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Abstract

Background Aortic Stenosis and Mitral Regurgitation are common valvular conditions

representing a hidden burden of disease within the population. The aim of this study was to

develop and validate deep learning-based screening and diagnostic tools that can help guide

clinical decision making.

Methods In this multi-center retrospective cohort study, we acquired Transthoracic Echo-

cardiogram reports from five Mount Sinai hospitals within New York City representing a

demographically diverse cohort of patients. We developed a Natural Language Processing

pipeline to extract ground-truth labels about valvular status and paired these to Electro-

cardiograms (ECGs). We developed and externally validated deep learning models capable of

detecting valvular disease, in addition to considering scenarios of clinical deployment.

Results We use 617,338 ECGs paired to transthoracic echocardiograms from 123,096

patients to develop a deep learning model for detection of Mitral Regurgitation. Area Under

Receiver Operating Characteristic curve (AUROC) is 0.88 (95% CI:0.88–0.89) in internal

testing, and 0.81 (95% CI:0.80–0.82) in external validation. To develop a model for detection

of Aortic Stenosis, we use 617,338 Echo-ECG pairs for 128,628 patients. AUROC is 0.89

(95% CI: 0.88-0.89) in internal testing, going to 0.86 (95% CI: 0.85-0.87) in external

validation. The model’s performance increases leading up to the time of the diagnostic echo,

and it performs well in validation against requirement of Transcatheter Aortic Valve Repla-

cement procedures.

Conclusions Deep learning based tools can increase the amount of information extracted

from ubiquitous investigations such as the ECG. Such tools are inexpensive, can help in earlier

disease detection, and potentially improve prognosis.
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Plain Language Summary
The valves of the heart have flaps

that open and close when the heart

beats to maintain the flow of blood in

the correct direction. Valvular dis-

ease, such as backflow or narrowing,

puts additional strain upon heart

muscles which can lead to heart

failure. Usually, these conditions are

diagnosed by doing an echocardio-

gram, an ultrasound scan of the heart

and nearby blood vessels. The elec-

trocardiogram (ECG) records the

electrical signal generated by the

heart and can be obtained more

easily. We used deep learning neural

networks, self-learning computer

algorithms which excel at finding

patterns within complex data. This

enabled us to develop computer

software able to diagnose valvular

disease from ECGs. Earlier detection

of such disease can help in improving

overall outcome, while also reducing

costs related to treatment.
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Aortic Stenosis (AS) – obstruction to the flow of blood
across the aortic valve secondary to reduction in valve
aperture, and Mitral Regurgitation (MR) – retrograde

flow of blood during systole across the mitral valve represent a
growing health concern in developed nations. Taken together,
valvular heart disease represents a substantial health burden
affecting an estimated 2.5% of the general population1. Owing to
the degenerative pathophysiology underlying chronic valvular
disease, disease progression and prevalence are seen to vary in
direct proportion with age1. Consequently, valvular disease has
assumed central significance within cardiovascular medicine with
significant attention being paid to early diagnosis and better
management2. Approximately 20% of all cardiac surgeries are
estimated to be for valvular repair1, and more recently, minimally
invasive transcutaneous procedures have become more popular as
first-line management3,4.

Diagnostic workflow for valvular disease is restricted to clinical
workup5,6 due to no available biomarkers, or accepted guidelines
for ECG interpretation. Physicians must manually auscultate
patients for murmurs, and confirm their findings using echo-
cardiography. Unfortunately, sensitivity for murmur auscultation
is low7,8 and subject to significant inter-observer variability9. As a
result, clinical suspicion tends to under-diagnose valvular disease
by nearly 32%1. While echocardiography is accurate for diagnosis
of valvular pathology, there remain considerable barriers in place
towards its use as a screening modality in more resource con-
strained settings owing to concerns of logistics and trained per-
sonnel in sufficient numbers10.

The additive burdens of these factors foment a situation where
there is a hidden burden of disease within the population subject
to an overall worse prognosis following missed diagnosis, and
disease progression11 in the absence of appropriate treatment2.
This emphasizes the requirement of a widely available and
inexpensive method to screen for, diagnose, or recommend
intervention in patients with valvular disease.

The ECG is a powerful tool due to its low cost, availability, and
applicability to a wide spectrum of diseases and has long been a
mainstay of the cardiovascular diagnostic workflow. Despite these
advantages, the ECG is limited by subjectivity in interpretation,
and the requirement of diagnostic guidelines. Furthermore,
human physicians cannot reliably appreciate minor ECG changes,
leading to loss of valuable contextual and diagnostic information.

