × 10−3

[0.647–0.649]). For cases up to February 2, 2021, we found
“nitrogen oxides air pollution measured in 2010” (RR: 1.10 [for a
1 SD change in nitrogen oxide air pollution], 95% CI: [1.08, 1.13],
FDR: 3.89 × 10−17) and “nitrogen dioxide air pollution measured
in 2010” (RR: 1.13 [for a 1 SD change], 95% CI: [1.1, 1.15], FDR:
9.11 × 10−23) to be significant. The interaction term RRs were
0.985 (FDR: 0.763; decrease by a factor of 1.5% between
timepoints) and 1.00 (FDR: 0.959; no change between time-
points), respectively. In total, we identified 11 exposures and 9
exposures to be significant in the air pollution category of
exposures for cases leading up to July 17, 2020 and February 2,
2021, respectively.

Fig. 1 Schematic overview of data-driven analysis of COVID-19 positivity risk factors across two timepoints. This schematic diagram depicts the
analytic pipeline. (1) COVID-19 testing data was collected from two time periods (until 07/17/2020 and between 07/18/2020 and 02/02/2021). (2)
Data-driven association analysis was performed for each of the 360 exposures using Poisson regression (with log link). Associations were computed for
each time period separately. Additionally, models were run to assess time-exposure interaction effects. The blue line on the scatterplot represents a linear
regression line and the grey shading around it represents the 95% confidence interval.
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The top two significantly associated biomarkers with COVID-
19 positivity were apolipoprotein A (RR [for a 1 SD change that is
equivalent to 0.272 g/L]: 0.889, 95% CI: [0.839, 0.942], FDR:
3.25 × 10−3, ΔAUC: −5.30 × 10−4 [0.646–0.646]) and HDL
cholesterol (RR [for a 1 SD change that is equivalent to
0.382 mmol/L]: 0.900, 95% CI: [0.849, 0.955], FDR: 1.11 × 10−2,
ΔAUC: −1.08 × 10−3 [0.644–0.645]). HDL cholesterol (RR: 0.995,
95% CI: [0.972, 1.02], FDR: 0.785, ΔAUC: −1.08 × 10−3

[0.644–0.645]) was also implicated in cases between July 18 and
February 2, 2021, but apolipoprotein A (RR: 1.00, 95% CI: [0.978,
1.02], FDR: 0.978) was not. The interaction term RRs for HDL
cholesterol and apolipoprotein A were 1.11 (FDR: 3.99 × 10−3;
significant increase by factor of 11% between samples) and 1.12
(FDR: 3.01 × 10−3; significant increase by factor of 12% between
samples), respectively. The interquartile range (IQR) of the
number of complete cases across all associations for individuals
sampled before July 17,2020 is [4860, 7326]. We also plot the
sample size versus risk ratio of COVID-19 positivity associations
(Supplementary Fig. 3).

For cases between July 18, 2020 and February 2, 2021, the top
associations included “nitrogen dioxide air pollution measured in
2006” (RR: 1.17 [for a 1 SD change], 95% CI: [1.14, 1.2], FDR:
2.23 × 10−26, ΔAUC: 6.71 × 10−3 [0.727–0.72]), “participant
having son and/or daughter in household” (RR: 1.28, 95% CI:
[1.22, 1.34], FDR: 2.06 × 10−25, ΔAUC: 6.21 × 10−3 [0.726–0.72]),
and “number of people in participant’s household” (RR: 1.12 [for

