
ARTICLE

DNA methylation age acceleration is associated
with risk of diabetes complications
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Abstract

Background Patients with Type 2 diabetes mellitus (T2D) are at risk for micro- and mac-

rovascular complications. Implementable risk scores are needed to improve targeted pre-

vention for patients that are particularly susceptible to complications. The epigenetic clock

estimates an individual’s biological age using DNA methylation profiles.

Methods In this study, we examined older adults of the Berlin Aging Study II that were

reexamined on average 7.4 years after baseline assessment as part of the GendAge study.

DNA methylation age (DNAmA) and its deviation from chronological age DNAmA accel-

eration (DNAmAA) were calculated with the 7-CpG clock (available at both timepoints,

n= 1,071), Horvath’s clock, Hannum’s clock, PhenoAge and GrimAge (available at follow-up

only, n= 1,067). T2D associated complications were assessed with the Diabetes Compli-

cations Severity Index (DCSI).

Results We report on a statistically significant association between oral glucose tolerance

test results and Hannum and PhenoAge DNAmAA. PhenoAge was also associated with

fasting glucose. In contrast, we found no cross-sectional association after covariate adjust-

ment between DNAmAA and a diagnosis of T2D. However, longitudinal analyses showed

that every additional year of 7-CpG DNAmAA at baseline increased the odds for developing

one or more additional complications or worsening of an already existing complication during

the follow-up period by 11% in male participants with T2D. This association persisted after

covariate adjustment (OR= 1.11, p= 0.045, n= 56).

Conclusion Although our results remain to be independently validated, this study shows

promising evidence of utility of the 7-CpG clock in identifying patients with diabetes who are

at high risk for developing complications.
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Plain language summary
Deterioration of vision, kidney func-

tion and cardiovascular function are

just a few examples of diabetes-

related complications. However, not

all patients develop these complica-

tions, and it is desirable to detect

patients that have a high risk for the

complications early. In this study, we

examine markers, which are based on

reversible modifications of the DNA,

in the context of diabetes and its

complications. We found that one of

these biomarkers is able to predict

the development of diabetes compli-

cations over a period of about seven

years in our dataset. If these results

can be confirmed in other studies, our

findings might help physicians to

identify patients with diabetes that

have an increased risk for developing

complications in the future.
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The global number of people diagnosed with diabetes mel-
litus has increased fivefold to 537 million over the last 31
years1,2 and is projected to increase further to 784 million

until 20451.
The disease’s impact on well-being and daily living differs

between individuals and is substantially driven by its
complications3. Besides acute complications like diabetic ketoa-
cidosis, hyperosmolar coma, and hypoglycemia, chronic micro-
vascular (retinopathy, nephropathy and neuropathy) and
macrovascular (coronary artery disease, peripheral artery disease
and stroke) complications4 can result from diabetes mellitus.
While some of these complications are life-threatening, others are
at least disabling and can result in substantial emotional and
financial burden for the affected individual and their family
members2,5. Furthermore, the resulting costs for the health care
system are high1 and expected to rise further6. A substantial part
of these costs was attributed to diabetic complications2,7–10.

Although complications cannot be prevented completely by the
currently available therapeutic options, early interventions can
delay their onset11 and prevent potentially severe disease pro-
gression. Although several risk scores for diabetic complications
exist (reviewed in refs. 12–18), they are not used regularly in
clinical practice19 nor are recommended by health
organizations2,19,20. Therefore, the demand for a risk score with
high predictive power that is based on reliable and well-assessable
data is still not met. To further improve diabetic complication
prediction models, biomarkers were noted to be especially
beneficial5.

In this study we evaluate an established biomarker of aging,
DNA methylation age acceleration (DNAmAA)21, in a sample of
1100 participants of the Berlin Aging Study II (BASE-II) that
were reassessed on average 7.4 years later as part of the GendAge
study. This large longitudinal cohort has been investigated with
respect to prevalence and incidence of T2D before22.

