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Abstract

Background In recent years, there has been considerable research on the use of artificial

intelligence to estimate age and disease status from medical images. However, age esti-

mation from chest X-ray (CXR) images has not been well studied and the clinical significance

of estimated age has not been fully determined.

Methods To address this, we trained a deep neural network (DNN) model using more than

100,000 CXRs to estimate the patients’ age solely from CXRs. We applied our DNN to CXRs

of 1562 consecutive hospitalized heart failure patients, and 3586 patients admitted to the

intensive care unit with cardiovascular disease.

Results The DNN’s estimated age (X-ray age) showed a strong significant correlation with

chronological age on the hold-out test data and independent test data. Elevated X-ray age is

associated with worse clinical outcomes (heart failure readmission and all-cause death) for

heart failure. Additionally, elevated X-ray age was associated with a worse prognosis in 3586

patients admitted to the intensive care unit with cardiovascular disease.

Conclusions Our results suggest that X-ray age can serve as a useful indicator of cardio-

vascular abnormalities, which will help clinicians to predict, prevent and manage cardiovas-

cular diseases.
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Plain language summary
Chest X-ray is one of the most widely

used medical imaging tests world-

wide to diagnose and manage heart

and lung diseases. In this study, we

developed a computer-based tool to

predict patients’ age from chest

X-rays. The tool precisely estimated

patients’ age from chest X-rays. Fur-

thermore, in patients with heart fail-

ure and those admitted to the

intensive care unit for cardiovascular

disease, elevated X-ray age estimated

by our tool was associated with poor

clinical outcomes, including read-

mission for heart failure or death

from any cause. With further testing,

our tool may help clinicians to predict

outcomes in patients with heart dis-

ease based on a simple chest X-ray.
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Aging is a term used to describe a correlated set of declines
in function with advancing chronological age. Perceived
age, or the estimated age of a person, is a robust bio-

marker for aging. In clinical practice, physicians unconsciously
compare perceived and chronological age1. Previous clinical
studies have revealed that patients with older perceived age, i.e.,
those who look older than their chronological age, have advanced
carotid atherosclerosis2, reduced bone mineral density3, and
increased mortality4. However, in these studies, perceived age was
estimated from patient facial images by >10 medical professionals
and averaged2–5; therefore, significant variation in perceived age
was likely. There have been no studies that test whether perceived
age is a robust predictor for age-related diseases, including car-
diovascular disease. In recent years, machine learning-based
methods have been developed to estimate the presence of Alz-
heimer’s disease6 and coronary artery disease7 from facial images
of patients. Although perceived age is a useful biomarker for age-
related diseases and aging, due to privacy and ethical issues it
is difficult to obtain facial images of patients in routine clinical
practice.

Recently, deep learning has revolutionized the field of machine
learning. Deep neural networks (DNNs) are computational models
based on artificial neural networks, consisting of multiple layers that
progressively extract higher-level features from raw input. DNNs
have been shown to exceed human performance in computer vision
and natural language processing tasks8. They have also been applied
to the medical field in dermatology, radiology, ophthalmology, and
cardiovascular medicine, and have achieved human physician-level
performance, for instance, in classifying images of skin cancer9,
pneumonia detection from CXRs10, diagnosing retinal disease11,
and arrhythmia classification from electrocardiograms (ECGs)12,13.
Furthermore, some recent studies have suggested the possibility of
using DNNs to learn patterns that humans have difficulty in
recognizing14–16, such as age and sex estimation from ECGs17 and
brain age estimation from magnetic resonance imaging (MRI)18.

The chest X-ray (CXR) is quick and easy; therefore, it is one of the
most commonly used screening tests for a variety of diseases19.
Despite its simplicity and ease of use, the CXR provides consider-
able information and is pivotal for the diagnosis and monitoring of
cardiovascular and pulmonary diseases such as heart failure, aortic
dissection, pneumonia, lung cancer, tuberculosis, sarcoidosis, and
lung fibrosis20. Because aging21 and sex difference22 cause changes
in CXR radiological findings, several studies have explored esti-
mating a patient’s age from CXR and developing artificial intelli-
gence capable of conducting this task23–28. However, the estimation
accuracy of those models has not been validated with independent
external test data24,26–28. Although the association of estimated age
with disease prognosis has been suggested in the general population
of a cancer screening trial cohort25, it is still unclear whether esti-
mated age can predict prognosis in populations with cardiovascular
disease, especially heart failure. It also remains unclear whether age
discrepancy, i.e., the deviation between chronological and estimated
age, has any prognostic value for heart failure. Therefore, the clinical
significance of estimated age derived from CXRs has not been fully
characterized.

We hypothesized that the estimated age from CXRs using deep
learning (X-ray age) could be an indicator of aging status. In this
study, we sought to develop and train DNNs to estimate patients’
age solely from frontal-view CXRs without any additional clinical
information and evaluated its estimation performance using a
robust method on independent datasets. Because CXRs are widely
used, we assumed that they could provide great clinical sig-
nificance if the extent of aging could be estimated from CXRs,
and that X-ray age could be used as a substitute for perceived age.
We explored the clinical implications of X-ray age and its char-
acteristics by analyzing the difference between X-ray age and

chronological age, defined as years since birth, and the relation-
ship between X-ray age and CXR findings. We applied the
developed DNN to the CXRs of patients with heart failure (HF)
and examined its relationship to the patient’s background, clinical
parameters and HF outcome. Additionally, we explored the
model’s clinical usefulness in a different situation: patients
admitted to the intensive care unit (ICU) with cardiovascular
disease. These examinations show elevated X-ray age is associated
with a worse cardiovascular prognosis.