a 1 SD change], 95% CI: [1.09, 1.14], FDR: 1.41 × 10−20, ΔAUC:
5.78 × 10−3 [0.726–0.72]). For cases up to July 17, 2020,
“participant having son and/or daughter in household” (RR:
1.19, 95% CI: [1.06, 1.35], FDR: 0.06) and “nitrogen dioxide air
pollution measured in 2006” (RR: 1.14 [for a 1 SD change], 95%
CI: [1.06, 1.23], FDR: 0.01) was significant but “number of people
in participant’s household” (RR: 1.07 [for a 1 SD change], 95% CI:
[1.01, 1.13], FDR: 2.06 × 10−1) was not significantly associated
with COVID-19 test positivity. The interaction RRs for
“participant having son and/or daughter in household”, “nitrogen
dioxide air pollution measured in 2006”, and “number of people
in participant’s household” are 1.39 (FDR: 3.04 × 10−7; significant
increase by factor of 39% between timepoints), 1.02 (FDR: 0.659;
non-significant increase by factor of 2% between timepoints), and
1.14 (FDR: 9.18 × 10−6; significant increase by factor of 14%
between timepoints), respectively. In particular, “participant
having son and/or daughter in household” and “number of
people in participant’s household” are notable exceptions to the
overall decreasing trend in the association sizes between the two
samples. The interquartile range (IQR) of the number of complete
cases across all associations for individuals sampled between July
18, 2020 and February 2, 2021 is [16,183, 31,521]. We also plot
the sample size versus risk ratio of COVID-19 positivity
associations (Supplementary Fig. 4).

Fig. 2 Association size versus -log10(adjusted p-values) between 360 exposures and COVID-19 positivity for first time point (tests until 07/17/
2020). The risk ratios (RR) versus the negative log (base 10) of FDR-corrected p-values for 360 different exposures. The red color indicates
FDR < 0.1 significant exposures and the blue color indicates FDR > 0.1 exposures. For the underlying dataset, n= 9268.
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Assessing robustness of identified COVID-19 positivity asso-
ciations to testing strategy. Additionally, testing strategy
(prioritization of health care workers and/or individuals with
chronic disease) during the time periods considered may con-
found the associations we observe. In order to account for testing
strategy-related confounding effects, we additionally adjust for
healthcare worker status, BMI (body mass index), diabetes, hae-
matological malignancies and usage of immune suppressants, in
addition to the baseline demographic covariates in the afore-
mentioned analysis. We report associations after adjusting for
testing strategy-related confounding effects and contextualize
these with the estimates not adjusted for testing strategy-related
effects that we reported in the previous section. For individuals
sampled before July 17, 2020, “current shift frequency”: (RR: 1.12,
95% CI: [1.06, 1.19], FDR: 1.22 × 10−2) [testing strategy effects-
unadjusted: RR: 1.16, 95% CI: (1.10, 1.23), FDR: 8.20 × 10−6],
“nitrogen oxides air pollution measured in 2010” (RR: 1.13, 95%
CI: [1.06, 1.19], FDR: 1.22 × 10−2) [testing strategy effects-
unadjusted: RR: 1.14, 95% CI: [1.08, 1.21], FDR: 4.16 × 10−4] and
“nitrogen dioxide air pollution measured in 2010” (RR: 1.13, 95%
CI: [1.06, 1.20], FDR: 1.77 × 10−2) [testing strategy effects-
unadjusted: RR: 1.15, 95% CI: [1.08, 1.23], FDR: 6.88 × 10−4],
remained among the top associations and were concordant in
direction with associations reported prior to adjustment of the
additional covariates. Similarly, for individuals sampled between
July 18, 2020 and February 2, 2021, “participant having son and/

or daughter in household” (RR: 1.28, 95% CI: [1.22, 1.34], FDR:
7.92 × 10−25) [testing strategy effects-unadjusted: RR: 1.28, 95%
CI: (1.22, 1.34), FDR: 2.06 × 10−25] and “number of people in
participant’s household” (RR: 1.11, 95% CI: [1.09, 1.14], FDR:
9.81 × 10−20) [testing strategy effects-unadjusted: RR: 1.12, 95%
CI: (1.09, 1.14), FDR: 1.41 × 10−20] remained among the top
associations and were concordant in direction with associations
reported prior to adjustment of the additional covariates.