In a first step, the cross-sectional relationship between DNA-
mAA estimated from five epigenetic clocks (7-CpG clock, Hor-
vath’s clock, Hannum’s clock, PhenoAge, GrimAge), prevalent
T2D, and several T2D-associated blood parameters was exam-
ined. Previously published studies reported contradictory results.
Dugue and colleagues23, Irvin and colleagues24, and Roetker and
colleagues25 found statistically significant associations between
Horvath and Hannum clock estimates and T2D. However,
McCartney and colleagues26 and Horvath and colleagues27 did
not find any association between both variables.

In a second step, we analyzed these epigenetic clocks with
respect to T2D-associated complications which were measured
with the Diabetes Complications Severity Index (DCSI). To our
knowledge, this is the first study that explores this relationship.

Cross-sectional associations were found for the Hannum and
PhenoAge DNAmAA and longitudinal analyses suggest that the
7-CpG DNAmAA can help in the prediction of diabetic com-
plications in men.

Methods
BASE-II and GendAge study. The BASE-II is an explorative
multi-disciplinary study that examines factors promoting healthy
vs. unhealthy aging. The medical part of this study included 1671
participants of the greater Berlin metropolitan area between the
age of 60–85 years as assessed at baseline between 2009 and 2014.
An additional group of 500 younger participants was assessed as
well (age range 20 to 37 years) but is not analyzed in this study.
After an average follow-up period of 7.4 years, 1083 participants
of the older age group were reassessed as part of the GendAge
study and are therefore available for longitudinal analyses. An
additional 17 participants were only assessed at follow-up

examination. Participants who were assessed at baseline but not
at follow-up were compared to participants who provided long-
itudinal data in a previously published manuscript. Participants
without follow-up data were older and less educated, but they
were no different from the follow-up participants with respect to
gender and overall morbidity22.

All participants gave written informed consent. The Ethics
Committee of the Charite ́ – Universitätsmedizin Berlin approved
the studies (approval numbers EA2/029/09 and EA2/144/16). The
studies were conducted in accordance with the Declaration of
Helsinki and were registered in the German Clinical Trials
Registry as DRKS00009277 and DRKS00016157.

DNA methylation age. DNA methylation age (DNAmA) esti-
mated from the 7-CpG clock was available for baseline and
follow-up examination. This clock was trained on samples
obtained from BASE-II participants during baseline
examination28 and is calculated from methylation data deter-
mined by methylation-sensitive single-nucleotide primer exten-
sion (MS-SNuPE)29. Briefly, genomic DNA was isolated from
whole blood samples and bisulfite converted. Subsequently, the
areas of interest were amplified by a multiplex polymerase chain
reaction. Finally, the SNuPE reaction was performed and the
methylation fraction of the seven CpG sites of interest was
measured by a 3730 DNA Analyzer (Applied Biosystems,
HITACHI). The average change of 7-CpG DNAmA between
baseline and follow up per year was 0.75 years (SD= 0.64 years,
range: −4.8 to 5.4 years, n= 96530,) and correlation between
DNAmA at T0 and T1 was high (r= Pearson’s r= 0.81,
n= 96530,). A detailed description of methods was previously
published for baseline28 and follow-up30,31.

For follow-up only, four additional DNAmA measures were
available that were estimated from epigenome wide DNAm
profiles obtained through Illumina’s Infinium MethylationEPIC
array (Illumina Inc., USA). Horvath’s clock32, Hannum’s clock33,
PhenoAge34 and GrimAge35 were used to estimate DNAmA by
the manual on Steve Horvath’s website (https://horvath.genetics.
ucla.edu/html/dnamage/). Briefly, outliers were identified by R’s
outlyx function (bigmelon36 package), which determines them
based on the interquartile range (iqr=TRUE) and the pcout
function of R’s mvoutlier package (mvP=0.15). The pcout
function uses the method described by Filzmoser, Maronna,
and Werner37 for fast identification of outliers in high-
dimensional datasets. Outliers (identified by the outlyx and
pcout function in the R-package bigmelon36) and samples with a
bisulfite conversion efficiency below 80% were removed. The
resulting sample set was reloaded and normalized with the
package’s dasen function. Samples that had a root-mean squared
deviation of 0.1 or more in beta-values before and after
normalization were excluded. For epigenetic clock estimations,
the raw (i.e., not normalized) DNAm values were uploaded to the
website, according to the instructions in the manual. DNAmA of
all five epigenetic clocks were moderately correlated with each
other (Pearson’s r= 0.4 to 0.6, Supplementary Fig. 2A of ref. 30).
Detailed information on methods and longitudinal and cross-
sectional descriptive statistics of the available DNAmA measures
at follow-up can be found in ref. 30.

