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Abstract

Background The prognostic role of the cardiothoracic ratio (CTR) in chronic kidney disease

(CKD) remains undetermined.

Methods We conducted a retrospective cohort study of 3117 patients with CKD aged

18–89 years who participated in an Advanced CKD Care Program in Taiwan between 2003

and 2017 with a median follow up of 1.3(0.7–2.5) and 3.3(1.8–5.3) (IQR) years for outcome of

end-stage renal disease (ESRD) and overall death, respectively. We developed a machine

learning (ML)–based algorithm to calculate the baseline and serial CTRs, which were then

used to classify patients into trajectory groups based on latent class mixed modelling.

Association and discrimination were evaluated using multivariable Cox proportional hazards

regression analyses and C-statistics, respectively.

Results The median (interquartile range) age of 3117 patients is 69.5 (59.2–77.4) years. We

create 3 CTR trajectory groups (low [30.1%], medium [48.1%], and high [21.8%]) for the

2474 patients with at least 2 CTR measurements. The adjusted hazard ratios for ESRD,

cardiovascular mortality, and all-cause mortality in patients with baseline CTRs ≥0.57
(vs CTRs <0.47) are 1.35 (95% confidence interval, 1.06–1.72), 2.89 (1.78–4.71), and 1.50

(1.22–1.83), respectively. Similarly, greater effect sizes, particularly for cardiovascular mor-

tality, are observed for high (vs low) CTR trajectories. Compared with a reference model, one

with CTR as a continuous variable yields significantly higher C-statistics of 0.719 (vs 0.698,

P= 0.04) for cardiovascular mortality and 0.697 (vs 0.693, P < 0.001) for all-cause

mortality.

Conclusions Our findings support the real-world prognostic value of the CTR, as calculated

by a ML annotation tool, in CKD. Our research presents a methodological foundation for

using machine learning to improve cardioprotection among patients with CKD.
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Plain language summary
An enlarged heart occurs during

various medical conditions and can

result in early death. However, it is

unclear whether this is also the case

in patients with chronic kidney dis-

ease (CKD). Although the size of the

heart can be measured on chest X-

rays, this process is time consuming.

We used artificial intelligence to

quantify the heart size of 3117 CKD

patients based on their chest X-rays

within hours. We found that CKD

patients with an enlarged heart were

more likely to develop end-stage

kidney disease or die. This could

improve monitoring of CKD patients

with an enlarged heart and improve

their care.
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The cardiothoracic ratio (CTR) was first defined in 1919 and
has since been accepted as a means of quantifying heart
size and volume on posterior-anterior chest X-rays (PA-

CXRs)1,2. A CTR of <0.5 is considered normal, whereas a CTR >0.5
indicates cardiomegaly. The CTR is a key prognostic indicator in
many conditions, such as coronary artery disease3, end-stage renal
disease (ESRD)4,5, and conditions related to aging6. A higher CTR
value is generally associated with poor prognosis, and 2 longitudinal
studies of healthy populations have reported significant associations
between high CTR values and cardiovascular (CV) mortality7,8.
Several studies have challenged the current CTR threshold; their
results have revealed CTRs below 0.5 to be associated with increased
CV mortality in the general population7,9. Zaman et al. observed
that a preangiographic CTR above 0.42 to be associated with
increased all-cause mortality3.