Machine learning is a mathematical approximation of human
reasoning and intuition. Deep Learning (DL) is a subset of machine
learning which utilizes neural networks to derive and attach semantic
information to patterns within high dimensional data. Within the
context of healthcare, and specifically ECG based diagnosis12, DL has
been applied to diagnosis and risk prediction of arrythmias13–15,
estimation of ventricular function16,17, predict risk of sudden cardiac
death18, as well as detection of valvular disease19–22. While powerful
in their own right, existing work on DL detection of valvular disease
is limited by small sample sizes19–21, lack of statistical
resampling19–22, lack of external validation20,22, and ethnically and
racially homogenous cohorts19–22.

In this multi-center and externally validated study, we present
DL algorithms which utilize ECG waveform data to detect valv-
ular pathology from its effect on the electrical activity of the heart.
Further, we consider the real-world implications and feasibility of
such a model by assessing pre-echo diagnostic capability, and
performance across a large cohort of socioeconomically and
demographically diverse patient groups. Finally, we validate the
assumption that machine learning can be used to guide clinical
care by analyzing the rate of cardiac procedures with respect to
model predictions. Our models achieved strong performance for
diagnosis of Aortic Stenosis with an Area Under the Receiver
Operating Characteristic Curve (AUROC) of 0.89 in internal

testing, maintained in external validation at 0.81. For diagnosis of
Moderate to Severe Mitral Regurgitation, our models achieved
AUROC values of 0.88 and 0.81 in internal testing and external
validation, respectively. In either case, performance was main-
tained in the presence of other left heart valvular pathology. On
longitudinal follow up, patients diagnosed as true positives for
Aortic Stenosis had a higher rate for minimally invasive valve
replacement procedures.

Methods
Data source and patient population. Transthoracic Echo-
cardiograms (echo) report processing, ECG preprocessing, and
model selection are similar to methodologies described in Vaid
et al.17. We utilized patient data from 2008–2020 from five New
York City hospitals within the Mount Sinai Health System
(MSHS). These hospitals, namely Mount Sinai Hospital, Mount
Sinai Morningside, Mount Sinai Brooklyn, Mount Sinai West,
and Mount Sinai Beth Israel serve a large and demographically
diverse population (Tables 1 and 2).

We acquired pdf files which contained unstructured text
corresponding to echo reports written by physicians. Collected
reports contained the date of the investigation, and a unique
Medical Record Number (MRN). ECG data were exported from
the GE MUSE ECG system as structured .xml (eXtensible
Markup Language) files containing MRN, date of the ECG,
patient demographic details, ECG cart generated diagnoses, and
raw waveform data. For each outcome as defined by an echo
report we paired the echo derived label to any ECG performed
within a period of ±7 days. This workflow is summarized in
Fig. 1, and a flow diagram illustrating data extraction and
analysis using a convolutional neural network is shown in
Supplementary Fig. 1.

Definition of outcomes. Status of either AS or MR was
extracted from text of echo reports using Natural Language
Processing (NLP). An Echo-ECG pair was considered positive
for the outcome in the presence of either moderate-to-severe; or
severe valvular disease. Similarly, a pair was considered negative
in the presence of either mild, borderline, or trace disease;
moderate disease; or the valve being diagnosed as normal. Echo
reports which did not comment on the status of either valve
were excluded. Since there were only two possible outcomes,
either task was considered an example of a binary classification
problem.

Data processing
Natural language processing. We developed a rule-based NLP
approach to parse the unstructured text of each echo report. A set
of rules was created iteratively by accounting for syntactic var-
iation of text phrases within analyses of common parameters. In
addition to AS/MR labels, these rules also extracted qualifiers
regarding their severity. The final set of rules is enumerated in
Supplementary Table 1. Annotated and anonymized samples of
echo reports parsed using this method are provided in Supple-
mentary Figs. 1, 2, and 3. Moderate-to-severe AS was designated
as severe. While no official guideline exists for this delineation, we
found comparable rates by cohort (14.9% of reports for internal
testing and 21.9% for external validation) and across hospitals
(12-30% of reports by facility) Annotated and anonymized
samples of echo reports parsed using this method are provided in
Supplementary Figs. 2, 3, and 4.

Performance of the NLP approach was evaluated by two faculty
reviewers in a single-blind design. Each review contained 210
echo reports randomly sampled on NLP labeled normal,
abnormal, and lack of reporting on valvular status.
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ECG data. Waveform data is available within .xml files as a one-
dimensional array of numbers or vectors. Each ECG is sampled at
500 Hz, and contains data for leads I, II, V1-V6. Vectors consist
of either 5000 samples (10 s), or 2500 samples (5 s). To avoid
potential imputation and padding related artifacts, each vector
was attenuated to only the first 2500 samples. Data from leads III,
aVF, aVL, and aVR was considered to provide no additional
information since these leads can be derived from linear opera-
tions on the vectors of other leads23.