DNA methylation age acceleration. To adjust for known age-
associated changes in leukocyte cell composition, we calculated
DNAmAA as residuals from a cell count (neutrophils, monocytes,
lymphocytes, eosinophils) adjusted linear regression analysis of
DNAmA on chronological age28,38 of all available participants.
All cell counts were determined in a certified routine laboratory
by flow cytometry (MVZ Labor 28 GmbH, Berlin, Germany). As
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expected, correlation between DNAmAA and chronological age
was low (|Pearson’s r | <0.0930,).

Diabetes mellitus type 2 (T2D) and Diabetes Complications
Severity Index (DCSI). A detailed report on methodology and
descriptive statistics of T2D in BASE-II and GendAge was
reported before22. Diagnostic criteria of the American Diabetes
Association (ADA) guidelines were used to identify participants
with T2D39.

The DCSI which was developed by Young and colleagues40

incorporates information about seven categories of complications:
Retinopathy, nephropathy, neuropathy, cerebrovascular disease,
cardiovascular disease, peripheral vascular disease, and metabolic
complications. One-on-one interviews between a study physician
and the BASE-II participants were conducted and physician’s
letters and other medical documents were taken into account to
assess previously diagnosed complications in the noted categories.
A detailed list of the complications assessed in the BASE-II cohort
and the corresponding items of the original manuscript of Young
and colleagues is described in Supplementary Table 2 of ref. 22.

The resulting score is calculated based on the severity (as
defined by Young and colleagues40) of the respective complica-
tion (0=none, 1=some and 2=severe), except for neuropathy
which can only result in a score of 0 or 1. Relevant information
on the metabolic status were not available in this sample,
therefore a maximum of 11 points was achievable. Dichotomized
DCSI was calculated to distinguish the group of participants
whose DCSI score did not increase (not increased) during follow-
up from those whose DCSI score increased by at least one point
(increased). The average change in DCSI per year during follow-
up period was calculated as difference between DCSI at T1 and
T0 divided by follow-up time. A detailed description on how the
DCSI was assessed in this cohort is provided in ref. 22.

Covariates. Sex-differences in aging and in DNAmAA are well
documented27,30,41,42. Therefore, sex was included in all regres-
sion models and sex-stratified analyses were performed. Smoking
behavior (in packyears) and alcohol consumption (baseline: g/d
via food frequency questionnaire43, follow-up: yes/no) were
assessed in one-to-one interviews. Body mass index was calcu-
lated by height and weight measures obtained from the 763 seca
measuring station (SECA, Germany). Diabetic medication was
assessed by participants self-reports and/or from the medication
list participants provided during both examinations.

Statistical analyses. Statistical analyses and all figures were con-
ducted in the software package R 3.6.244. Logistic regression
analyses were performed using the glm function (famil-
y=binomial) of the R’s stats package. Linear regression analyses
were computed with the lm function (stats package). ROC curves
were calculated with the proc package’s roc function45. The same
package was used to draw the Kaplan–Meier curves (ggroc
function). Significance of difference between ROC curves was
computed with the roc.test45 function that employs the approach
described by DeLong and colleagues46.