Studies have demonstrated that the CTR is a significant
indicator of mortality and deteriorating functional status for
patients with incident dialysis10,11 and ESRD requiring regular
hemodialysis4,12–14 or peritoneal dialysis5. In addition, the CTR
has been used to monitor fluid overload, malnutrition, and heart
disease in patients receiving dialysis4,10,12. However, the inde-
pendent value of the CTR for predicting disease progression and
mortality among patients with nondialysis chronic kidney disease
(CKD-ND) is unclear. A recent study reported a CTR > 0.5 and
the presence of aortic arch calcification are associated with rapid
renal progression as well as CV and all-cause mortality in CKD-
ND15. However, the researchers could not assess the risk of
progression to dialysis or determine an optimal risk cutoff for the
CTR because the few patients enrolled in the study and the short
follow-up. To date, much of the evidence on the role of the CTR
in ESRD originates from studies conducted in Taiwan because
semiannual CTR measurement is required by the Taiwan Society
of Nephrology for evaluation of dialysis adequacy. Nevertheless,
the CTR is not considered in the routine care of the Advanced
CKD Care Program in Taiwan or similar programs in other
countries; this may partially explain the limited availability of
related data in CKD-ND. Furthermore, despite ongoing efforts to
investigate the prognostic role of the CTR in various disease
states, the validity and generalizability of these studies are
uncertain because sample sizes are often small; CTR measure-
ment requires labor-intensive annotation by physicians. Although
several machine learning (ML) algorithms have been developed to
simplify and standardize the annotation process, adoption of
these algorithms has been slow because the algorithms require
further validation before they can be fully integrated into
the clinical workflow16–20. To address this research gap and
evaluate the risks of requiring dialysis and mortality associated
with the various baseline CTRs and CTR trajectories in patients
with CKD-ND, we developed an artificially intelligent CTR
(iCTR) assessment system to annotate PA-CXRs. We further
evaluated whether the incorporation of the CTR into the work-
flow could improve the predictive performance of the Kidney
Failure Risk Equation (KFRE) and a conventional mortality risk
model for CKD21,22. Our findings identify the positive associa-
tions between CTR and accelerated progression to ESRD or
mortality in CKD and demonstrate the real-world prognostic
value of CTR in predicting mortality.

Methods
Study patients and design. Taiwan’s National Health Insurance
launched the Project of Integrated Care of CKD in 2002. The
project initially targeted patients with an estimated glomerular
filtration rate (eGFR) of <60 mL/min/1.73 m2 or with proteinuria
(urine protein-to-creatinine ratio [uPCR] > 1 [g/g]). In 2007, the
project adopted a multidisciplinary approach and focused on

CKD stages 3b to 5. China Medical University Hospital (CMUH),
a tertiary medical center in central Taiwan, joined this care
project in 2003 and prospectively enrolled consecutive patients
with CKD who agreed to participate in this Advanced CKD Care
Program. The details of the program were described in a previous
study23. Biochemical markers of renal injury, including serum
creatinine (S-Cre), blood urea nitrogen, and spot uPCR, were
measured at least once every 3 months. In the present study, we
further integrated the data from the Advanced CKD Care Pro-
gram with data from the CMUH Clinical Research Data Repo-
sitory, including data on laboratory tests, medications, special
procedures, and admission records24–26. The index date was the
date of patient enrollment in the Advanced CKD Care Program.
All enrolled patients were followed up until the initiation of long-
term renal replacement therapy (hemodialysis, peritoneal dialysis,
or transplantation), death, loss to follow-up, or December 31st,
2019, whichever occurred first. Dates of death were verified at the
National Death Registry of the Ministry of Health and Welfare of
Taiwan25,26.

We included the data of patients aged 18–89 years participating
in the Advanced CKD Care Program from January 1st, 2003, to
December 31st, 2017, who had no history of dialysis. For
population of baseline CTR analysis, we included patients who
had at least one CTR measurement during the baseline period
(−1 year to +6 months of the index date) and one CTR during
the follow-up period (+6 months of the index date to December
31st, 2017), with the two CTR measurements were at least
6 months apart. Baseline CTR was the CTR in the baseline period
and closest to the index date. In total, 3117 patients with 6234
CTR records were included for analysis (Fig. 1). All CTR records
were derived from PA-CXRs, which were taken with the patients
in upright position. The average number of days between the
dates of baseline CTR and serum creatinine (S-Cre) was 83.0
(IQR 46.0–131.0). The frequency of repeated CTR measurements
for the longitudinal arm was shown in the Supplementary
Table 1. For population of CTR trajectory analysis, we further
excluded patients who did not have at least two CTR
measurements within the 2 years after the index date and a total
of 2474 participants with 12391 CTR records were included in the
trajectory analysis (Fig. 1). This study was approved by the Big
Data Center of CMUH and the Research Ethics Committee and
Institutional Review Board (REC/IRB) of CMUH, and informed
consent was waived due to retrospective nature of the study
(CMUH105-REC3-068 & CMUH108-REC2-022). All methods
were performed in accordance with the relevant guidelines and
regulations of the REC/IRB.