Comparing model selection robustness across critical points in
the pandemic in association strength and size. We compared
the variation due to time of sampling versus the variation due to
covariate choice (Vibration of Effects [VoE]). Specifically, to test
whether the associations differ due to model choice and compare
them with the main findings of our study, we estimated the
vibration of effects (VoE)11,22,25 for 12 variables that were initially
identified as significant (FDR < 0.1) from our analysis (for cases
up to July 17, 2020) at both timepoints (see Methods). For 7 out
12 FDR significant exposures, the time of sampling exhibited
greater variation in RR versus model selection as detected by VoE.
For example, apolipoprotein A, had a range of [0.572, 0.713] in
cases up to July 17, 2020 and a range of [1.00, 1.05] in cases up to
February 2, 2021. “Son and/or daughter in household” had ranges
of [1.07, 1.12] and [1.24, 1.26] in cases up to July 17, 2020 and
February 2, 2021, respectively. Patel et al. and Tierney et al.11,25

have shown that empirically estimating the VoE makes it possible

Fig. 3 Association size versus -log10(adjusted p-values) for COVID-19 positivity for second time point (tests between 07/18/2020 and 02/02/21).
The risk ratios (RR) versus the negative log (base 10) of FDR-corrected p-values for 360 different exposures. The red color indicates FDR < 0.1 significant
exposures and the blue color indicates FDR > 0.1 exposures. For the underlying dataset, n= 38,837.
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to detect significant differences in exposure associations can arise
just due to choice of covariate (which can lead to multiple modes
of associations otherwise referred to as the “multimodality of
effects”11). To illustrate this, we plotted the vibration of effects for
“current frequency of shift work”, “nitrogen oxides air pollution”,
and BMI for cases up to July 17, 2020 (Supplementary Fig. 5) and
February 2, 2021 (Supplementary Fig. 6).

For example, “current frequency of shift work” did not display
multimodality of effects as associations were consistent (had the
same size) across all adjustment scenarios. Among participants
tested up to July 17, 2020, all associations were in the positive
direction and lying between 1.11 and 1.14 (Supplementary
Fig. 5a). However, for participants tested between July 18, 2020
and February 2, 2021, “current frequency of shift work” were not
consistent overall as the range of associations (1.00 and 1.01)
included 1, thereby suggesting a null association (Supplementary
Fig. 6a). Also risk ratios and -log10(p-values) shrank from the
previous time point.

The overall VoE for nitrogen oxides air pollution indicates
positive association with COVID test positivity (RRR: 1.04, RP:
0.732). We identified four different modes. We visualized VoE by
coloring the points based on the inclusion/exclusion of the 12
other significant exposures (providing 12 separate visualizations).
For nitrogen oxide air pollution, we found that the four modes
were indicative of the presence (or absence) of the Townsend

deprivation index and Urban (less sparse) home area population
density variables in the models (Supplementary Fig. 6b). The
models containing Townsend deprivation index had smaller RR
and smaller -log10(p-value) for nitrogen oxide air pollution. On
the other hand, models containing Urban (less sparse) home area
population density had smaller -log10(p-value) for nitrogen oxide
air pollution.

We also identified four modes in the associations between BMI
and COVID-19 positivity (RRR: 1.01, RP: 0.925). The VoE plots
(Supplementary Figs. 5c, 6c) indicated that the multimodality of
BMI associations was driven by the presence (or absence) of
apolipoprotein A and HDL cholesterol in the models. For
instance, the -log10(p-value) for BMI risk ratio decreases with
HDL cholesterol in the models. For participants tested between
July 18, 2020 and February 2, 2021, we again found multiple
modes that were indicative of the presence (or absence) of the
Townsend deprivation index and Urban (less sparse) home area
population density variables in the models associating nitrogen
oxide air pollution (RRR: 1.02, RP: 3.06) with COVID-19
positivity. However, while the inclusion of the Townsend
deprivation index (an area level/local geographic indicator of
socioeconomic status) and Urban (less sparse) home area
population density variable caused the risk ratios and -log10
(p-values) to shrink, nitrogen oxide air pollution associations
from all model combinations still attained significance. Similarly,

Fig. 4 Change in relative risk between participants sampled in 2/02/2021 and 7/17/2020 vs. relative risk for participants sampled in July 2020
(x-axis). Scatterplot of associations with FDR < 0.1 significant interaction effects between risk ratios (RR) for first time point (07/17/2020) and change in
factor of effect between time points. Exposures that significantly deviate from the overall negative linear trend are labelled. The blue line on the scatterplot
represents a linear regression line and the grey shading around it represents the 95% confidence interval.
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despite the shrinkage in -log10(p-values) due to inclusion of
apolipoprotein A and HDL cholesterol in the models, BMI
associations from all possible model combinations (RRR: 1.00,
RP: 2.95) still were significant. Overall, we note the tension
between decreasing risk ratios and increasing -log10(p-values) for
exposure associations with test positivity as the number of tests
(and cases) also increase.