The ggplot2 package47 was used to draw the figures included in
this manuscript. Beeswarm plots were drawn with the geom_-
beeswarm function (ggbeeswarm package)48. Boxplots were
drawn with the geom_boxplot function. The median, hinges
(corresponding to 25th and 75th percentile) and whiskers
(1.5*inter-quartile range (IQR)) are shown. Outliers, defined as
datapoints that lie beyond the whiskers, are shown as individual
data points.

Statistical significance in differences between groups displayed
in boxplots was assessed with the stat_compare_means function
of the ggpubr package (computing a two-sided t-test)49.

An available case analysis was performed. Therefore, partici-
pants who did not provide information on all variables needed for
an analysis were excluded from it. The analyzed sample size is
indicated for each analysis. Nominal statistical significance was
defined at an alpha of 0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Cohort characteristics. As previously reported, 12.9% (n= 209
of a total sample of n= 1,625) of the participants were diagnosed
with T2D at baseline 22. On average, 7.4 years later this number
increased to 17.1% (n= 185 of a total sample of n= 1,083)
among the participants who completed the follow-up
assessments22.

The mean age of BASE-II participants with diagnosed T2D at
baseline and a completed follow-up examination was 68.0 years
(SD= 3.7 years, n= 126, 41.3 % female, Table 1) at baseline and
75.5 years (SD= 4.1 years, Table 1) at follow-up. The DCSI of
54.8% (n= 69) of these participants increased during the on
average 7.4-year follow-up period. The average increase in this
group was 2.5 points for women (SD= 1.4, n= 28) and 1.9 points
in the subgroup of men (SD= 1.0, n= 41). Male participants
with T2D were found to have a significantly higher DCSI than
women with T2D at baseline (difference= 0.71 points, p= 0.005,
Supplementary Table 1). This difference was smaller and not
statistically significant at follow-up (difference= 0.26, p= 0.5,
Supplementary Table 1). Approximately the same number of men
and women had a higher DCSI score at follow-up compared to
baseline (women: 53.9%, men: 55.4%, Supplementary Table 1).

Association between five DNAmAA measures, diagnosed T2D
and diagnostic blood parameters. At follow-up, we found parti-
cipants with diagnosed T2D to have 0.93 years higher PhenoAge
DNAmAA (p= 0.042, Fig. 1) and 0.85 year higher GrimAge
DNAmAA (p= 0.003, Fig. 1) than participant that were not diag-
nosed with T2D. Sex-stratified analyses are shown in Supplemen-
tary Fig. 1. After adjustment for covariates in cross-sectional logistic
regression analyses of the T2D diagnosis (yes/no) on DNAmAA of
all five epigenetic clocks, no statistically significant association
between these variables was found (logistic regression, Table 2,
unadjusted models in Supplementary Table 2).

The only available epigenetic clock estimate at baseline
examination, 7-CpG DNAmAA, was neither cross-sectionally
associated with diagnosed T2D at baseline nor longitudinally
associated with diagnosed T2D at follow-up. This was true for
sex-stratified analyses as well (logistic regression, Supplementary
Table 3 and Supplementary Table 4).

Fasting glucose was significantly associated with PhenoAge
DNAmAA after adjustment for chronological age, sex, alcohol
consumption (yes/no), smoking (packyears), antidiabetic medica-
tion (yes/no) and BMI (Table 3, β= 0.26, SE= 0.10, p= 0.013,
linear regression, unadjusted models in Supplementary Table 5).
Additionally, a statistically significant positive association was
found between PhenoAge DNAmAA and results from the oral
glucose tolerance test (oGTT, β= 0.75, SE= 0.26, p= 0.003,
n= 762, linear regression, Table 3). Similarly, a statistically
significant association of about the same effect size was found
between Hannum’s DNAmAA and oGTT in the highest adjusted
model (β= 0.78, SE= 0.34, p= 0.023, n= 762, linear regression,
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Table 3). However, none of the examined DNAmAA measures
were associated with glycosylated hemoglobin (HbA1c, p > 0.2,
Table 3). In sex-stratified analyses, only the association between
PhenoAge DNAmAA and oGTT in men remained statistically
significant after covariate adjustment (β= 0.96, SE= 0.39,
p= 0.014, n= 353, linear regression, Supplementary Table 6).