Automatic determination of CTR using deep learning. We used
deep learning to perform automatic cardiothoracic cavity seg-
mentation in PA-CXR images by using a U-Net model27. The
U-Net architecture is illustrated in Supplementary Fig. 1 27. The
model consists of a contracting path (left side) and an expanding
path (right side). The contracting path follows the typical archi-
tecture of a convolutional network, consisting of repeated appli-
cation of two 3 × 3 convolutions (unpadded convolutions), each
of which is followed by a rectified linear unit (ReLU)28 function
and a 2 × 2 max-pooling operation with a stride of 2 for down-
sampling. In each downsampling step, the number of feature
channels is doubled. Each step in the expanding path consists of
upsampling of the feature map followed by a 2 × 2 convolution
(“up-convolution”) that halves the number of feature channels,
concatenation with a correspondingly cropped feature map from
the contracting path, and two 3 × 3 convolutions, each of which is
followed by a ReLU function. The cropping is necessary because
of the loss of border pixels with each convolution. In the final
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layer, a 1 × 1 convolution is used to map each 32-component
feature vector to the desired number of classes. In total, the
network has 23 convolutional layers. To evaluate the performance
of the model, we evaluated CTR agreement as an absolute dif-
ference (AD) of <0.03 between the ML-estimated CTR and one
calculated through physician annotation. From the testing data-
base, 510 of 537 PA-CXRs had a CTR AD < 0.03, for an accuracy
of 94.97%. The iCTR Assessment System that incorporates the
CTR estimation algorithm has received premarket approval
for software as a medical device (SaMD) from the US Food
and Drug Administration (FDA; 510(k) number, K212624) and
Taiwan FDA (TFDA; medical device license number, 007443).
The ML-estimated CTR of actual cases were illustrated in Sup-
plementary Fig. 2.

Determination of kidney function. S-Cre levels were measured
using the Jaffe rate method (kinetic alkaline picrate) at the

CMUH central laboratory by using a Beckman UniCel DxC 800
immunoassay system (Beckman Coulter, Brea, CA, USA).
eGFRs were calculated using the Chronic Kidney Disease Epi-
demiology Collaboration creatinine equation29. The S-Cre level
at enrollment was used to determine the baseline eGFR and
corresponding CKD stage according to the following cutoff
values: eGFRs of >90, 60 to 89.9, 45 to 59.9, 30 to 44.9, 15 to
29.9, and <15 mL/min/1.73 m2 were respectively considered
stages 1, 2, 3a, 3b, 4, and 5. Proteinuria was defined as a uPCR
of >0.5 [g/g cre]. For patients with only a urine albumin-to-
creatinine ratio (uACR) available, we converted the uACR into
uPCR by using the following equation derived from a Japanese
study: ln ACRð Þ ¼ 1:32 � ln PCRð Þ � 2:6430.

Statistical analyses. Continuous variables were compared using
the Wilcoxon rank sum test and are expressed as medians with
IQRs. Categorical variables were compared using the chi-square

Fig. 1 Flow diagram for included patients. Patients and chest X-ray images are identified through deep data cleaning process to form the final study
population.
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test and are expressed as frequencies with percentages. The
baseline CTR was categorized into quartiles. To characterize the
trajectories of all CTR measurements among patients in the study
population for the trajectory analysis, Latent Class Mixed Mod-
elling (LCMM) was used to fit a semiparametric mixture model to
the longitudinal data using the maximum likelihood method31.
The LCMM package (version 1.9.3) in R was applied32. This
approach is appropriate when the number of subgroups or other
information, such as the trajectory shape of each subgroup, is
unknown. We empirically compared 2-, 3- and 4-group solutions
and optimized the number of subgroups by using Bayesian
information criterion values (with a number close to 0 indicating
a good fit); the trajectory shapes were determined by the order of
the polynomial (e.g., linear, quadratic, or cubic). The CTR tra-
jectories were determined before the risk analysis for dialysis and
mortality.

