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Abstract

Background Surgeons who receive reliable feedback on their performance quickly master the

skills necessary for surgery. Such performance-based feedback can be provided by a recently-

developed artificial intelligence (AI) system that assesses a surgeon’s skills based on a

surgical video while simultaneously highlighting aspects of the video most pertinent to the

assessment. However, it remains an open question whether these highlights, or explanations,

are equally reliable for all surgeons.

Methods Here, we systematically quantify the reliability of AI-based explanations on surgical

videos from three hospitals across two continents by comparing them to explanations gen-

erated by humans experts. To improve the reliability of AI-based explanations, we propose

the strategy of training with explanations –TWIX –which uses human explanations as

supervision to explicitly teach an AI system to highlight important video frames.

Results We show that while AI-based explanations often align with human explanations,

they are not equally reliable for different sub-cohorts of surgeons (e.g., novices vs. experts), a

phenomenon we refer to as an explanation bias. We also show that TWIX enhances the

reliability of AI-based explanations, mitigates the explanation bias, and improves the per-

formance of AI systems across hospitals. These findings extend to a training environment

where medical students can be provided with feedback today.

Conclusions Our study informs the impending implementation of AI-augmented surgical

training and surgeon credentialing programs, and contributes to the safe and fair democra-

tization of surgery.
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Plain language summary
Surgeons aim to master skills neces-

sary for surgery. One such skill is

suturing which involves connecting

objects together through a series of

stitches. Mastering these surgical skills

can be improved by providing sur-

geons with feedback on the quality of

their performance. However, such

feedback is often absent from surgical

practice. Although performance-based

feedback can be provided, in theory, by

recently-developed artificial intelli-

gence (AI) systems that use a com-

putational model to assess a surgeon’s

skill, the reliability of this feedback

remains unknown. Here, we compare

AI-based feedback to that provided by

human experts and demonstrate that

they often overlap with one another.

We also show that explicitly teaching

an AI system to align with human

feedback further improves the relia-

bility of AI-based feedback on new

videos of surgery. Our findings outline

the potential of AI systems to support

the training of surgeons by providing

feedback that is reliable and focused

on a particular skill, and guide pro-

grams that give surgeons qualifications

by complementing skill assessments

with explanations that increase the

trustworthiness of such assessments.
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Surgeons seldom receive feedback on how well they perform
surgery1,2, despite evidence that it accelerates their acqui-
sition of skills (e.g., suturing)3–7. Such feedback can be

automated, in theory, by artificial intelligence systems8,9. To that
end, we recently developed a surgical artificial intelligence system
(SAIS) that assesses the skill of a surgeon based on a video of
intraoperative activity and simultaneously highlights video frames
of pertinent activity. We demonstrated that SAIS reliably auto-
mates surgeon skill assessment10 and also examined the fairness
of its assessments11. In pursuit of developing a trustworthy AI
system capable of safely automating the provision of feedback to
surgeons, we must ensure that SAIS’ video-frame highlights,
which we refer to as AI-based explanations, align with the
expectations of expert surgeons (i.e., be reliable)12,13 and be
equally reliable for all surgeons (i.e., be fair)14. However, it
remains an open question whether AI-based explanations are
reliable and fair. If left unchecked, misguided feedback can hinder
the professional development of surgeons and unethically dis-
advantage one surgeon sub-cohort over another (e.g., novices
vs. experts).

Although an explanation can take on many forms, it often
manifests as the relative importance of data (attention scores) in
disciplines where the attention-based transformer architecture15

is used, such as natural language processing16 and protein
modelling17,18. An element with a higher attention score is
assumed to be more important than that with a lower score.
Similarly, with a transformer architecture which operates on
videos, SAIS10 generates an attention score for each frame in a
surgical video, with high-attention frames assumed to be more
relevant to the surgeon skill assessment. When such an AI sys-
tem’s explanations align with those provided by humans, it can
direct surgeons to specific aspects of their operating technique
that require improvement while simultaneously enhancing its
trustworthiness19. As such, there is a pressing need to quantify
the reliability of explanations generated by surgical AI systems.

Previous studies have investigated the reliability of AI-based
explanations that highlight, for example, important patches of a
medical image20–22 or clinical variables23. However, these studies
remain qualitative and thereby do not systematically investigate
whether explanations are consistently reliable across data points.
Studies that quantitatively evaluate AI-based explanations often
exclude a comparison to human explanations24,25, a drawback
that extends to the preliminary studies aimed at also assessing the
fairness of such explanations26,27. Notably, previous work has not
quantitatively compared AI-based explanations to human expla-
nations in the context of surgical videos, nor has it proposed a
strategy to enhance the reliability and fairness of such
explanations.

In this study, we quantify the reliability and fairness of
explanations generated by a surgical AI system –SAIS10 –that we
previously developed and which was shown to reliably assess the
skill level of surgeons from videos. Through evaluation on data
from three geographically-diverse hospitals, we show that SAIS’
attention-based explanations often align, albeit imperfectly, with
human explanations. We also find that SAIS generates different
quality explanations for different surgeon sub-cohorts (e.g.,
novices vs. experts), which we refer to as an explanation bias. To
address this misalignment between AI-based and human expla-
nations, we devise a general strategy of training with explanations
–TWIX –which uses human explanations as supervision to
explicitly teach an AI system to highlight important video frames.
We find that TWIX enhances the reliability of AI-based expla-
nations, mitigates the explanation bias, and improves the per-
formance of skill assessment systems across hospitals. With SAIS
likely to provide feedback to medical students in the near future,
we show that our findings extend to a training environment. Our

study suggests that SAIS, when used alongside TWIX, has the
potential to provide surgeons with accurate feedback on how to
improve their operating technique.