Cross-sectional association between DNAmAA of five different
epigenetic clocks and DCSI. Cross-sectional analyses between
7-CpG DNAmAA and DCSI at baseline examination did not
reveal statistically significant associations (Supplementary
Table 7). Additional to the longitudinally available 7-CpG clock,
four more epigenetic clocks were available at follow-up

Fig. 1 Boxplots of DNAmAA estimates by five different epigenetic clocks, stratified by their diagnostic status (T2D vs. no T2D) at follow-up
examination. Median, hinges (25th and 75th percentile) and Tukey-style whiskers (1.5* inter-quartile-range) are displayed. 7-CpG Clock DNAmAA:
n= 1055; Horvath Clock DNAmAA, Hannum Clock DNAmAA, PhenoAge DNAmAA, GrimAge DNAmAA: n= 1051. Note: CpG=Cytosine phosphate
guanine, DNAmAA=DNA methylation age acceleration.

Table 1 Cohort characteristic of participants that were diagnosed with T2D at baseline and completed follow-up on average 7.4
years later (n= 126).

n mean, % sd min max

Sex (female) 52 41.27
Chronological Age (T0) 126 68.04 3.68 61.37 77.29
Chronological Age (T1) 126 75.46 4.09 66.78 85.94
7-CpG DNAmA (T0) 109 66.68 8.00 40.25 90.62
7-CpG DNAmAA (T0) 101 0.75 7.09 −20.75 22.33
Smoking (packyears, T0) 101 15.41 18.77 0 80
Alcohol intake (g/d, T0) 108 15.75 16.65 0.44 86.40
BMI (T0) 110 29.40 4.15 19.41 39.87
Antidiabetic medication (yes, T0) 66 52.80
DCSI (T0) 126 1.13 1.40 0 7
DCSI (T1) 126 2.07 1.87 0 7
DCSI increase (yes) 69 54.76
Fasting Glucose (T0) 121 123.45 31.61 59.00 254.00
oGTT (T0)* 42 193.64 61.45 94.00 308.00
HbA1c (T0) 119 6.48 0.73 5.00 8.90

DNAmA DNA methylation age, DNAmAA DNA methylation age acceleration, T0 baseline examination, T1 follow-up examination, g/d gram per day, DCSI Diabetes Complications Severity Index, oGTT
oral glucose tolerance test, HbA1c glycated hemoglobin. *OGTT was only assessed in participants that were not already diagnosed with T2D before examination. Therefore, only comparatively few
participants provide information in the subgroup shown here. Cohort characteristics of the whole dataset of participants at follow-up (n= 1100) are provided in Supplementary Table 8.
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examination. Cohort characteristics of analyzed participants at
follow-up are displayed in Supplementary Table 8. Cross-
sectional linear regression analyses were performed to analyze
the relationship between these biological age measures and DCSI
in participants with diagnosed T2D at follow-up. No association
between any of the available epigenetic clocks and DCSI was
statistically significant after adjustment for covariates (linear
regression, Table 4). Unadjusted and minimally adjusted models
are displayed in Supplementary Table 9.

7-CpG DNAmAA predicts additional complications after 7.4-
year follow-up time in subgroup of men. Participants who
reported additional or worsened complications during the follow-
up period had a 2.3 year higher 7-CpG DNAmAA at baseline
(p= 0.1, Fig. 2). Sex-stratified subgroup analyses revealed a sta-
tistically significant difference of 4.5 years higher baseline 7-CpG
DNAmAA in men whose DCSI increased after examination
(p < 0.01, Fig. 2). However, in the female subgroup this associa-
tion was inverse and not statistically significant (difference
between means: 1.8 years, p= 0.4, Fig. 2).