For time-to-event analysis, the number of person-years free from
dialysis and mortality after enrollment in the Advanced CKD
Program was computed. We evaluated the prospective associations
of both the baseline CTR and longitudinal CTR trajectories with
dialysis initiation andmortality by using multiple Cox proportional
hazards models. The models were adjusted based on a priori
knowledge to control potential confounding variables. To char-
acterize the dialysis risk associated with the exposures of interest,
we performed a competing risk analysis using cause-specific Cox
proportional hazards modeling, with deaths considered censoring
events to minimize the potential bias introduced by a competing
death risk. Model fit was evaluated using the Akaike information
criterion. Because data were missing for some explanatory variables
(eg, 15.4% missing for pooled uPCR; Supplementary Data 1), we
further performed multiple imputation by using a fully conditional
method in SAS, namely, an iterative Markov chain Monte Carlo
procedure, for the missing variables. We set the number of
imputations to 20 and the number of iterations to 100. To explore
the potential effect modifiers in the association between both the
baseline and longitudinal CTRs and the main outcomes, we
stratified patients based on age (older or younger than 65 years),
sex, hypertension, diabetes, CV disease (CVD) status, CKD stage
(3 vs 4 or 5), and uPCR (> vs ≤0.5 [g/g cre]) at baseline. To evaluate
the predictive value of the CTR, we compared the Uno’s C-statistics
from the reference KFRE, which considers age, sex, eGFR, and
uPCR (log-transformed), with that from the same model with the
addition of the CTR as a categorical or continuous variable33.
The reference mortality predictive model (RMPM) considered
age, sex, eGFR, diabetes, hypertension, and anemia (hemoglobin <
12 g/dL)21. We also plotted the observed versus the predicted risk
to reveal the differences in the calibration of the three prediction
models. All statistical analyses were performed using SAS version
9.4 (SAS Institute, Cary, NC, USA) and R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria). Statistical
significance was defined as a 2-tailed P-value of <0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Clinical characteristics by baseline CTR quartile. The median
(IQR) age at enrollment for all 3117 patients was 69.5
(59.2–77.4) years; the median duration of follow-up was
1.3 (0.7–2.5) and 3.3 (1.8–5.3) (IQR) years for ESRD events and
death, respectively, as events usually occurred before death.
Increasing trends in age, body mass index, and the proportions of
female sex and of DM, hypertension, CVD, or stage 4 or 5 CKD
at baseline were observed across the increasing quartiles of CTR

(Supplementary Data 2). By contrast, the proportions of patients
who were active smokers, were alcohol drinkers, and had total
education of ≥16 years decreased with CTR quartile. Compared
with patients with a CTR of <0.47, patients with a CTR of ≥0.57
were more likely to use antiplatelet agents and had higher base-
line systolic blood pressure (median: 142.0 [123.6–158.0] vs 132.5
[119.0–148.0] mmHg) and lower baseline diastolic blood pressure
(median: 73.8 [65.7–81.2] vs 76.3 [70.0–86.0] mmHg). Significant
decreasing trends in baseline eGFR, hemoglobin, and urinary
creatinine levels were concomitant with increasing trends in
proteinuria and the baseline serum levels of phosphorus, blood
urea nitrogen, and uric acid (Supplementary Data 1). In the
sensitivity analysis of matching CTR values with available echo-
cardiographic parameters such as ejection fraction, left ven-
tricular mass index (LVMI), and left atrial volume index (LAVI),
the increasing trends of LVMI, and LAVI were concordant with
the increasing baseline CTR groups and CTR trajectory group
(Supplementary Table 2). Detailed information about the CMUH
echocardiographic cohort has been published previously24,34.

Clinical characteristics by CTR trajectory. Among 2474 patients
with at least 2 CTR measurements, the median (IQR) number of
CTR measurements was 4.0 (2.0–6.0). We identified 3 CTR tra-
jectories through LCMM and subdivided patients into low-
(30.1%), medium- (48.1%), and high-(21.8%) trajectory groups
(Supplementary Fig. 3). The clinicodemographic and laboratory
trends from the low to high trajectory were similar to those
observed across the baseline CTR quartiles (Supplementary
Data 3). The coefficient of variation in serial CTR measurements
was the greatest among patients with medium CTR trajectories.
When the change in the variation of the CTR was defined using
the absolute difference (AD), a significant increasing trend in AD
was observed with CTR trajectory from low to high. However,
other variation indicators, including slope and percentage change,
were not significantly different among the CTR trajectory groups
(Supplementary Data 3).