Methods
Surgical video samples. In a previous study, we trained and
deployed an AI system (SAIS) on videos of a surgical procedure
known as a robot-assisted radical prostatectomy (RARP). The
purpose of this procedure is to treat cancer by removing a can-
cerous prostate gland from the body of a patient. In general, to
complete a surgical procedure, a surgeon must often perform a
sequence of steps. We focus on one particular step of the RARP
procedure, referred to as vesico-urethral anastomosis (VUA), in
which the bladder and the urethra are connected to one another
through a series of stitches. To perform a single stitch, a surgeon
must first grasp the needle with a robotic arm (needle handling),
and push that needle through tissue (needle driving), before
following through and withdrawing the needle from the tissue to
prepare for the next stitch (needle withdrawal). In this study, we
leveraged SAIS’ ability to assess the skill-level of needle handling
and needle driving when provided with a video sample depicting
these activities.

Live surgical procedure. To obtain video samples from videos of
surgical procedures, we adopted the following strategy. Given a
video of the VUA step ( ≈ 20 min), we first identified the start and
end time of each stitch (up to 24 stitches) involved in completing
this step. We subsequently identified the start and end time of the
needle handling and needle driving activities performed as part of
each stitch. A single video sample reflects one such needle
handling (or needle driving) activity ( ≈ 20− 30s). As such, each
VUA step may result in approximately 24 video samples for each
activity (see Table 1 for total number of video samples).

Training environment. We also designed a realistic training
environment in which medical students, without any prior
robotic experience, sutured a gel-like model of the bladder and
urethra with a robot that is used by surgeons to perform live
surgical procedures. To control for the number of stitches per-
formed by each participant, we marked the gel-like model with 16
target entry/exit points, resulting in 16 video samples from each
participant. Although each stitch involved a needle handling and
needle driving activity (among others), we only focused on needle
handling for the purpose of our analysis (see Table 1 for number
of video samples).

Ethics approval. All datasets (data from University of Southern
California, St. Antonius Hospital, and Houston Methodist Hos-
pital) were collected under Institutional Review Board (IRB)
approval from the University of Southern California in which
informed consent was obtained (HS-17-00113). We have also
obtained informed consent to present surgical video frames in
figures.

Skill assessment annotations. We assembled a team of trained
human raters to annotate video samples with skill assessments
based on a previously-developed skill assessment taxonomy (also
known as an end-to-end assessment of suturing expertise or
EASE28). EASE was formulated through a rigorous Delphi pro-
cess involving five expert surgeons that identified a strict set of
criteria for assessing multiple skills related to suturing (e.g.,
needle handling, needle driving, etc.). Our team of raters com-
prised medical students and surgical residents who either helped
devise the original skill assessment taxonomy or had been inti-
mately aware of its details.
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Exact criteria for skill assessment annotations. The skill-level of
needle handling is assessed by observing the number of times a
surgeon had to reposition their grasp of the needle. Fewer repo-
sitions imply a high skill-level, as it is indicative of improved
surgeon dexterity and intent. The skill-level of needle driving is
assessed by observing the smoothness with which a surgeon
pushes the needle through tissue. Smoother driving implies a high
skill-level, as it is less likely to cause physical trauma to the tissue.

Mitigating noise in skill assessment annotations. We took several
steps to mitigate the degree of noise in the skill assessment
annotations. First, EASE outlines a strict set of criteria related to
the visual and motion content of a video sample, thereby
making it straightforward to identify whether such criteria are
satisfied (or violated) upon watching a video sample. This
reduces the level of expertise that a rater must ordinarily have in
order to annotate a video sample. Second, the raters involved in
the annotation process were either a part of the development of
the EASE taxonomy or intimately aware of its details. This
implied that they were comfortable with the criteria outlined in
EASE. Third, and understanding that raters can be imperfect,
we subjected them to a training process whereby raters were
provided with a training set of video samples and asked to
annotate them independently of one another. This process
continued until the agreement of their annotations, which was
quantified via inter-rater reliability, exceeded 80%. We chose
this threshold based on (a) the level of agreement first reported
in the study developing the EASE taxonomy and (b) an
appreciation that natural variability is likely to exist from one
rater to the next in, for example, the amount of attention they
place on certain content within a video sample.

After completing their training process, raters were asked to
annotate the video samples in this study with binary skill
assessments (low vs. high skill). In the event of disagreements in
the annotations, we followed the same strategy adopted in the
original study10 where the lowest of all scores is considered as the
final annotation.

Skill explanation annotations. We assembled a team of two
trained human raters to annotate each video sample with seg-
ments of time (or equivalently, spans of frames) deemed relevant
for a particular skill assessment. We define segments of time as
relevant if they reflect the strict set of criteria (or their violation)
outlined in the EASE skill assessment taxonomy28. In practice, we
asked raters to exclusively annotate video samples tagged as low
skill from a previous study (for motivation, see later section). To
recap, for the activity of needle handling, a low skill assessment is
characterized by three or more grasps of the needle by the surgical
instrument. For the activity of needle driving, a low skill assess-
ment is characterized by either four or more adjustments of the

needle when being driven through tissue or its complete removal
from tissue in the opposite direction to which it was inserted. As
such, raters had to identify both visual and motion cues in the
surgical field of view in order to annotate segments of time as
relevant. We reflect important time segments with a value of 1
and all other time segments with a value of 0.

Visualising explanation annotations. Consider that for a given
video sample 30 s in duration, a human rater might annotate the
first five seconds (0−5 s) as most important for the skill assess-
ment. Based on our annotations, we show that ≈ 30% of a single
video sample is often identified as important (see Supplementary
Table 1). To visualise these annotations, we considered unique
video samples in the test set of each of the 10 Monte Carlo folds.
Since each video sample may vary in duration, and to facilitate a
comparison of the heatmaps across hospitals, we first normalized
the time index of each explanation annotation such that it ranged
from 0 (beginning of video sample) to 1 (end of video sample).
For needle handling, this translates to the beginning and end of
needle handling, respectively. A value of 0.20 would therefore
refer to the first 20% of the video sample. We subsequently
averaged the explanation annotations, whose values are either 0
(irrelevant frame) or 1 (relevant frame), across the video samples
for this normalized time index. We repeated the process for all
hospitals and the skills of needle handling and needle driving (see
Fig. 1).