To account for potential confounders, we performed a logistic
regression analysis of the dichotomized change in DCSI on
7-CpG DNAmAA and covariates. In line with the findings
reported above, we found a 11% increase of the odds for
developing at least one additional or worsened complication
captured by the DCSI during follow-up period for every
additional year of DNAmAA in the subgroup of men. This
association was independent from DCSI at baseline, chronologi-
cal age, smoking, alcohol consumption, antidiabetic medication
and BMI (OR= 1.11, p= 0.045, n= 56, logistic regression,
Table 5, unadjusted models in Supplementary Table 10). No
statistically significant association was found in the whole group
(OR= 1.04, p= 0.22) and in the female subgroup (OR= 0.996,
p= 0.95, Table 5). Similar results were found when analyzing the
continuous change in DCSI per year during the follow-up period
in a linear regression analysis (Supplementary Table 11). Receiver
operating characteristic (ROC) curves of the highest adjusted
model are displayed in Fig. 3. The area under the curve (AUC) of
the ROC curve that resulted from the logistic regression model of
all participants and the male and female subgroups was 0.6, 0.8
and 0.7. Interestingly, the inclusion of DNAmAA improved the
predictive model in the subgroup of women of about the same
degree as in the male subgroup (Fig. 3), although it did not
contribute significantly to the logistic regression model. This
might be the result of the small sample size available in this
subgroup. The ROC-curves did not differ statistically (p > 0.05)
which probably needs to be attributed to the small sample size as
well.

Discussion
As a main result of the current study, we found that the 7-CpG
clock derived variable DNAmAA was not associated with the
diagnosis of T2D. However, baseline 7-CpG DNAmAA was
associated with T2D severity on average 7.4 years later as oper-
ationalized by the DCSI in men. Although the four other analyzed
epigenetic clocks were only available for cross-sectional analyses
at follow-up, a similar predictive ability would be expected at least
for PhenoAge DNAmAA. This clock derivative was associated
with diagnosis of T2D (t-test), fasting glucose and results in the
oGTT, a well-established test for impaired glucose tolerance (lin-
ear regression). These promising findings suggest that the 7-CpG
clock (and possibly other clocks as well) might be able to sub-
stantially improve future diabetic complication risk scores.

The predictive ability of 7-CpG DNAmAA was analyzed by
AUC of the logistic regression models of increase in DCSI (yes/ T
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no) during follow-up on 7-CpG DNAmAA at baseline and cov-
ariates which was in the acceptable range (AUC= 0.8, Fig. 3)50.
To our knowledge, there are no models available that aim at the
prediction of the DCSI and could be used for a meaningful
comparison of performance. However, numerous scores for
specific micro- and macrovascular complications were reported
before (reviewed in ref. 12–14,16,18). Saputro and colleagues
reported on pooled C-statistics of logit-based models from cohort
studies. Results for diabetic nephropathy (11 studies, 1 to 10 years
of follow-up time, AUC= 0.78)18 and diabetic retinopathy
(6 studies, 1 to 20 years of follow-up time, AUC= 0.82)18 were in
a similar range to the model reported in this study. Similarly,
Chowdhury and colleagues reported on a median AUC of 0.71 of
nine models designed to predict stroke in patients with T2D (1.4
to 10.5 years of follow-up time)14 and Beulens and colleagues
reported on an AUC between 0.54 and 0.81 of 20 models that
aimed at the prediction of foot ulcer (1 to 5 years follow-up
time51). A detailed analysis of the previously developed risk
models and the incorporated predictors is beyond the scope of
this manuscript and was done before12–14,16,18 and the compar-
ability between models is limited due to the high variability in the
methods, cohorts and outcomes that were used to develop these
risk scores. However, the results show that the 7-CpG DNAmAA
informed regression model presented in this study performs in a
comparable range (and sometimes better) than more complica-
tion specific risk models. This is especially intriguing as several