Associations of baseline CTR and longitudinal CTR trajectories
with ESRD and mortality. In the fully adjusted model, each 10%
increase in baseline CTR was significantly associated with a higher
hazard ratio (HR) for progression to ESRD (adjusted HR [aHR]
1.15, 95% CI, 1.03–1.28), CV mortality (1.83, 95% CI, 1.49–2.24),
and all-cause mortality (1.27, 95% CI, 1.16–1.40), respectively
(Supplementary Data 4). The aHRs for progression to ESRD, CV
mortality, and all-cause mortality in patients with a baseline CTR of
≥0.57 were 1.35 (95% CI, 1.06–1.72), 2.89 (95% CI, 1.78–4.71), and
1.50 (95% CI, 1.22–1.83), respectively, relative to patients with a
CTR of <0.47. Furthermore, compared with the low-trajectory
group, the aHRs for progression to ESRD, CV mortality, and all-
cause mortality were 1.70 (95% CI, 1.28–2.25), 3.84 (95% CI,
2.28–6.45), and 1.78 (95% CI, 1.44–2.22), respectively, in the high-
trajectory group (Supplementary Data 4). The dose-response
relationship between ESRD and baseline CTR was curvilinear up
to a CTR of 0.6, at which it plateaued (Fig. 2a). By contrast, a linear
nonthreshold dose-response relationship of baseline CTR with CV
and all-cause mortality was observed beyond the ratios of 0.47 and
0.50, respectively (Fig. 2b and c). In subgroup analysis for baseline
CTR, patients without hypertension and advanced CKD stage 4–5
were more vulnerable to increased baseline CTR for the outcome of
progression to ESRD (Supplementary Data 5). By contrast, the
associations between baseline CTR and CV- or all-cause mortality
were not modified by age, sex, hypertension, diabetes, CVD, CKD
stage, and proteinuria (Supplementary Data 5). In subgroup ana-
lysis for CTR trajectory, female and hypertension-free patients were
more susceptible to high CTR trajectory regarding the dialysis
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outcome (Supplementary Data 6). Patients without hypertension
were also more vulnerable to CV mortality (Supplementary
Data 6).

Performance of baseline CTR in predicting dialysis and mor-
tality. Adding the baseline CTR to the conventional 4-variable
KFRE for predicting ESRD did not significantly improve the
predictive performance of the KFRE (C-statistics of 0.842 to 0.843
for baseline CTR categories, P= 0.60 with similar calibration)
(Table 1 and Supplementary Fig. 4). However, when a reference
model comprising age, sex, eGFR, diabetes, hypertension, and
anemia status was used for predicting mortality outcomes,
incorporating baseline CTR as a continuous variable significantly
increased the C-statistics from 0.698 to 0.719 (P= 0.04) for CV
mortality (Table 1) and from 0.693 to 0.697 (P < 0.001) for all-
cause mortality (Table 1). Integrating baseline CTR also improved
the calibration performance for the outcome of CV mortality
(Supplementary Fig. 4).

Discussion
Our findings support the independent association of the baseline
CTR and the first 2-year longitudinal CTR trajectory in patients
with CKD-ND with the risk of progression to ESRD and the
mortality outcomes. The critical cutoff (0.44 for dialysis, 0.49 for
CV mortality, and 0.45 for all-cause mortality), defined by the
cross-point of the lines of HR= 1 and the lower bound of 95% CI
in the dose-response plots (Fig. 2), was lower than the widely
accepted value of 0.54,10,12,15,35. We observed a gradient increase
in the risk of requiring dialysis, CV mortality, and all-cause
mortality for CKD patients in the second to the fourth quartile of
baseline CTR compared to those with a baseline CTR < 0.47. In
addition, the CV mortality log-linearly increased with baseline
CTR among patients with advanced CKD-ND. The consistent
risk patterns for longitudinal CTR trajectories strengthen the
causal inference. Despite baseline CTR significantly enhances the
prognostic prediction for mortality outcomes, the predictive
performance for progression to ESRD is not improved compared
with the conventional KFRE.