Training the raters. Before providing such explanation annota-
tions, however, the raters underwent a training process akin to
the one conducted for skill assessment annotations. First, raters
were familiarized with the criteria outlined in the skill assessment
taxonomy. In practice, and to mitigate potential noise in the
explanation annotations, our assembled team of raters had, in the
past, been involved in providing skill assessment annotations
while using the same exact taxonomy. The raters were then
provided with a training set of low-skill video samples and asked
to independently annotate them with segments of time that they
believed were important to that skill assessment. During this time,
raters were encouraged to abide by the strict set of criteria out-
lined in the skill assessment taxonomy. This training process
continued until the agreement in their annotations, which was
quantified via the intersection over union, exceeded 0.80. This
implies that, on average, each segment of time highlighted by one
rater exhibited an 80% overlap with that provided by another
rater. This value was chosen, as with the skill assessment anno-
tation process, with the appreciation that natural variability in the
annotation process is likely to occur. Raters may disagree, for
example, on when an important segment of time ends even when
both of their explanation annotations capture the bulk of the
relevant activity.

Table 1 Total number of videos and video samples associated with each of the hospitals and tasks.

Task Activity Details Hospital Videos Video samples Surgeons Generalizing to

skill assessment suturing needle handling USC 78 912 19 videos
SAH 60 240 18 hospitals
HMH 20 184 5 hospitals
LAB 69 328 38 modality

needle driving USC 78 530 19 videos
SAH 60 280 18 hospitals
HMH 20 220 5 hospitals

Note that we train our model, SAIS, on data exclusively shown in bold following a 10-fold Monte Carlo cross-validation setup. For an exact breakdown of the number of video samples in each fold and
training, validation, and test split, please refer to Supplementary Tables 2–7. The data from the remaining hospitals are exclusively used for inference. SAIS is always trained and evaluated on a class-
balanced set of data whereby each category (e.g., low skill and high skill) contains the same number of samples. This prevents SAIS from being negatively affected by a sampling bias during training, and
allows for a more intuitive appreciation of the evaluation results. USC University of Southern California, SAH St. Antonius Hospital, HMH Houston Methodist Hospital.
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Aggregating explanation annotations. Upon completing the
training process, raters were asked to provide explanation anno-
tations for the video samples used in this study. They were
informed that each video sample had been annotated in the past as
low skill, and were therefore aware of the specific criteria in the
taxonomy to look out for. In the event of disagreements in the
explanation annotations, we considered the intersection of the
annotations. This ensures that we avoid identifying potentially
superfluous video frames as relevant and makes us more confident
in the segments of time that overlapped amongst the raters’
annotations. Although we experimented with other strategies for
aggregating the explanation annotations, such as considering their
union, we found this to have a minimal effect on our findings.

Motivation behind focusing on low-skill activity. In this study, our
goal was to provide feedback for video samples exclusively
depicting low skill activity. A binary skill assessment system is
therefore well aligned with this goal. We focused on low-skill
activity for two reasons. First, from a practical standpoint, it is
relatively more straightforward to provide an explanation annota-
tion for a video sample depicting low skill activity than it is for one
depicting high skill activity. This is because human raters simply
have to look for segments of time in the video sample during which
one (or more) of the criteria outlined in EASE are violated. Second,
from an educational standpoint, studies in the domain of educa-
tional psychology have demonstrated that corrective feedback fol-
lowing an error is instrumental to learning [1]. As such, our focus
on a low skill activity (akin to an error) provides a ripe opportunity
for the provision of feedback. We do appreciate, however, that
feedback can also be useful when provided for video samples
depicting high skill activity (e.g., through positive reinforcement).
We leave this as an extension of our work for the future.

Metrics for evaluating the reliability of explanations. To eval-
uate the reliability of AI-based explanations, we compared them
to human-based ground-truth explanations. After normalizing
AI-based explanations (between 0 and 1), we introduced a
threshold such that frames with explanations that exceed this
threshold are considered important, and unimportant otherwise.

For each threshold, we calculated the precision; the proportion of
frames deemed important by the AI system which are also
identified as important by the human, and the recall; the pro-
portion of all frames identified as important by the human which
the AI system also identified as important. By iterating over a
range of thresholds, we can generate a precision-recall curve.

The precision-recall curve reflects the trade-off between the
precision of AI-based explanations: the proportion of frames
identified as important by the AI system which are actually
important, and the recall of such explanations: the proportion of all
important frames identified as such by the AI system. For example,
recall=1 implies that 100% of the frames identified as important by
a human are also identified as such by the AI system. However, an
imperfect system can only achieve this outcome by flagging all
frames in a video sample as important, irrespective of their ground-
truth importance. Naturally, this is an undesirable outcome as the
resultant feedback would no longer be temporally-localized, and
would thus be less informative. We use the area under the
precision-recall curve (AUPRC) as a measure of the reliability of
AI-based explanations, as reported in previous studies25.

Metrics for evaluating the bias of explanations. Algorithmic
bias is often defined as a discrepancy in the performance of an AI
system across sub-cohorts of stakeholders. In this study, we define
explanation bias as a discrepancy in the reliability of AI-based
explanations across sub-cohorts of surgeons. The intuition is that
such a discrepancy implies that a particular sub-cohort of sur-
geons would systematically receive less reliable feedback, and is
thus disadvantaged at a greater rate than other sub-cohorts. To
mitigate this explanation bias, we look to improve the reliability
of AI-based explanations generated for the disadvantaged sub-
cohort of surgeons, referred to as worst-case AUPRC.