aspects of this still comparatively new biomarker seem very well
suited for prediction modelling. First, the 7-CpG clock can be
obtained through two different methodological approaches. It was
developed for the MS-SNuPE method that can be conducted cost-
effectively even in smaller laboratories28, but additionally can be
determined based on epigenome-wide array data, such as data
obtained by microarrays31. Therefore, it can easily be applied to
cohorts where epigenome-wide data is already available. Second,
biomarkers allow an objective assessment of the individual
complication risk. They are independent from factors that might
interfere with data assessment in a clinical context, such as a
language barrier, inaccurate or biased memory, unstandardized
documentation, or examiner bias. An advantage of this specific
biomarker is that changes in the epigenetic clock seem to result
from lifelong and cumulative influences52. Therefore, it is
expected to be robust against short-term changes and circadian
differences that can complicate the use of biomarkers in a clinical
context. In contrast to (poly-)genetic risk scores that are set at
birth, the epigenetic clock changes throughout life. We and others
have shown that these changes are potentially sensitive to
interventions53–57 and lifestyle factors38. Whether this is true for
T2D specific interventions needs to be examined in sufficiently
sized longitudinal studies. A meaningful relationship, however,
seems plausible because high levels of glucose were shown to
change DNA methylation by upregulating methylating enzymes
and downregulating demethylating enzymes in in-vitro experi-
ments of rat cells58.

Despite these promising results in terms of complications
related to T2D, no association was found between T2D diagnosis
and DNAmAA of all five available clocks after adjustment for
covariates (Table 2). In contrast to the first-generation clocks (7-
CpG, Horvath’s and Hannum’s clock) that were trained to predict
chronological age, PhenoAge and GrimAge were trained to pre-
dict phenotype-based biological age estimates. The negative
findings with respect to the first-generation clocks reported here
are in line with results that were reported by McCartney and
colleagues26 and Horvath and colleagues27. In contrast, positive
associations between Horvath’s or Hannum’s DNAmAA and
history of diabetes were reported by Dugue and colleagues23,
Irvin and colleagues24, and Roetker and colleagues25. However,
these cohorts differed in sex-distribution, age-range, or their

Fig. 2 Boxplot of 7-CpG DNAmAA at baseline stratified by increase in DCSI during follow-up period. Analyses were performed on all participants and in
sex-stratified subgroups. Median, hinges (25th and 75th percentile) and Tukey-style whiskers (1.5* inter-quartile-range) are displayed. Women and Men:
n= 101; Women: n= 36; Men: n= 65. Note: CpG=Cytosine phosphate guanine, DNAmAA=DNA methylation age acceleration, DCSI=Diabetes
Complications Severity Index.

Table 5 Logistic regression of increase in DCSI of one or
more points vs. no increase in DCSI (dichotomized) between
baseline and follow-up on 7-CpG DNAmAA at baseline and
covariates.

Model Estimate SE OR p-value n

All 0.040 0.033 1.041 0.219 89
Women −0.004 0.061 0.996 0.949 33
Men 0.101 0.051 1.106 0.045* 56

Analyses are adjusted for DCSI (T0), chronological age (T0), sex (if applicable), smoking
(packyears, T0), alcohol consumption (g/d, T0), antidiabetic medication (yes/no, T0), and BMI
(T0). Included are all participants with diagnosed T2D at baseline.
T0 baseline, SE standard error, OR odds ratio. * p < 0.05.
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statistical approach from the analyses presented here, which
might at least partially explain the difference in findings. To our
knowledge, GrimAge is the only second-generation clock that was
examined with respect to T2D before. Kim and colleagues found
an association between GrimAge DNAmAA and T2D (OR=
2.57, 95% CI: 1.61–4.11) in 318 obese participants (mean age=
40 years, 53% female). This association could not be found in the
overweight and normal weight group of the study59. An asso-
ciation between GrimAge DNAmAA and T2D was found in this
study as well (OR= 1.07, p= 0.002, n= 1051, model 1, Supple-
mentary Table 2), but in contrast to the findings by Kim and
colleagues this association did not persist after inclusion of
covariates.