Significant factors identified for COVID-19 hospitalization. In
addition, we systematically associated all factors with COVID-19
hospitalization (Supplementary Data 7) for cases up to July 17,
2020. We identified 28 of these factors to meet a threshold of
FDR-corrected p-value in the top 10 percentile of associations
tested (FDR-corrected p-value equivalent of 0.29 in top 10%).
Given the high p-values observed across associations for this time
point we also report the FDR-corrected p-value equivalent for the
top 1% of associations tested to be 0.0121. Top factors included
alanine aminotransferase (RR [for a 1 SD change that is equiva-
lent to 14.5 U/L]: 1.03, 95% CI: [1.02, 1.04], FDR: 3.85 × 10−3,
ΔAUC: 1.84 × 10−4 [0.732–0.732]) and glycated haemoglobin
(HbA1c) (RR [for a 1 SD change that is equivalent to 8.29 mmol/
mol]: 1.03, 95% CI: [1.01, 1.04], FDR: 6.34 × 10−3, ΔAUC:
1.66 × 10−3 [0.731–0.729]).

Similarly, for cases up to February 2, 2021, we systematically
associated all factors with COVID-19 hospitalization (Supple-
mentary Data 8). We identified 32 of those factors to meet a
threshold of FDR-corrected p-value in the top 10 percentile of
associations tested (FDR-corrected p-value threshold of
2.93 × 10−9). Top factors for COVID-19 hospitalization included
overall health rating (RR: 1.06, 95% CI: [1.05, 1.07], FDR:
2.67 × 10−37, ΔAUC: −3.33 × 10−3 [0.683–0.686]) and unable to
work because of sickness or disability (RR: 1.19, 95% CI: [1.15,
1.23], FDR: 4.32 × 10−23, ΔAUC: −5.27 × 10−3 [0.680–0.686]).

Sensitivity analysis using logistic regression to estimate odds
ratios for COVID-19 positivity during both timepoints.
Additionally, we used logistic regression to compute odds ratios
(OR) for COVID-19 positivity across both timepoints as a sen-
sitivity analysis and compare the OR of top findings with the RR
computed from Poisson regression models (with robust standard
errors). In brief, we did not have evidence to suggest that use of
the Poisson biased the associations we identified.

For individuals sampled before July 17, 2020, “current shift
frequency”: (OR: 1.23, 95% CI: [1.13, 1.32], FDR: 1.14 × 10−4)
[Poisson regression model with robust errors: RR: 1.16, 95% CI:
(1.10, 1.23), FDR: 8.20 × 10−6], “nitrogen oxides air pollution
measured in 2010” (OR: 1.19, 95% CI: [1.10, 1.28], FDR:
1.04 × 10−3) [Poisson regression model with robust errors: RR:
1.14, 95% CI: [1.08, 1.21], FDR: 4.16 × 10−4] and “nitrogen
dioxide air pollution measured in 2010” (RR: 1.2, 95% CI: [1.1,
1.29], FDR: 1.16 × 10−3) [Poisson regression model with robust
errors: RR: 1.15, 95% CI: [1.08, 1.23], FDR: 6.88 × 10−4],
remained among the top associations and were concordant in
direction with associations reported from Poisson regression
model with robust errors (as we observed with our testing strategy
effects sensitivity analysis). Similarly, for individuals sampled
between July 18, 2020 and February 2, 2021, “participant having
son and/or daughter in household” (RR: 1.44, 95% CI: [1.35,
1.54], FDR: 1.73 × 10−6) [Poisson regression model with robust
errors: RR: 1.28, 95% CI: (1.22, 1.34), FDR: 2.06 × 10−25] and
“number of people in participant’s household” (RR: 1.17, 95% CI:
[1.14, 1.21], FDR: 9.73 × 10−22) [Poisson regression model with
robust errors: RR: 1.12, 95% CI: (1.09, 1.14), FDR: 1.41 × 10−20]
remained among the top associations and were concordant in
direction with associations reported from Poisson regression

model with robust errors (as we observed with our testing strategy
effects sensitivity analysis).