Choice of surgeon groups. When dealing with live surgical videos,
we measured the explanation bias against surgeons operating on
prostate glands with different volumes, prostate glands with dif-
ferent cancer severity levels (Gleason Score), and against surgeons
with a different caseload (total number of robotic surgeries per-
formed during their lifetime). To decide on these groups, we

Fig. 1 Heatmap of the ground-truth explanation annotations across hospitals. We average the explanation annotations for the a, needle handling and
b, needle driving video samples in the test set of the Monte Carlo folds (see Supplementary Table 2 for total number of samples), and present them over a
normalized time index, where 0 and 1 reflect the beginning and end of a video sample, respectively. A darker shade (which ranges from 0 to 1 as per the
colour bars) implies that a segment of time is of greater importance.
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consulted with a urologist (A.J.H) about their relevance and opted
for groups whose clinical meta information was most complete in
our database in effort to increase the number of samples available
for analysis. While it may seem out of the ordinary to define a
surgeon group based on the prostate volume of a patient being
operated on, we note that the distribution of such volumes can
also differ across hospitals (e.g., due to patient demographics) (see
Supplementary Fig. 1). When dealing with videos from the
training environment, we measured the explanation bias against
medical students of a different gender.

Choice of surgeon sub-cohorts. When dealing with live surgical
videos, we converted each of the surgeon groups into categorical
sub-cohorts. Specifically, for the prostate volume group, we
decided on the two sub-cohorts of prostate volume ≤ 49 ml
and > 49ml. We chose this for practical reasons as it was the
population median of the patients at USC, and thereby providing
us with a relatively balanced number of video samples from each
sub-cohort, and for clinical reasons, with some evidence illus-
trating that operating on prostate glands of a larger size can
increase operating times29,30. As for the surgeon caseload group,
we decided on the two sub-cohorts of caseload ≤100 and > 100,
based on previous studies31.

SAIS is an AI system for skill assessment. We recently devel-
oped SAIS to decode the intraoperative activity of surgeons based
exclusively on surgical videos10. Specifically, we demonstrated
state-of-the-art performance in assessing the skill-level of surgical
activity, such as needle handling and needle driving, across
multiple hospitals. In light of these capabilities, we used SAIS as
the core AI system throughout this study.

Components of SAIS. We outline the basic components of SAIS
here and refer readers to the original study for more details10. In
short, SAIS takes two data modalities as input: RGB frames and
optical flow, which measures motion in the field of view over time,
and which is derived from neighbouring RGB frames. Spatial
information is extracted from each of these frames through a vision
transformer pre-trained in a self-supervised manner on ImageNet.
To capture the temporal information across frames, SAIS learns the
relationship between subsequent frames through an attention
mechanism (see next section). Greater attention, or importance, is
placed on frames deemed more important for the ultimate skill
assessment. Repeating this process for all data modalities, SAIS
arrives at modality-specific video representations. SAIS aggregates
these representations to arrive at a single video representation that
summarizes the content of the video sample. This video repre-
sentation is then used to output a probability distribution over the
two skill categories (low vs. high skill).

Generating explanations with SAIS. To summarize a video sample
with a single representation, SAIS adopts an approach often
observed with transformer networks used for the purpose of clas-
sification; it learns a classification token embedding and treats its
corresponding representation after the N transformer encoders as
the video representation, v (for one of the modalities, e.g., RGB
frames). As the attention mechanism still applies to this video
representation, we are able to measure its dependence on all frames
in the video sample. The higher the dependence on a particular
frame, the more important it is for the assessment of surgeon skill.
We hypothesized that the temporal relationship between frames at
the final layer of the transformer encoder is most strongly asso-
ciated with the surgeon skill assessment, and as such, we extracted
the attention placed on these frames. This method of explanations
is referred to as attention in the Results section.

Training and evaluating SAIS. To train and evaluate SAIS, we
adopted the same strategy presented in the original study10.
Specifically, we trained SAIS using 10-fold Monte Carlo cross
validation on data exclusively from USC. To ensure that we
evaluated SAIS in a rigorous manner, each fold was split into a
training, validation, and test set where each set contained samples
from surgical videos not present in any of the other sets. Having
formulated skill assessment as a binary classification task, we
balance the number of video samples from each class (low vs.
high-skill) in every data split (training, validation, and test).
While doing so during training ensures that the model’s perfor-
mance is not biased towards the majority class, balancing the
classes during evaluation (e.g., on the test set) allows for a better
appreciation of the evaluation metrics we report. For evaluation
on data from other hospitals, we deployed all 10 SAIS models
(from the 10 folds). As such, we always report metrics as an
average across these 10 folds.

TWIX is a module for generating AI-based explanations.
Although there exist various ways to incorporate human-based
explanations into the learning process of an AI system24,32, we
took inspiration from studies demonstrating the effectiveness of
using explanations as a target variable33–36. To that end, we
propose a strategy entitled training with explanations –TWIX
–which explicitly teaches an AI system to generate explanations
that match those provided by human experts (see Fig. 2). The
intuition is that by incorporating the reasoning used by humans
into the learning process of the AI system, it can begin to focus on
relevant frames in the video sample and generate explanations
that better align with the expectations of humans. To achieve this,
we made a simple modification to SAIS (appending a classifica-
tion module) enabling it to identify the binary importance
(important vs. not important) of each frame in the video sample
in a supervised manner. Note that TWIX is a general strategy in
that it can be used with any architecture, regardless of whether it
is attention-based or not.