To aid removal of analog artefacts/recording errors24 present
within the ECG, we utilized a median filter applied over a 2 s

window, followed by a Butterworth Bandpass filter applied to
the 0.5–40 Hz range. Further, to account for recordings with no
lead information (flat line), or excess noise despite filter
restrictions, we calculated the average QRS complex amplitude
and the average standard deviation for each lead for the entire
population. Any ECG with a lead average QRS complex
amplitude, or an average standard deviation outside 2 standard
deviations of the population mean for that value was excluded
(Fig. 1).

The .xml files corresponding to ECGs which passed this quality
control step were then parsed for demographics (patient age and

Table 1 Population metrics: patients with Mitral Regurgitation (MR) in internal and external validation cohorts.

Mitral Regurgitationa Normalb p Mitral Regurgitationa Normalb p

Internal testing cohort External validation cohort

Patients 21,740 94,872 1744 5116 0.51
Echo-ECG pairs 177,759 399,431 8919 21,320 1.4 ×10−11

Age 71.4 (71.3–71.5) 65.6 (65.5–65.6) 0 70.4 (70.1–70.7) 70.5 (70.3–70.7)
Gender n (%) 0
Male 10,763 (49.51) 50,886 (53.64) 873 (50.06) 2621 (51.23) 4.6 ×10−18

Female 10,977 (50.49) 43,986 (46.36) 871 (49.94) 2495 (48.77)
Race n (%) 8.6 ×10−244

American Indian 219 (1.01%) 1043 (1.1%) – –
Asian 484 (2.23%) 2347 (2.47%) – 21 (0.41%)
Black 1958 (9.01%) 8257 (8.7%) 240 (13.76%) 784 (15.32%)
Hispanic 1511 (6.95%) 6755 (7.12%) 21 (1.2%) 89 (1.74%)
Other 2166 (9.96%) 9894 (10.43%) 544 (31.19%) 1498 (29.28%)
Pacific Islander 27 (0.12%) 123 (0.13%) – –
Unknown 8262 (38.0%) 41,318 (43.55%) 541 (31.02%) 1534 (29.98%) 2.5 ×10−36

White 7113 (32.72%) 25,135 (26.49%) 393 (22.53%) 1187 (23.2%) 5.6 ×10−15

Ventricular Rate 80.7 (80.5–81.0) 78.4 (78.3–78.5) 1.1 ×10−145 84.1 (83.2–85.0) 80.6 (80.0–81.1) 0.24
Atrial Rate 99.4 (98.5–100.3) 85.9 (85.6–86.2) 0 99.2 (96.3–102.1) 91.3 (89.8–92.7) 0.51
PR Interval 172.5 (172.0–173.0) 164.5 (164.3–164.7) 4.1 ×10−24 170.8 (169.0–172.6) 169.7 (168.7–170.8) 1.4 ×10−11

QTc Interval 467.5 (466.9–468.1) 448.4 (448.1–448.8) 0 473.2 (471.1–475.3) 458.3 (457.2–459.5) 9.3 ×10−138

p-values generated using ANOVA for continuous variables and Chi-square test for categorical variables.
aMitral Regurgitation: Moderate to severe MR, Severe MR.
bNormal: No MR, Mild/Borderline/Trace MR, Moderate MR.

Table 2 Population metrics: patients with Aortic Stenosis (AS) in internal and external validation cohorts.

Aortic Stenosisa Normalb p Aortic Stenosisa Normalb p

Internal testing cohort External validation cohort

Patients 8883 111,681 516 7595
Echo-ECG pairs 67,740 517,358 2360 29,880
Age 78.4 (78.3–78.4) 65.4 (65.3–65.4) 0 78.9 (78.5–79.3) 70.4 (70.2–70.6) 5.6 ×10−195

Gender n (%) 3.3 ×10−15 0.11
Male 4610 (51.9%) 59,446 (53.23%) 283 (54.84) 3866 (50.9)
Female 4273 (48.1%) 52,235 (46.77%) 233 (45.16) 3729 (49.1)
Race n (%) 0 5.0 ×10−24