Discussion
As is expected, the type, size, and number of risk factors changes
as the pandemic progresses. The thought that risk factors may
evolve throughout the pandemic has in fact been suggested by
others. For example, Roso-Llorach et al. assessed the differences
in mortality and clinical variables and found socioeconomic
disparities to increase as the pandemic progressed3. However,
identifying how risk factors change has been elusive despite the
explosion in risk models for COVID-19. To mitigate these chal-
lenges, we tested a comprehensive list of all risk factors simul-
taneously, while accounting for multiple hypotheses in two time
points and found 31 early in the pandemic, with occupation-
related factors being prominently featured, and 36 later in the
pandemic. The number and diversity of risk factors found
increased as the pandemic progressed, reflecting the increasing
number of individuals testing positive.

We conclude that time of sampling has had an influence on
association size and the number of variables identified with
robust support. Given the sample sizes of participants for each
time point (9268 and 38,837) and the number of significant
exposures identified for each time point, more generally, we
postulate that it may take a sample of 10,000 participants to see
environmental sources of health disparity emerge from a con-
venience sample such as UK Biobank for as low as 10–20%
increased/decreased risk. We also note an overall negative trend
between the difference in RRs and the RRs for the first timepoint
(07/17/2020), suggesting an overall decrease and “regression to
the mean” in the association sizes between the two timepoints.

Specifically, early in the pandemic, we have identified
employment type—specifically surrounding the frequency of shift
work—and re-identified air pollution, particularly nitrogen oxide
and dioxide as risk factors most significantly associated with
COVID-19 positivity and hospitalization, albeit with modest RR.
Additionally, we found the association of “current frequency of
shift work” to be robust to the healthcare worker (HCW) and
non-HCW status sampled before July 17, 2020. Furthermore,
while “current frequency of shift work” has a positive association
with COVID-19 positivity, it has a negative association with
COVID-19 hospitalization. We hypothesize that this opposite risk
could potentially be indicative of socioeconomic barriers to
hospital treatment, despite testing being made relatively accessible
across socioeconomic strata. Moreover, we report negative asso-
ciations (with hospitalization) of baseline demographic factors
such as “Average total household income before tax (Less than
18,000 Euros)” [RR: 0.36, 95% CI: (0.16, 0.83)] and “Average total
household income before tax (31,000 to 51,999 Euros)” [RR: 0.36,
95% CI: (0.15, 0.83)]. However, it is important to note that we
found the association of “current frequency of shift work” to be
negative after adjusting for the baseline demographic factors,
including income. This suggests that individuals, who have jobs
that involve a higher shift frequency are less likely to be admitted
to the hospital early on in the pandemic. We suspect that parti-
cipants who have a job with a higher frequency of shifts tend to
not admit themselves to a hospital, potentially out of fear of job
loss or other disciplinary proceedings.26 We also note that we do
not find this factor to be significantly associated with COVID-19
positivity later in the pandemic (cases between July 18th 2020 and
February 2nd 2021).

It is also important to consider age, whose importance as a risk
factor for COVID-19 outcomes/complications has been widely
reported in the literature. Notably, we report that the RR for age
(per 10 years) is less than 1 for COVID-19 positivity and is
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greater than 1 for COVID-19 hospitalization as we show in
Table 1 and Supplementary Data 3. For example, for the first time
point age had a RR of 0.807 for COVID-19 positivity and RR of
1.18 for COVID-19 hospitalization and for the second time point
age had a RR of 0.595 and for COVID-19 positivity and a RR of
2.63 for COVID-19 hospitalization. These estimates are con-
cordant in direction with age RR estimates for COVID-19 posi-
tivity and hospitalization reported elsewhere1.