Outlining the mechanics of TWIX. When dealing with the RGB
frames of a video sample, SAIS first extracts spatial features from
each frame and then captures the temporal relationship between
these frames (see previous section for attention mechanism).
Upon doing so, SAIS outputs both a single D-dimensional video
representation, v 2 RD, that summarizes the entire video sample
and, importantly, the D-dimensional representation of each
frame, ht 2 RD, at time-point t∈ [1, T] in a video sample of
duration T seconds. For the purpose of surgeon skill assessment,
the video representation suffices and is fed into downstream
modules. As part of TWIX, however, whose details are presented
below, we operate directly on the representation of each frame.
Specifically, we keep the core architecture of SAIS unchanged and
simply append a classification module, pω : ht 2 RD ! ŷ 2 R to
map each frame representation, ht, to a scalar frame importance
variable, ŷ 2 ½0; 1�. The classification module learns which frames
are important in a supervised manner based on ground-truth
labels, y, provided by humans indicating the binary importance of
each frame (important vs. not important).

Training AI systems with TWIX. We retrain SAIS on data
exclusively from USC as reported in the original study10. In short,
this involves 10-fold Monte Carlo cross-validation where each
training fold consists of an equal number of samples from each
class (low skill, high skill). The number of samples are provided in
Supplementary Table 2. In this study, the difference is that we
train SAIS in an end-to-end manner with the TWIX classification
module. Specifically, for a single video sample, we optimize the
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supervised InfoNCE loss, LInfoNCE, reported in the original study,
and the binary cross-entropy loss for the classification module,
which we refer to as the importance loss, Limportance. Notably,
since skill explanation annotations are only provided for the low-
skill video samples, the importance loss is only calculated for
those video samples.

L ¼ LInfoNCEðθÞ þ LimportanceðωÞ ð1Þ

LimportanceðωÞ ¼ � ∑
T

t¼1
ð1� ytÞ log ŷt þ yt logð1� ŷtÞ

Predicting frame importance with TWIX. When SAIS is deployed
on unseen data, the classification module, pω, can now directly
output the importance, ŷ 2 ½0; 1�, of each frame in a video
sample, and thus act as an alternative to the attention
mechanism as an indicator of the relative importance of such
frames. We refer to this method as TWIX throughout the paper.

Note that the attention mechanism is still a core element of
SAIS and continues to capture the temporal relationships
between frames irrespective of whether TWIX is adopted or not.
In fact, the method entitled attention (w/ TWIX) in the Results
section refers to the attention placed on the frames in a video
sample, as per usual, however after having adopted TWIX (i.e.,
after optimizing eq. 1). While it may seem that evaluating
explanations again based on these attention values is redundant
(i.e., akin to attention before the adoption of TWIX), we show
that such attention values can in fact change as a result of
optimizing eq. 1. This makes sense since attention is a function
of the parameters θ which, in turn, are now affected by the
inclusion of the importance loss, Limportance.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.
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Results
SAIS generates explanations that often align with human
explanations. We quantified the reliability of SAIS’ explanations
(referred to as attention) by comparing them to those generated
by human experts. To do so, we first trained and deployed SAIS
to perform skill assessment on data from the University of
Southern California (USC). We evaluated its explanations for the
needle handling and needle driving activities by using the
precision-recall (PR) curve25 (Fig. 3, see Methods for intuition
behind PR curves). We found that SAIS’ explanations often align,
albeit imperfectly, with human explanations. This is evident by
AUPRC= 0.488 and 0.428 for the needle handling (Fig. 3a) and
needle driving (Fig. 3b) activities, respectively.

Reliability of explanations is inconsistent across hospitals.
With AI systems often trained on data from one hospital and
deployed on data from another hospital, it is important that their
behaviour remains consistent across hospitals. Consistent expla-
nations can, for example, improve the trustworthiness of AI
systems37. To measure this consistency, we trained SAIS on data
from USC and deployed it on data from St. Antonius Hospital
(SAH), Gronau, Germany and Houston Methodist Hospital
(HMH), TX, USA (see Table 1 for number of video samples). We
present the precision-recall curves of AI-based explanations for
needle handling (Fig. 3a) and needle driving (Fig. 3b). We found
that the reliability of SAIS’ explanations differ across hospitals.
For example, the explanations for needle handling (Fig. 3a) are
more reliable when SAIS is deployed on data from SAH and
HMH than on data from USC. This is evident by the improved
AUPRC= 0.488→ 0.629 at SAH and AUPRC= 0.488→ 0.551
at HMH. We hypothesize that this finding is due to the higher
degree of variability in surgical activity depicted in the USC
videos relative to that in the other hospitals. This variability might
be driven by the larger number of novice surgeons who can
exhibit a wider range of surgical activity compared to expert
surgeons.

SAIS exhibits explanation bias against surgeons. We also
investigated whether AI-based explanations are equally reliable
for different sub-cohorts of surgeons within the same hospital
(Fig. 4, see Supplementary Tables 3-4 for number of samples). We
found that SAIS exhibits an explanation bias against surgeon sub-
cohorts, whereby its explanations are more reliable for one sub-
cohort than another. This is evident, for example, when SAIS
assessed the skill-level of needle handling (Fig. 4a) for surgeons
operating on prostate glands of different volumes. Whereas
AUPRC ≈ 0.54 for prostate volumes ≤ 49 ml, AUPRC ≈ 0.47 for
prostate volumes > 49ml. We observed a similar explanation bias
when SAIS assessed the skill-level of needle driving (Fig. 4b).