American Indian 68 (0.77%) 1192 (1.07%) – –
Asian 136 (1.53%) 2755 (2.47%) – 23 (0.3%)
Black 431 (4.85%) 9807 (8.78%) 53 (10.27%) 1177 (15.5%)
Hispanic 516 (5.81%) 7732 (6.92%) – 128 (1.69%)
Other 721 (8.12%) 11,927 (10.68%) 155 (30.04%) 2291 (30.16%)
Pacific Islander 11 (0.12%) 140 (0.13%) – –
Unknown 3551 (39.98%) 48,393 (43.33%) 141 (27.33%) 2282 (30.05%)
White 3449 (38.83%) 29,735 (26.62%) 157 (30.43%) 1691 (22.26%)
Ventricular Rate 76.6 (76.3–77.0) 78.8 (78.7–78.9) 0 78.9 (77.3–80.4) 80.8 (80.3–81.2) 7.2 ×10−13

Atrial Rate 91.8 (90.5–93.1) 86.9 (86.6–87.2) 0.056 87.2 (83.3–91.2) 89.7 (88.6–90.8) 0.26
PR Interval 177.9 (177.1–178.8) 164.5 (164.2 –164.8) 8.3 ×10−99 179.9 (176.3–183.5) 167.9 (167.1–168.7) 1.0 ×10−88

QTc Interval 460.3 (457.4–463.3) 449.4 (449.2–449.6) 8.6 ×10−110 465.2 (461.6–468.8) 455.8 (454.9–456.7) 2.03 ×10−14

p-values generated using ANOVA for continuous variables and Chi-square test for categorical variables.
aAortic Stenosis: Moderate to severe AS, Severe AS.
bNormal: No AS, Mild/Borderline/Trace AS, Moderate AS.
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sex) as well as certain cart extracted parameters embedded within
the file (corrected QT interval, PR interval, Atrial rate, and
Ventricular rate). The relationships between these extracted
parameters are shown in the pairplots of Supplementary Figs. 5
and 6.

Waveforms corresponding to each ECG were plotted to an
image. This image was combined with the tabular data extracted
above as part of our modeling approach. Finally, no exclusions
were performed based on recorded diagnoses associated with the
ECG. We believe not having such exclusions would increase
generalizability across pathologies.

Model architecture. We utilized a combination neural network
consisting of a Multi-Layer Perceptron (MLP) joined to an
Efficientnet25 Convolution Neural Network (CNN) utilizing a
joint fusion strategy26. Extracted (tabular) data was input into the
MLP part of the neural network, while the image created from
ECG data was converted into a tensor and input into the CNN
part of the network. The final layer of the composite neural
network consisted of one neuron and utilized Sigmoid activation.
All models were trained using the Binary Cross Entropy loss
function, and the Adam optimizer with a learning rate of 1e−4.

Experimental design. We created an internal training and testing
dataset using data collated from 4 MSHS facilities (Mount Sinai
Hospital, Mount Sinai Brooklyn, Mount Sinai West, and Mount
Sinai Beth Israel). All data collected from Mount Sinai Mor-
ningside was retained for a separate, unique external validation
dataset. Data distribution across these datasets is detailed in
Tables 1 and 2.

Statistics and reproducibility. We utilized a Group Stratified
K-fold cross validation design with K= 10. This sampling

strategy prevents data leakage by treating each patient as a
separate group, with each group being restricted to either the
training or testing datasets. Stratified K-fold cross validation
trains and tests model performance across K iterations, with each
iteration’s training/testing splits keeping the same class distribu-
tion as the original dataset.

For the dual purposes of accounting for minor temporal
variation between ECGs of the same patient, as well as improving
model performance by way of data augmentation, each TTE
report was paired to all ECGs performed within ±7 days of the
echo during model training. During model evaluation, we
emulated real-world deployment conditions by only considering
the ECG closest to the TTE report within the 7-day time interval.

15% of testing data for each cross-fold iteration was utilized as
an internal validation dataset. Following each epoch of training,
performance was evaluated against this internal validation
dataset. To prevent model overfitting, we implemented an early
stopping approach to break the main training loop when
performance on this internal validation dataset stopped increas-
ing for 5 epochs. At this point, the model was evaluated on the
remaining 85% of the internal testing data, and the external
validation data.

Model performance was evaluated using threshold independent
Area Under Receiver Operating Characteristic curve (AUROC),
and Area Under Precision Recall Curve (AUPRC) metrics.
Threshold dependent metrics such as Sensitivity, and Specificity
were calculated based on an optimal threshold derived from the
Youden J index27.