Later in the pandemic, we found household factors, such as
“participant having son and/or daughter in household” and
“number of people in participant’s household” associated with
COVID-19 positivity and also found these associations to be
robust to testing strategy criteria. Specifically, “participant having
son and/or daughter in household” had a larger risk ratio than
earlier in the pandemic (with an interaction term RR of 1.39
[FDR: 3.04 × 10−7; significant increase by factor of 39% between
timepoints]). Similarly, “number of people in participant’s
household” had a larger risk ratio and smaller FDR-corrected p-
value later in the pandemic than earlier in the pandemic (with an
interaction RR of 1.14 [FDR: 9.18 × 10−6; significant increase by
factor of 14% between timepoints]). Both variables are notable
exceptions to the overall negative trend between the difference in
RRs and the RRs for the first timepoint (07/17/2020) in Fig. 3.
Also, it is essential to consider that the majority of UKB parti-
cipants are senior citizens of retired age (most participants were
60–69 years old)27 and younger individuals may have been going
out more for work as the pandemic progressed. Thus, we suspect
that having a son or daughter or a greater number of people in
the household may have increased the chance of such younger
individuals bringing the virus in from outside of the household.

It is important to evaluate the clinical significance of household
factor associations for COVID-19 positivity with respect to
established risk factors in the literature (e.g., age) as the pandemic
progressed. For example, “participants having a son and/or
daughter in their household” accounted for an increase in inci-
dence from 20% to 32% (incidence risk difference of 12%)
between timepoints. On the other hand, for elderly participants
(age >65) incidence decreased from 16% to 13% (difference
of −3%).

It is also important to evaluate the relevance of geographic
proxy variable risk factors such as assessment centers. Such
geographic proxy factors may help serve as indicators of socio-
economic differences between groups. We report the proportion
of participants in each family income category for each assess-
ment center in Supplementary Data 9 and 10. For example, we
identified during the second time period (tests between July 18,
2020 and February 2, 2021) the Swansea assessment center as the
one that confers the greatest risk for testing positive (RR [95%
CI]: 10.5, [8.03, 13.8], FDR: 6.33 × 10−64 vs. Oxford). Swansea has
27.9% of its tested participants belonging to the lowest family
income category (less than 18,000 Euros). In comparison, the
reference location, Oxford, had 16.8%.

We also report that many associations are influenced by
modeling assumptions; however, time of sampling seems to
exhibit a greater variation in associations versus model selection
as detected by VoE. For example, while the association risk ratios
for “current shift frequency” for the first timepoint (cases up to
July 17th 2020) ranged between 1.11 and 1.14 (variation by a
factor about 3% due to presence or absence of factors in the
models) in “current frequency of shift work”, the interaction term
(between exposure and time point) RR was 0.891 (FDR:
6.80 × 10−4), which corresponded to a significant decrease by a
factor of 10.9% as time progressed between the two samples,
thereby rendering the association null later in the pandemic. This
seems to provide further evidence for the suggestion that

COVID-19 observational associations are dependent on the time
of pandemic.

The COVID-19 Host Genetics Initiative conducted a genome-
wide association study (GWAS) and a subsequent meta-analysis
across cohorts (using study-specific summary statistics) to iden-
tify genetic risk factors associated with COVID-1928. Non-genetic
risk factors with COVID-19 outcomes compare with those of
genetic risk factors. Here, we focus on explicitly comparing
genetic and nongenetic risk factor associations with COVID-19
hospitalization. For example, the COVID-19 Host Genetics
Initiative reported an odds ratio (OR) for rs2271616’s association
with COVID-19 hospitalization to be OR [95% CI]= 1.12 [1.06,
1.19]. We report here that nongenetic risk factors whose asso-
ciations with COVID-19 hospitalization are comparable in
magnitude with that of the OR of rs2271616. Other teams have
executed analyses varying in consistency and breadth of candidate
subsets of risk factors at a time in the UKB. For example,
Niedzwiedz et al. specifically assessed the association of ethnicity
with COVID-19 susceptibility and found certain minority ethnic
groups to be associated with greater risk after adjusting for
socioeconomic differences and behavioral risk factors or baseline
health2. Hastie et al. examined only one biomarker, vitamin D,
and analyzed its association with risk of COVID-19 positivity and
ethnic differences in COVID-19 positivity and found no link29.
However, others have shown conflicting results: an association
between Vitamin D deficiency and hospitalization but no causal
relationship between Vitamin D levels and COVID-19 severity30.