Explanation bias is inconsistent across hospitals. We were
further motivated to investigate whether SAIS’ explanation bias
was consistent across hospitals. To that end, we trained SAIS on
data from USC and deployed it on data from SAH and HMH,
stratifying the reliability of its explanations across surgeon sub-
cohorts (Fig. 3a,b, Supplementary Tables 5-6 outline number of
samples). We found that the explanation bias is inconsistent
across hospitals. For example, when SAIS assessed the skill-level
of needle handling (Fig. 4a) and focusing on surgeons operating
on prostate glands of different volumes, we observed an expla-
nation bias at USC (AUPRC ≈ 0.54 vs. 0.47), no bias at SAH
(AUPRC ≈ 0.63 vs. 0.63), and an explanation bias against the
opposite sub-cohort at HMH (AUPRC ≈ 0.58 vs. 0.63). We found
a similarly inconsistent explanation bias for the remaining sur-
geon groups and even when SAIS assessed the skill-level of needle
driving (Fig. 4b).

TWIX improves reliability of AI-based explanations across
hospitals. Having demonstrated that SAIS’ explanations often
align, albeit imperfectly, with human explanations, we set out to
improve their reliability. We hypothesized that by using human
explanations as supervision, we can explicitly teach SAIS to

Fig. 3 TWIX can improve the reliability of AI-based explanations across hospitals. Precision-recall curves reflecting the alignment of different AI-based
explanations with those provided by humans when assessing the skill-level of a, needle handling and b, needle driving. Note that SAIS is trained exclusively
on data from USC and then deployed on data from USC, SAH, and HMH. The solid lines and shaded areas represent the mean and standard deviation,
respectively, across 10 Monte Carlo cross-validation folds.
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generate explanations that more closely align with human
explanations (Fig. 2, right column). This strategy which we refer
to as training with explanations –TWIX –directly estimates the
importance of each video frame (see Methods). We trained
SAIS to assess the skill-level of needle handling and needle
driving, while adopting TWIX, on data exclusively from USC
and deployed it on data from USC, SAH, and HMH. We pre-
sent the reliability of AI-based explanations which take on the
form of either the attention placed on frames (attention w/
TWIX) or the direct estimate of the importance of frames
(TWIX) (Fig. 3).

We found that TWIX improves the reliability of SAIS’
attention-based explanations across hospitals. This is evident by
the higher AUPRC achieved by attention w/ TWIX. For example,
when SAIS assessed the skill-level of needle handling (Fig. 3a), the
reliability of attention AUPRC= 0.488→ 0.595 at USC,
AUPRC= 0.629→ 0.687 at SAH, and AUPRC= 0.551→ 0.617
at HMH. We did not observe such an improvement when SAIS
assessed the skill-level of needle driving (Fig. 3b). One hypothesis
for this is that needle driving exhibits a greater degree of
variability than needle handling, and therefore assessing its skill
level may require the AI system to focus on a more diverse range

Fig. 4 TWIX effectively mitigates explanation bias exhibited by SAIS against surgeons. Reliability of attention-based explanations stratified across
surgeon sub-cohorts when assessing the skill-level of a, needle handling and b, needle driving (see Supplementary Tables 3-6 for number of samples in
each sub-cohort). We do not report caseload for SAH due to insufficient samples from one sub-cohort. Effect of TWIX on the reliability of AI-based
explanations for the disadvantaged surgeon sub-cohort (worst-case AUPRC) when assessing the skill-level of c, needle handling and d, needle driving. AI-
based explanations come in the form of attention placed on frames by SAIS or through the direct estimate of frame importance by TWIX (see Methods).
We do not report caseload for SAH due to insufficient samples from one sub-cohort. Note that SAIS is trained exclusively on data from USC and then
deployed on data from USC, SAH, and HMH. Results are an average across 10 Monte Carlo cross-validation folds, and errors bars reflect the 95%
confidence interval.
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of video frames. We also found that TWIX can be more reliable
than attention-based explanations, as evident by its relatively
higher AUPRC. For example, AUPRC= 0.595→ 0.677 at USC,
AUPRC= 0.629→ 0.724 at SAH, and AUPRC= 0.551→ 0.697
at HMH (Fig. 3a). Although TWIX had a minimal benefit on the
reliability of explanations when SAIS assessed the skill-level of
needle driving (Fig. 3b), it still improved skill assessment
performance (see next sections).

TWIX can effectively mitigate explanation bias across
hospitals. With TWIX improving the reliability of AI-based
explanations on average for all surgeons, we wanted to identify if
these improvements also applied to the surgeon sub-cohort(s)
that previously experienced an explanation bias. Such an
improvement would translate to a mitigation in the bias. To do
so, we quantified the reliability of AI-based explanations for the
disadvantaged sub-cohort of surgeons (worst-case AUPRC) after
having adopted TWIX when assessing the skill-level of needle
handling (Fig. 4c) and needle driving (Fig. 4d).

We found that TWIX effectively mitigates the explanation bias
across hospitals. This is evident by the marked increased in the
reliability of SAIS’ explanations when assessing the skill-level of
needle handling (Fig. 4c) for the previously disadvantaged sub-
cohort of surgeons. For example, focusing on surgeons operating
on prostate glands of different volumes, the worst-case AUPRC ≈
0.50→ 0.60 at USC, AUPRC ≈ 0.62→ 0.75 at SAH, and
AUPRC ≈ 0.64→ 0.80 at HMH. We observed similarly effective
bias mitigation for the remaining surgeon groups. On the other
hand, we found that TWIX was not as effective in mitigating the
explanation bias when SAIS assessed the skill-level of needle
driving (Fig. 4d). We believe that such lack of improvement is due
to the high degree of variability in needle driving, implying that
the importance of frames in one video sample may not transfer to
that in another sample.

TWIX often improves AI-based skill assessments across
hospitals. Although TWIX was designed to better align AI-based
explanations with human explanations, we hypothesized that it
might also improve the performance of AI skill assessment sys-
tems. The intuition is that by learning to focus on the relevant
aspects of the video, SAIS is less likely to latch onto spurious
features. To investigate this, we present the performance of SAIS,
both with and without TWIX (w/o TWIX), when assessing the
skill-level of needle handling and needle driving (Table 2).