Evaluation of performance in patient subgroups. Comorbidities
such as systemic hypertension and a concomitant ipsilateral
valvular lesion can affect both the diagnosis and development of
valvular pathology. We extracted ICD diagnostic codes (ICD9:

Fig. 1 Flow diagram showing numbers of patients and paired ECG investigations at each step of data preprocessing. Numbers indicate investigations
following initial data collection, followed by parsing echo reports for relevant diagnostic terms, temporal restriction, and removal of outliers based on
mathematical analysis of waveforms.
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401, 642*, 997.91; ICD10: I10, O10*, O13*, O16*) for patients
close to the time of the ECG and performed an additional check
of model performance in patients with either of isolated or
concomitant valvular lesions.

Validation of Aortic Stenosis model deployment. Transcatheter
Aortic Valve Replacement (TAVR) is a minimally invasive pro-
cedure that obviates the need for conventional open-heart sur-
gery, especially in patients with high surgical risk. We assessed the
incidence of TAVRs with respect to model predictions.

Since TAVR is a relatively new procedure, we restricted our
cohort to patients who had an ECG in 2015 or later. All echo
reports with documented moderate-to-severe, or severe AS were
labeled positive for the procedure, and model predictions for each
cross-fold were labeled positive or negative based on the Youden
index. Contingent on the ground truth of the echo derived label,
predictions were labeled either true positive, true negative, false
positive or false negative. For patients who had a TAVR, each
prediction was then paired to the time of the procedure.
Following this, we plotted cumulative incidence curves taking
into account the time interval between each prediction:TAVR
pair over a 5 year follow up period.

We also evaluated the development of valvular lesions in
patients who were categorized as false positives over a 5-year
follow-up period. For patients with repeat ECGs proximal to an
echo, we fit a Kaplan–Meier model to the time of development of
a valvular lesion from an initial false positive diagnosis.

Comparison of performance with tabular models. We devel-
oped tabular XGBoost models to compare the performance of our
DL approach to simpler methods which rely on ECG features. For
diagnosis of either AS or MR for patients from the Internal
testing cohort, we utilized machine extracted parameters as
enumerated in Supplementary Table 5. Model performance was
compared using the AUROC metric.

Model interpretability. We utilized the captum framework for
model interpretability owing to its integration with the PyTorch
deep learning library, as well as support for multi-modal inputs.
Plots were created showing the region of the plotted ECG con-
tributing most to a prediction, in addition to showing the net
contributions of both the waveform data and the extracted
tabular data.

Software and hardware. Data curation, processing and analysis
was performed using the pandas, numpy, scikit-learn, PIL,
torchvision, and PyTorch libraries within the Python program-
ming language. NLP tasks were performed using the spaCy
library. Code was run within custom docker containers created
from official PyTorch docker images. Demographic performance
plots and cumulative incidence curves were generated using the
ggplot2 library within the R programming language. Models were
trained on an Azure Cloud virtual machine on 4x NVIDIA v100
GPUs with 16GB VRAM each.

IRB approval. This study was approved and informed consent
was waived by the Icahn School of Medicine Institutional Review
Board for utilization of retrospectively collected data (IRB-20-
03271).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Performance of rule-based NLP algorithm. We created a rule-
based NLP approach to extract information about valvular status
from the unstructured text contained within Echo reports. Per-
formance at this task was evaluated by two faculty reviewers in a
single-blind framework and quantified in terms of correctly
classified labels, incorrectly classified labels, and missed labels. For
this evaluation, valvular disease of any severity was considered as
a demarcation between normal and abnormal.

From 420 outcomes in review for AS, we correctly classified
398, missed a label for 13, and incorrectly classified 1. For
detected outcomes, this was an accuracy of 99.7%. For the 420
outcomes in review for MR, we correctly classified 379, missed
labels on 37, and incorrectly classified 4. For detected outcomes,
this was an accuracy of 99.1%. However, since all errors were
towards detection of Borderline MR incorrectly detected as
Normal, accuracy of input labels was assumed to not be affected.
Overall performance is detailed in Supplementary Table 2.

Performance at Mitral Regurgitation classification. We built a
deep learning model to detect presence of moderate-to-severe, or
severe MR. Data was collected for 607,429 Echo-ECG pairs for
123,096 patients and divided them into internal testing (7.11%
prevalence) and external validation (7.32% prevalence) cohorts
(Table 1). There was no correlation found between any extracted
tabular variables (Supplementary Fig. 5).

Model performance was strong in the internal testing dataset
with an AUROC of 0.88 (95% CI: 0.88–0.89). This performance
lowered to 0.81 (95% CI: 0.80–0.82) in the external validation
dataset (Fig. 2). Interestingly, the AUPRC was 0.59 (95% CI:
0.57–0.61) in internal testing, but higher at 0.63 (95% CI:
0.61–0.65) in external validation (Supplementary Fig. 7). In either
of internal testing and external validation, AUROC was seen to be
constant across groups based on race, age, and sex (Fig. 3).
Interpretability plots for MR classification highlighted QRS
complexes as features that pushed the model towards a positive
prediction as seen in Fig. 4. Overall model performance alongside
threshold dependent metrics is summarized in Table 3.