To further evaluate the epigenetic clocks in the context of
T2D, we performed linear regression analyses of T2D-associated
blood parameters on DNAmAA. A statistically significant
association between PhenoAge DNAmAA and fasting glucose
was found (Table 3). This association seems plausible because
serum glucose was included in the phenotypic age measure that
was used to train the PhenoAge clock34. The oGTT, a test used
to assess how glucose is metabolized and that is used to diag-
nose T2D, was significantly associated with PhenoAge DNA-
mAA and Hannum’s DNAmAA after covariate adjustment
(Table 3). To our knowledge, this association has not been
examined before.

There are several limitations to this study which we summarize
as follows. First, the small sample size of participants with diag-
nosed T2D at baseline might be the reason for the lack of sta-
tistical significance in some analyses. A replication of these
analyses in larger cohorts of patients with T2D is therefore nee-
ded. Second, we were not able to evaluate the predictive ability of
the logistic regression model in an independent dataset. However,
such independent validation and calibration analyses are crucial
before translation into clinical practice is possible. Third, due to
the exploratory approach of this study and in line with most
studies of this field, we did not adjust our analyses for multiple
testing. However, an increased rate of false-positive findings can
therefore not be ruled out and our findings need to be replicated
and validated in an independent cohort. Fourth, the outcome
variable that represents diabetic complications, DCSI, reflects a
general burden instead of a highly differentiated assessments of a
specific T2D-associated complication. However, the general
assessment of risk for complications is closer to clinical practice
than a potentially better but complication-specific risk estimation.

This could help implementing a risk score in clinical practice in
the future, where health care workers are challenged with the
identification of patients with a generally high risk for compli-
cations rather than a high risk for specific complications.
Nevertheless, further analyses examining the relationship between
DNAmAA and individual T2D-associated complications are
needed.

Strengths of this study include the wide variety of different
epigenetic clock estimates assessed and the longitudinally avail-
able 7-CpG clock, which allowed a comprehensive evaluation of
this still comparatively new biomarker of aging. Furthermore, the
analyzed BASE-II cohort is well characterized with respect to
T2D22 and provides a robust data base that allows the compar-
ison of different T2D-associated variables and adjustment for
relevant covariates.

Conclusion
None of the epigenetic clocks analyzed in this study were asso-
ciated with diagnosis of T2D after adjustment for covariates.
However, Hannum and PhenoAge DNAmAA showed a statisti-
cally significant association with oGTT. Furthermore, PhenoAge
DNAmAA was associated with fasting glucose. Despite the lack of
association between the 7-CpG clock with T2D and associated
blood parameters, a one-year increase in 7-CpG DNAmAA was
associated with 11% increase in the odds for development of
additional T2D-related complications on average 7.4 years later in
men. Although this association still lacks external validation, the
results suggest that DNAmAA as a biomarker might be able to
improve the identification of the group of patients with T2D that
is especially prone to complications. Therefore, already existing
prediction models might be substantially improved by the
inclusion of 7-CpG DNAmAA which ultimately might accelerate
their translation to clinical practice. However, independent, and
further analyses are necessary before this biomarker can be
translated into practice.

Data availability
Source data for Fig. 3 is provided as Supplementary Data. Due to concerns for
participants privacy as well as data protection regulations, BASE-II raw data cannot be
made publicly available. Because of their solely descriptive nature, this applies to source
data for Figs. 1 and 2 as well. Interested investigators are invited to contact the scientific
coordinator of BASE-II, Ludmila Müller (lmueller@mpib-berlin.mpg.de), to obtain
source data for Figs. 1 and 2 or apply for raw data access. Additional information can be
found on the BASE-II website: https://www.base2.mpg.de/7549/data-documentation.

Fig. 3 Prediction of T2D complications as assessed with the DCSI. The basic model used for complication prediction includes chronological age (years),
sex (if applicable), alcohol intake (g/d), packyears (years), antidiabetic medication (yes/no), and BMI. The differences between ROC curves of the model
with and without 7-CpG DNAmAA were statistically not significant (p > 0.05). Note: DNAmAA=DNA methylation age acceleration, AUC=Area
Under Curve.
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