As expected, we found that TWIX improves AI-based skill
assessments across hospitals. This is evident by the higher AUC
values with TWIX than without it. For example, when SAIS
assessed the skill-level of needle driving (Table 2), it achieved
AUC= 0.822→ 0.850 at USC, AUC= 0.800→ 0.837 at SAH,
and AUC= 0.728→ 0.757 at HMH. These findings illustrate that
TWIX, which was adopted when SAIS was trained on data
exclusively from USC, can still have positive ramifications on
performance even when SAIS is deployed on data from an
entirely different hospital. In the case of needle handling, we
continued to observe the benefits of TWIX on performance, albeit
more marginally.

Ablation study. Throughout this study, we used the same con-
figuration (e.g., data modalities, problem setup) of SAIS as that
presented in the original study10. This was motivated by the
promising capabilities demonstrated by SAIS and its impending
deployment for the provision of feedback. Here, we show how
variants of SAIS affect the reliability of explanations (Fig. 5a) and
the explanation bias (Fig. 5b), and whether TWIX continues to
confer benefits in such settings. Specifically, in addition to

training SAIS as per normal (RGB + Flow), we also withheld a
data modality known as optical flow (RGB), and performed
multi-class skill assessment (low vs. intermediate vs. high) (Multi-
Skill). We found that TWIX consistently improves the reliability
of explanations and mitigates the explanation bias irrespective of
the experimental setting in which it is deployed. For example, in
the Multi-Skill setting, which is becoming an increasingly pre-
ferred way to assess surgeons, the average AUPRC= 0.48→ 0.67
(Fig. 5a) and the worst-case AUPRC= 0.50→ 0.68 (Fig. 5b).
These findings demonstrate the versatility of TWIX.

Providing feedback today in training environment. Our study
builds the foundation for the future implementation of AI-
augmented surgical training programs. It is very likely that, in the
short run, SAIS will be used to assess the skills of surgical trainees
and provide them with feedback on their performance. As with
practicing surgeons, it is equally important that such trainees are
also not disadvantaged by AI systems. We therefore deployed
SAIS on videos from a training environment to assess, and gen-
erate explanations for, the skill-level of the needle handling
activity performed by participants in control of the same robot
otherwise used in live surgical procedures (see Methods)
(Fig. 5, c-f).

We discovered that our findings from when SAIS was deployed
on video samples from live surgical procedures transfer to the
training environment. We found that AI-based explanations often
align with those provided by human experts, and that TWIX
enhances the reliability of these explanations (Fig. 5c). New to
this setting, we found that SAIS exhibits an explanation bias
against male surgical trainees (Fig. 5d), an analysis typically
precluded by the imbalance in the gender demographics of
urology surgeons (national average: > 90% male38). Consistent
with previous findings, we found that TWIX mitigates the
explanation bias, as evident by the improvement in the worst-case
AUPRC (Fig. 5e), and improves SAIS’ skill assessment capabil-
ities, with an improvement in the AUC (Fig. 5f).

Discussion
Surgical AI systems can now reliably assess surgeon skills while
simultaneously generating an explanation for their assessments.
With such explanations likely to inform the provision of feedback
to surgeons, it is critical that they align with the expectations of
humans and treat all surgeons fairly. However, it has remained an
open question whether AI-based explanations exhibit these
characteristics.

In this study, we quantified the reliability of explanations
generated by surgical AI systems by comparing them to human
explanations, and investigated whether such systems generate
different quality explanations for different surgeon sub-cohorts.

Table 2 TWIX often improves AI-based skill assessments
across hospitals.

Skill Hospital w/o TWIX TWIX

needle
handling

USC 0.849 (0.06) 0.859 (0.05)

SAH 0.873 (0.24) 0.885 (0.02)
HMH 0.795 (0.19) 0.794 (0.03)

needle driving USC 0.822 (0.05) 0.850 (0.04)
SAH 0.800 (0.04) 0.837 (0.03)
HMH 0.728 (0.05) 0.757 (0.03)

Effect of TWIX on SAIS’ ability to assess the skill-level of needle handling and needle driving.
Values in bold reflect improvements in performance. Note that SAIS is trained exclusively on
data from USC and then deployed on data from USC, SAH, and HMH. Results are an average
(standard deviation) across 10 Monte Carlo cross-validation folds.
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We showed that while AI-based explanations often align with
those generated by humans, they can exhibit a bias against sur-
geon sub-cohorts. To remedy this, we proposed a strategy –TWIX
–which uses human explanations as supervision to explicitly
teach an AI system to highlight important video frames. We
demonstrated that TWIX can improve the reliability and fairness
of AI-based explanations, and the overall performance of AI skill
assessment systems.

Our study addresses several open questions in the literature.
First, the degree of alignment between AI-based explanations and
human explanations, and thus their reliability, has thus far
remained unknown for video-based surgical AI systems. In pre-
vious work, AI-based explanations are often evaluated based on
how effectively they guide a human in identifying the content of an
image39,40 and facilitate the detection of errors committed by a
model41,42. Second, it has also remained unknown whether AI-
based explanations exhibit a bias, where their reliability differs
across surgeon sub-cohorts. Although preliminary studies have
begun to explore the intersection of bias and explanations26,27,43,
they do not leverage human expert explanations, are limited to
non-surgical domains, and do not present findings for video-based
AI systems. Third, the development of a strategy that consistently
improves the reliability and fairness of explanations has been
underexplored. Although previous studies have incorporated
human explanations into the algorithmic learning process25,44, they
are primarily limited to the discipline of natural language proces-
sing and, importantly, do not demonstrate its effectiveness in also
improving the fairness of AI-based explanations.