Performance at Aortic Stenosis classification. We built a DL
model to detect presence of moderate-to-severe, or severe AS. We
accumulated data for 617,338 Echo-ECG pairs for 128,628
patients and divided them into internal testing (7.11% pre-
valence) and external validation (7.32% prevalence) cohorts
(Table 2). Distribution of extracted ECG parameters was once
again seen to have no correlation between any pair of variables
(Supplementary Fig. 6).

Our model again achieved strong performance in internal
testing with an AUROC of 0.89 (95% CI: 0.88–0.89). Performance
was slightly lower in external validation at an AUROC of 0.86
(95% CI: 0.85–0.87) (Fig. 2). This trend was maintained with
respect to AUPRC, with values of 0.35 (95% CI: 0.34–0.37) and
0.30 (95% CI: 0.28–0.31) in internal testing and external
validation, respectively (Supplementary Fig. 8).

As seen for MR classification, model performance was roughly
constant across demographic groups (Fig. 3), and interpretability
plots highlighted QRS complexes driving the model towards
prediction of the outcome (Fig. 5). Model performance was
equivalent in both hypertensives and non-hypertensives in internal
testing, and was slightly higher in hypertensives by an AUROC of
0.03 in external validation (Internal testing prevalence: 35%,
External validation prevalence: 33.9%) (Supplementary Fig. 9).

Overall model performance alongside threshold dependent
metrics is summarized in Table 3.
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Validation of Aortic Stenosis deployment using Transcatheter
Aortic Valve Replacement incidence. We evaluated model per-
formance with respect to each pair of TTE and TAVR incidence.
We found that patients who were classified as true positives by
the model had a much higher TAVR rate as opposed to those
who were classified as false negatives or true negatives. Interest-
ingly, we found that the TAVR rate was highest in true positives,
followed by false negatives, false positives and finally true nega-
tives (Fig. 6).

In addition, we found that the average time between a
prediction:TAVR pair was much lower than other groups at
0.49 years in the true positive group. Total numbers of prediction
pairs and unique procedures per group are summarized in
Supplementary Table 3.

Performance at pre-diagnostic echo Aortic Stenosis detection.
We evaluated the performance of the AS classifier on ECGs
collected in 4 different time intervals prior to the first diagnostic
echo detailing the presence of moderate-to-severe, or severe AS.
These time intervals were 3–6 months (2062 patients),
6–12 months (2096 patients) 12–18 months (2076 patients), and
18–24 months (2058 patients). For each time interval, all ECGs

for each patient were considered, and cases were balanced against
an equivalent number of controls.

Model performance was seen to increase in inverse proportion
to the time interval between the ECG and the diagnostic echo. At
18–24 months, AUROC was 0.66. This increased to 0.67 at
12–18 months, 0.72 at 6–12 months and 3–6 months. By using
the Youden index to derive an optimal threshold, our model
achieved sensitivity scores of 0.84, 0.91, 0.87, and 0.95 over the
same time intervals (Fig. 7, Supplementary Table 4).

Performance in patients with concomitant left heart valvular
lesions. We evaluated the performance of both classifiers with
respect to performance in concomitant AS+MR, and compared
this to performance for isolated valvular lesions. We found that
for AS classification, AUROC was higher for patients with con-
comitant AS+MR in both internal testing (AS+MR: 0.91;
Isolated AS: 0.86) and external validation (AS+MR: 0.89; Iso-
lated AS: 0.85).

Similarly, the MR classifier also performed better for patients
with concomitant AS+MR – with an improvement in AUROC
of 0.07 for both internal testing (AS+MR: 0.92; Isolated

Fig. 2 Receiver Operating Characteristic (ROC) Curves. Panel a Mitral Regurgitation. Panel b Aortic Stenosis. Area Under Curve (95% Confidence
Interval) with shaded area around curve representing confidence interval. Red dashed line represents floor of performance as in the case of a hypothetical
model making purely random predictions. Overall dataset size: 607,429 Echo-ECG pairs for 123,096 patients for Mitral Regurgitation. 617,338 Echo-ECG
pairs for 128,628 patients for Aortic Stenosis.
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MR: 0.85) and external validation (AS+MR: 0.88; Isolated MR:
0.81) (Supplementary Fig. 10).