In contrast, much can be learned when moving beyond isolated
sets of candidate factors. For example, Chadeau-Hyam et al.
examined subsets of factors across multiple categories (social,
environmental, demographic factors) and pressure-tested a suite
of sensitivity analyses1. Here, we examine a wider range of risk
factors across categories across two timepoints and compare 63
laboratory biomarkers1. To the best of our knowledge, the asso-
ciation of the volume of “current frequency of shift work” (early
in the pandemic) has not been reported; however, the finding is in
agreement with job type31. Our findings regarding air pollution
are also concordant with Travaglio et al.’s findings32, though our
efforts extended this result to demonstrate their lack of robustness
in specific analytic model contexts via VoE.

Our data-driven approach identified primarily
sociodemographic-related factors such as “current frequency of
shift work” associated with COVID-19 outcomes early in the
pandemic. Age and household factors (e.g., as “participant having
son and/or daughter in household”, “number of people in parti-
cipant’s household”) played a more prominent role as the pan-
demic progressed. Previously reported associations (e.g., air
pollution) are sensitive to both time of recruitment of patients at
risk and time of COVID-19 test, in addition to modeling
assumptions, such as adjustment variable selection.

It is also important to note the limitations of our study. The
UKB cohort is not a representative sample of the general UK
population as many participants are less deprived socio-
economically, generally healthier overall, and are predominantly
White Caucasian13,29. Others have shown that associations may
also be affected by collider bias33. More specifically, our positivity
outcome results may be biased by sampling and public health
testing strategy. Additionally, there are unbalanced sample sizes
corresponding to the two time periods, which might explain some
of the variation of the exposure effects between the two time
periods. Also, many exposures are unlikely to be available for all
participants in the entire cohort. For example, the exposure
category of infectious antigens (e.g., “1gG antigen for Herpes
Simplex virus-1”) has the highest missingness rate of ~98%.
Additionally, we did not consider nonlinear associations. Also, we
did not have the opportunity to consider confounders for each
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exposure or group of exposures as there is no consensus for what
variables may be considered as ‘confounders’ for such associa-
tions. Lastly, our study considered only 14 disease and health
conditions but comorbidity burden taken as a whole has been
reported in the literature to play a significant role in risk for
COVID-19 positivity (among other COVID-19 related
outcomes)34. Moreover, cumulative comorbidity burden may
mediate some of the age associations35–37. Future work should
consider the correlated effects of comorbidity burden towards the
stabilization (or lack thereof) of the laboratory parameters (blood
biomarkers).

Our results suggest that COVID-19 observational associations
are dependent on the time of pandemic and public health prio-
rities need to be nimble to changing risk as the pandemic
progresses.

Data availability
The data from the UK Biobank that support the findings of this study are available upon
application (https://www.ukbiobank.ac.uk/register-apply/). Data for generating figures is
available on Figshare38–40. The source data for Figs. 1 and 4 is stored at https://doi.org/
10.6084/m9.figshare.21909726.v138 and https://doi.org/10.6084/m9.figshare.21909408.
v439. Source data for Figs. 2 and 3 can be found at https://doi.org/10.6084/m9.figshare.
21909408.v439 and https://doi.org/10.6084/m9.figshare.21909711.v140, respectively,
Summary statistics (including risk ratios, FDR-corrected p-values, sample sizes, etc.) can
be found in Supplementary Data 1-10. More specifically, Supplementary Data 1 and
Supplementary Data 2 contain means, standard deviations, and proportions.
Supplementary Data 3 contains risk ratios (and 95% CIs), p-values, and FDR-corrected
p-values. Supplementary Data 4, 5, 7, and 8 contain risk ratios (and 95% CIs), p-values,
FDR-corrected p-values, and sample sizes. Supplementary Data 6 contains delta risk
ratios and FDR-corrected p-values. Supplementary Data 9 and 10 contain proportions.

Code availability
We performed all analyses using R version 3.6.1. We made our code accessible at (https://
github.com/stejat98/UKB_COVID_XWAS) and on Zenodo (https://doi.org/10.5281/
zenodo.7542752)23.
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