Without first quantifying the reliability and fairness of AI-based
explanations, it becomes difficult to evaluate the preparedness of an

AI system for the provision of feedback to surgeons. The impli-
cations of misguided feedback can be grave, affecting both surgeons
and the patients they eventually operate on. From the surgeon’s
perspective, receiving unreliable feedback can hinder their profes-
sional development, unnecessarily lengthen their learning curve,
and prevent them from mastering surgical technical skills. These
are acutely problematic given that learning curves for certain
procedures can span up to 1000 surgeries45 and that surgeon
performance correlates with postoperative patient outcomes46,47.
Quantifying the discrepancy in the quality of feedback is equally
important. A discrepancy, which we referred to as an explanation
bias, results in the provision of feedback that is more reliable for
one surgeon sub-cohort than another. Given that feedback can
accelerate a surgeon’s acquisition of skills, an explanation bias can
unintentionally widen the disparity in the skill-set of surgeons.
Combined, these implications can complicate the ethical integra-
tion of AI systems into surgical training and surgeon credentialing
programs. Nonetheless, we believe our framework for quantifying
and subsequently improving the alignment of AI-based explana-
tions can benefit other disciplines involving assessments and
feedback based on videos, such as childhood education48 and
workplace training49.

There are certain limitations to our study. We have only
measured the reliability of explanations and the effectiveness of
TWIX on a single type of surgical activity, namely suturing.
However, surgeons must often master a suite of technical skills,
including tissue dissection, to proficiently and independently
complete an entire surgical procedure. An AI-augmented surgical
training program will likely benefit from reliable assessments of
distinct surgical activities and corresponding explanations of

Fig. 5 TWIX’ benefits persist across different experimental settings.We present the effect of TWIX, in different experimental settings (ablation studies),
on a, the reliability of explanations generated by SAIS, quantified via the AUPRC, and b, the explanation bias, quantified via improvements in the worst-case
AUPRC (see Supplementary Tables 3-6 for number of samples in each sub-cohort). The default experimental setting is RGB + Flow and was used
throughout this study. Other settings include withholding optical flow from SAIS (RGB) and formulating a multi-class skill assessment task (Multi-Skill).
c–f SAIS can be used today to provide feedback to surgical trainees. c AI-based explanations often align with those provided by human experts. d SAIS
exhibits an explanation bias against male surgical trainees. e TWIX mitigates the explanation bias by improving the reliability of explanations provided to
male surgical trainees and f improves SAIS' performance in assessing the skill-level of needle handling. Note that SAIS is trained exclusively on live data
from USC and then deployed on data from the training environment. Results are shown for all 10 Monte Carlo cross-validation folds.
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those assessments. Furthermore, TWIX requires human-based
explanations, which, in the best-case scenario, are difficult and
time-consuming to retrieve from experts and, in the worst-case
scenario, ambiguous and subjective to provide. Our explanation
annotations avoided this latter scenario since they were depen-
dent on a strict set of criteria28 associated with both visual and
motion cues present in the surgical videos. We therefore believe
that our approach can be useful in other settings which share
these characteristics; where expectations from an AI system can
be codified by humans.

We have also made the assumption that AI-based explanations
are considered reliable only when they align with human expla-
nations. This interpretation has two potential drawbacks. First, it
overlooks the myriad ways in which explanations can be viewed
as reliable. For example, they may align with a time period of high
blood loss during surgery, which could be consistent with poor
postoperative patient outcomes. Evaluating explanations in this
way is promising as it would obviate the need for ground-truth
human explanations. Instead, the ground-truth importance of
video frames can be derived from the context of the surgery (e.g.,
what and where surgical activity is taking place), which can
automatically be decoded by systems like SAIS. Second, con-
straining AI-based explanations to match human explanations
overlooks their promise for the discovery of novel aberrant (or
optimal) surgeon behaviour, contributing to the scientific body of
knowledge and informing future surgical protocols. Although
such discovery is beyond the scope of the present work, it is likely
to yield value, for example, when associating intraoperative sur-
gical activity with postoperative patient outcomes.

Several open questions remain unaddressed. First, it remains
unknown whether SAIS’ explanations accelerate the acquisition of
skills by surgical trainees. To investigate this, we plan to conduct a
prospective trial amongst medical students in a controlled
training environment. Second, despite attempts to define optimal
feedback50,51, in which explanations play an essential role52, its
embodiment remains elusive. In pursuit of that definition, recent
frameworks such as the feedback triangle53 may hold promise,
emphasizing the cognitive54,55, affective, and structural dimen-
sions of feedback. Third, while we have demonstrated that SAIS
generates explanations whose reliability differs for different sur-
geon sub-cohorts, it remains to be seen whether this discrepancy
will result in notable harmful consequences. After all, a dis-
crepancy may only translate to an explanation bias if it is
unjustified and harmful to surgeons56.

Surgical training programs continue to adopt the 20th century
Halstedian model of “see one, do one, teach one”57 in reference to
learning how to perform surgical procedures. In contrast, AI-
augmented surgical training programs can democratize the
acquisition of surgical skills on a global scale58,59 and improve the
long-term postoperative outcomes of patients.

Data availability
As the data contain protected health information, the videos of live surgical procedures
and the patients’ corresponding demographic information from the University of
Southern California, St. Antonius Hospital, and Houston Methodist Hospital are not
publicly available. However, since the data from the training environment do not involve
patients, those videos and annotations are available on Zenodo (https://zenodo.org/
record/7221656#.Y-ZIfi_MI2y) upon reasonable request from the authors. Source data
for Fig. 1 is in Supplementary Data 1. Source data for Fig. 3 is in Supplementary Data 2.
Source data for Fig. 4 is in Supplementary Data 3 and 4. Source data for Fig. 5 is in
Supplementary Data 5.

Code availability
While SAIS, the underlying AI system, can be accessed at https://github.com/
danikiyasseh/SAIS, the code for the existing study can be found at https://github.com/
danikiyasseh/TWIX.
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