Valvular lesion development in false positive predictions. We
considered model predictions over a 5-year follow up period for

all patients for whom we had more than one ECG:Echo pair,
and fit Kaplan–Meier curves to the time of first diagnosis of
both Aortic Stenosis and Mitral Regurgitation. We found that
the cumulative incidence of the corresponding valvular lesion
was higher for patients who had an initial False Positive

Fig. 3 Model performance by age, sex, and race subgroups. Panel a Mitral Regurgitation. Panel b Aortic Stenosis. Values presented are Area Under
Receiver Operating Characteristic Curve (AUROC). Bar segments at bottom delineate internal testing and external validation by color. Inner circles
represent groups by age/US Census defined racial categories. Source data for figure is available in Supplementary Data 1–6.
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prediction (AS: 4.5% vs 1.7%; MR: 24.8% vs 10.1%), over those
who had an initial True Negative prediction (Supplementary
Fig. 11).

Discussion
AS and MR represent a hidden health burden within the
population that is amenable to more inexpensive and widely
available screening tools. We collected around 600,000 ECGs
for a socioeconomically and demographically diverse group of
120,000 New York City patients who were administered care
within multiple centers of the Mount Sinai Health System. We
created an accurate NLP pipeline capable of extraction of labels
from the unstructured text of echo reports. Utilizing these
labels, we developed and evaluated deep learning models

capable of detecting moderate-to-severe, or severe AS/MR. We
analyzed performance of either model across racial/ethnic, age,
and sex-based groups. For AS, we performed a longitudinal
analysis of model performance by considering model perfor-
mance at detection prior to a diagnostic echo, as well as vali-
dating model predictions against Transcatheter Aortic Valve
Replacement procedures.

Deep learning (DL) represents a powerful set of tools capable
of discerning patterns within complex data. While DL requires
more computational resources and data points than traditional
methods using tabular data, we found that use of DL achieved
better results than traditional machine learning models. Fur-
ther, it does not require manual feature selection, or expert
input into feature selection. This is invaluable for problems
where human expertise cannot isolate specific markers or pat-
terns of disease.

DL models must be tested before deployment, and external
validation is a necessary requirement towards making a final
assessment of model quality in terms of generalizability. Biases
assisting model performance within an internal dataset –
especially one taken from a single facility may not be replicated
within an external cohort. This may severely compromise the
validity and performance of any real-world implementation of a
model20. We were encouraged to see our models had little
change in performance in going from internal testing to
external validation. Similarly, racial biases inform not only
availability of healthcare, but also compliance with treatment.
In addition, certain disease processes are more prevalent and
more severe in certain racial groups. Prior work has been
limited to East Asian19–21 and Caucasian22 populations. Our
training population is representative of the racial and socio-
economic diversity of New York City, and we found that our
models performed consistently across each racial, age, and sex-
based group.

Additionally, prior work does not include resampling. A
single training-testing data split cannot ensure equitable dis-
tribution of easy or hard to predict cases within training and
testing data. Consequently, reported model performance may

Table 3 Classification performance.

Cohort Internal testing External validation

Mitral regurgitation
% eval prevalence 17.40% 29.48%
AUROC 0.88 (0.88−0.89) 0.81 (0.8−0.82)
AUPRC 0.59 (0.57−0.61) 0.63 (0.61−0.65)
Sensitivity 0.94 (0.91−0.96) 0.83 (0.8−0.87)
Specificity 0.69 (0.66−0.71) 0.63 (0.58−0.67)
Positive Predictive Value 0.39 (0.37−0.40) 0.48 (0.47−0.50)
Negative Predictive Value 0.98 (0.97−0.99) 0.90 (0.89−0.92)
Aortic Stenosis
% eval prevalence 7.11% 7.32%
AUROC 0.89 (0.88−0.89) 0.86 (0.85−0.87)
AUPRC 0.35 (0.34−0.37) 0.30 (0.28−0.31)
Sensitivity 0.93 (0.9−0.96) 0.92 (0.89−0.96)
Specificity 0.71 (0.69−0.74) 0.63 (0.6−0.66)
Positive Predictive Value 0.20 (0.18−0.22) 0.17 (0.15−0.18)
Negative Predictive Value 0.99 (0.99−1.00) 0.99 (0.99−0.99)

Youden J index used for calculation of Sensitivity, Specificity, Positive Predictive Value, and
Negative Predictive value. p-values generated using ANOVA.