Because a lack of automation, the statistical power of related
studies has been insufficient to evaluate the prognostic value of the
CTR. Use of the CTR has therefore heavily depended on individual
expertise, and the cutoff of 0.5 has become a convention, leaving
the CTR’s potential for serving as a rapid, low-cost, and repro-
ducible digital marker beyond heart disease unexplored36.
Although a CTR value of 0.42–0.50 is considered within “normal
range”, our findings showed the critical threshold may be lower
than the conventional cutoff of 0.5, which is consistent with some
previous research3,37. Verifying our study results and finding an

optimal cutoff based on large study samples with or without kidney
disease should be an urgent research priority.

Left ventricular dilation is one of the most common causes of a
CTR > 0.5 and is an independent risk factor for CVD and heart
failure–related mortality38,39. A pooled analysis of 466 patients
demonstrated moderate sensitivity and specificity of 83.3% and
45.4%, respectively, for predicting left ventricular dilation with
the CTR35. However, among 272 patients that were hospitalized,
the area under the receiver operating characteristic curve for
moderate and severe left ventricular or right ventricular dys-
function based on CTRs was only 0.70, with the best cut-off of
CTR 0.55 having the highest Youden index40. Similarly, among
patients receiving hemodialysis, significant associations have been
consistently observed between a high CTR and all-cause
mortality13,41,42; nevertheless, another study discovered that the
CTR did not improve the predictive value for mortality41. The
moderate diagnostic accuracy and prognostic value of the CTR
have limited its clinical utility in conventional practice.

In our study, ML streamlined CTR calculation such that we
could evaluate >70,000 PA-CXRs within 24 h. As far as we are
aware, this is the first report of linear dose-response associations
of the CTR with CV and all-cause mortality among patients with
CKD-ND. We discovered that this strong association significantly
improved the predictive performance of the conventional models
for mortality risk assessment in CKD21. However, the CTR only
marginally improved the predictive power of the KFRE among
patients with CKD. Indeed, the effect size of HR does not lend
itself to drawing direct conclusions regarding the contribution of
the CTR to prognosis prediction43. Varga et al. has systematically
reviewed this issue recently44. The reason underlying the dis-
crepancy of the significantly positive association but poor pre-
dictive capability of the CTR with all outcomes of interest may be
explained by the follows: (1) the predictive variables of KFRE or
RMPM have predicted the outcomes of ESRD and mortality well
and the predictive role of CTR is therefore not standing out; (2)
there were large overlapping distributions of CTR when strati-
fying the population based on the outcomes of interest (Supple-
mentary Fig. 5); (3) CTR is a summarized and relatively low-
resolution digital cardiac marker measuring a simple ratio
between cardiac and thoracic horizontal diameter on the PA-
CXR, rather than providing detailed information about anato-
mical abnormalities such as left ventricular mass index or left
atrial volume index and functional impairments such as systolic
or diastolic dysfunction. Therefore, it may be insufficient to
provide additional prognostic benefit on top of the original KFRE
or RMPM models. Nevertheless, our findings encourage future
studies to identify ML-driven cardiac digital markers that are
more disease prognosis specific to the development of ESRD and

Fig. 2 Dose-response relationship between baseline CTR and risk of developing outcomes of interest based on the study population of 3117 patients.
Adjusted HRs for (a) progression to ESRD, (b) CV mortality, and (c) all-cause mortality based on baseline CTR. Solid black lines represent adjusted HRs
based on restricted cubic splines for baseline CTR with knots at the 10th, 50th, and 90th percentiles. Dashed black lines represent 95% CI. The reference is
set at the 10th percentile of baseline CTR.
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mortality, particularly using common clinical imaging modalities
to infer important anatomical and functional features.