Fig. 4 Model interpretability: Mitral Regurgitation. Panel a Input pixels most responsible for driving the prediction towards the outcome are highlighted.
Panel b Relative contributions of waveform / tabular data to the final prediction. Panel c Relative importance of tabular features with respect to each other.
Patient (n= 1) was positive for Mitral Regurgitation. Source data for figure is available in Supplementary Data 7.
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Fig. 6 Cumulative incidence of Transcatheter Aortic Valve Replacement (TAVR) by model prediction. At risk numbers represent multiple predictions paired
to each TAVR procedure for each patient prior to the date of the procedure. Shaded area around curve represents confidence interval. Follow up interval: 5 years.

Fig. 5 Model interpretability: Aortic Stenosis. Panel a Input pixels most responsible for driving the prediction towards the outcome are highlighted. Panel
b Relative contributions of waveform / tabular data to the final prediction. Panel c Relative importance of tabular features with respect to each other. Patient (n= 1)
was positive for Aortic Stenosis. Source data for figure is available in Supplementary Data 7.
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be erroneously elevated. By performing Group Stratified Cross
validation, we ensure we capture the variability inherent to each
split of data.

AS is a chronic, progressive condition – often taking months or
years to increase in severity to where it becomes overtly symp-
tomatic or warrants clinical suspicion. Following from this, we
validated model performance within a longitudinal framework by
considering a scenario where such a model could be used as a
screening tool. In calculating performance at detecting AS before
a patient had a diagnostic echo within the ambit of normal
clinical workflow, we found that our model’s performance
increased monotonically up to the time of the diagnostic echo.
This pattern suggests the model is capable of tracking progression
of ECG changes indicative of AS.

We also evaluated how our model’s predictions agreed with
physician decisions about whom to consider for a TAVR proce-
dure. We found that both the absolute number of procedures, as
well as the procedure rate was much higher in patients who had
true positive predictions as opposed to false negative predictions.
Furthermore, even patients who had false positive predictions had
an overall higher rate of TAVR procedures than true negatives.

We posit that this trend shows such patients have a higher risk of
developing symptomatic AS eventually requiring intervention.
Interestingly, the rate of TAVR procedures was greater in true
positives in comparison to false negatives. We surmise this fol-
lows from the application of the Youden J Index. Due to the
tradeoff between sensitivity and specificity28, lower risk positives
(with a correspondingly lower procedure rate) as classified as
negatives.

Overall, we believe this makes a strong case for our model’s
ability to gauge disease severity. Fine-tuning such a model29 on
labels derived from whether or not a patient had a TAVR may
help guide clinical decisions regarding the requirement of or
suitability for the procedure and will form the basis of
future work.

Our work is better understood in light of certain limitations.
We paired echos to ECGs within a ± 7-day period. Severe MR can
develop acutely secondary to ischemic and non-ischemic
pathologies affecting the heart. This may decrease model accu-
racy owing to the myocardium not having enough time to get
acclimated. This could be a reason for model performance
dropping within internal testing and external validation cohorts

Fig. 7 Model performance at detection of Aortic Stenosis prior to diagnostic echo. Shaded area around curve represents confidence interval. Highlighted
points on each curve demonstrate optimal sensitivity and specificity as derived by the Youden J. Panel a n= 2062 patients (3–6 months), Panel c 2096
patients (6–12 months), Panel b 2076 patients (12–18 months) and Panel d 2058 patients (18–24 months) AUROC: Area Under Receiver Operating
Characteristic Curve.
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for MR, and further evidences the importance of external vali-
dation prior to model deployment. Additional random error may
have been introduced by the labels generated by the NLP pipeline,
despite high accuracy upon manual review (>99%). Low outcome
prevalence in the study population led to proportionally low
Positive Predictive Values (PPV) for both outcomes. While this
limitation cannot be easily resolved without additional data, we
were encouraged to find our models’ performance exceed prior
work19,21,22 at this metric. External validation was performed at
the Mount Sinai Morningside hospital, which while part of the
same health system as the hospitals from which training data was
collected, serves a different patient population. There was no
patient overlap for this external validation site. We found that the
internal and external validation cohorts had a significantly dif-
ferent distribution of demographic and extracted ECG parameters
(Table 1). However, further external validation from another
health system is warranted in future work.

We have incorporated the capabilities of DL into successfully
deriving additional information from inexpensive, widely avail-
able ECGs for outcomes that do not have an established set of
diagnostic guidelines. Such models can be used to screen patients
or direct them along appropriate care pathways.

Data availability
The raw data is not publicly available because it contains privileged and protected patient
information. Further detail is available on request from the corresponding author. The
source data for Fig. 3 is available in Supplementary Data 1–6. The source data for Fig. 4 is
available in Supplementary Data 7.

Code availability
Program code detailing the neural network pipeline is available at https://github.com/
akhilvaid/LeftHeartValvularDisease and is linked at https://zenodo.org/record/637584730
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