Our results suggest that CTR can be used to personalize CKD
care; this suggestion is also supported by the observations of a
large epidemiological study in which ~50% of patients with CKD-
ND experienced CV mortality45. Although cardiorenal syndrome
may explain this phenomenon46, the exact pathogenesis remains
unclear. A recent animal study revealed that the monocytic
expression of G protein-coupled receptor 68 (GPR68) triggered
by retinol and its binding protein (RBP4) exacerbates CKD-
induced inflammation and fibrosis of the heart47. In human,
single-nucleotide polymorphisms of RBP4 have been associated
with obesity, diabetes, and, particularly, cardiovascular disease48.
Chronic myocardial inflammation has been reported to involve
in the pathophysiological process of cardiomegaly and
remodeling49. In addition, low calcitriol levels among patients
with CKD may be associated with decreases in the number and
functions of peripheral endothelial progenitor cells (EPCs), which
are linked to CVD50. It is also reported the dysfunction of EPCs
may associate with adverse cardiac remodeling and impaired
myocardial perfusion, leading to heart failure51. To fully under-
stand cardiorenal interactions throughout the entire course of
CKD, regular and systematic evaluation of heart function among
patients with CKD is essential. Research should focus on opti-
mizing heart functional evaluation and clarifying the detrimental
role of cardiac dysfunction in different CKD stages52. As the
healthcare industry has entered the era of digital transformation
and innovation, integrating ML powered annotation into the
existing healthcare paradigms is essential to achieve universal
automated disease screening services and harness the potential to
significantly improve the healthcare efficiency and equity. In the
current practice, a CXR image does not provide an automated
measurement of CTR, not to mention the prediction of future risk
probability ranging from CKD progression, CVD, to all-cause
mortality and the design of actionable targets. This is exactly the
reason why CTR is currently underused in the clinical practice. If
the clinical effectiveness through the CTR-driven cardiorenal care
bundle can be confirmed, CTR will likely become a routine digital
marker in CKD care.

The findings of vulnerabilities of increasing CTR among
patients without hypertension deserved attention. This pheno-
type, cardiomegaly without a hypertension history, represents a
unique clinical challenge as the opportunity to optimize heart size
is limited. It is also likely that hypertension-free patients with
significant cardiomegaly and CKD may exhibit hemodynamic
instability and compromise the kidney perfusion that accelerates
the progression to ESRD. Given scarce evidence, more research
efforts are warranted to confirm our findings and establish the
pathogenic basis underlying this phenomenon.

The strengths of this study include its high-quality data col-
lection methods, which comprise longitudinal measurement of
the CTR, a large sample size, and rigorous and systematic sta-
tistical and ML analyses. The study also has several limitations. A
lack of external validation limits the generalizability of the find-
ings from this single-center study. Furthermore, we encountered
potential confounding, with the decision to undergo CXRs being
associated with the patient characteristics that influenced out-
comes. However, in subgroup analysis, a greater risk of devel-
oping dialysis was observed among patients without CVD or
hypertension; with respect to mortality outcomes, the prognostic
value of the CTR was not affected by CVD status. This study is
further limited by the possibility of residual confounding (eg,
physical activity, environmental exposure, and heritability
information)53 and overadjustment for variables that may lie
along the causal pathway (eg, CVD). Last but not least, the dis-
tribution of CTR may be differential between men and womenT
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and therefore using sex-specific cutoffs of CTR may help improve
the accuracy of risk assessment. However, due to the reduced
sample size in the sex-stratified analysis, it would be difficult to
provide robust evaluation of appropriate sex-specific cutoff values
of CTR for clinical practice in the present study.

Conclusions
This study demonstrated the prognostic value of the CTR in
patients with CKD by using an ML-powered annotation tool.
Validation of the predictive performance and clinical effectiveness
of the CTR in multi-center clinical trials for progression to ESRD
and mortality among patients with CKD-ND warrants adoption
of this ML application in clinical CKD care. Nevertheless, our
research presents a methodological foundation for using ML to
improve cardioprotection among patients with CKD.

Data availability
The data that support the findings of this study are available on request from the
corresponding author, CCK. The data are not publicly available due to them containing
information that could compromise research participant privacy. Addition data of dose-
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