Methods
Dataset acquisition. Three datasets were used in this study (Fig. 1
and Supplementary Fig. 1). We used the NIH chest X-ray dataset,
which comprises 112,120 png images of frontal-view CXRs from
30,805 unique patients. This dataset also includes metadata con-
taining patient age and sex information with up to 15 labels29. We
excluded 16 CXR images from patients over 100 years of age, since
these images were labeled as over 140 years old, which was con-
sidered a labeling error. We randomly split the dataset into three
groups (training set: 102,029 images from 28,029 patients (91.0%),
validation set: 9426 images from 2,523 patients (8.19%); test set:
613 images from 250 patients (0.81%)). There was no patient
overlap between the sets to avoid data leakage during model
training, which can lead to overestimation of model performance.
We also used the JSRT database, which comprises 247 frontal CXR
images from 247 Japanese patients30. We removed two images for
which age information was not available. The JSRT database was
used as an independent test dataset to check the generalizability of
our model and to determine whether our model can be applied to
other populations with different physiques. Data of patients with
HF were obtained from our prospective heart failure registry, which
enrolled 1562 consecutive patients with acute decompensated HF
who were admitted to Sakakibara Heart Institute (Fuchu, Tokyo), a
hospital specializing in cardiovascular disease, between November
2011 and December 2017. The diagnosis of heart failure was based
on the Framingham criteria31. Patients with acute coronary syn-
drome and isolated right-sided HF were excluded from the study.
Conventional clinical variables including age, sex, etiology of HF,
risk factors, blood pressure, heart rate, laboratory data, and echo-
cardiographic findings were obtained from the electronic medical
records of the study participants. Events of heart failure, re-hos-
pitalization, and death were recorded. Frontal CXRs within 2 days
of hospital admission were used in the analysis. Written informed
consent was obtained from all the participants before the study.
The study protocol was approved by the Institutional Review
Board of the Sakakibara Heart Institute (No. 19-092). Patients
with cardiovascular disease who were admitted to the cardiovas-
cular care unit were obtained from the MIMIC-IV 1.0 database
(https://physionet.org/content/mimiciv/1.0/)32 and MIMIC-CXR-
JPG 2.0.0 (https://physionet.org/content/mimic-cxr-jpg/2.0.0/)33.
The MIMIC-IV database is a publicly available database compris-
ing health-related data from patients who were admitted to critical
care units of the Beth Israel Deaconess Medical Center (BIDMC).
MIMIC-IV contains data from 2008 to 2019. Data for patients
admitted to the BIDMC intensive care units were extracted from
the respective hospital databases. MIMIC-CXR-JPG contains the
CXR study information of patients in the BIDMC between 2011
and 201633. The code that generates the descriptive statistics
is publicly available (https://github.com/MIT-LCP/mimic-iv and
https://github.com/alistairewj/mimic-iv-aline-study). From the
data of 76,540 critical care unit admissions, we extracted data of
3,586 patients fulfilling the following criteria: first critical care unit
admission, patient age less than 90 years, frontal CXR available in
the MIMIC-CXR-JPG database, admission to a cardiovascular care
unit (Service in MED, CMED, CSURG and VSURG), and patients
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with cardiac disease (ICD9 of 410.X, 412.X, 428.X, 425.4-425.9,
398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13,
403.91 and 404.93, ICD10 of I21.X, I22.X, I252, I43.X, I50.X, I099,
I110, I130, I132, I255, I420, I425, I426, I427, I428, I429, P290).

Deep learning model development and training. To develop a
deep learning model for age estimation, we applied transfer
learning and fine-tuning techniques to our model. We adopted
11 CNN architectures, namely ResNet18, ResNet34, ResNet50,
ResNet101, ResNet15234, DenseNet121, DenseNet161, Dense-
Net169, DenseNet20135, Inception-v436, and SENet15437. For
transfer learning, we used pre-trained weights for CNN models.
Pre-trained weights on ImageNet were downloaded for each
model from https://github.com/Cadene/pretrained-models.
pytorch. Models can be separated into two parts in a CNN: the
convolutional and fully connected layer (FCL). Because these
models are for the classification task of 1000 categories, the
default output layer is comprised of 1000 neurons, which repre-
sent the probabilities of each category (Fig. 1). The convolutional
layers were initialized with loaded pre-trained weights and frozen.
We modified the original FCL part into a new two-layered FCL.

The FCL part is composed of batch normalization, an FCL of 512
neurons with a rectified linear unit (ReLU) as the activation
function, batch normalization38 and a final FCL. Dropout39 was
applied after batch normalization. We adopted an FCL with a
single final neuron so that the model outputs a single numerical
value of the predicted age and makes it a regression problem. We
selected (1) MSE loss, which is defined by the following equations,
where n is the number of images, yi is the actual label, and ŷi is
the estimated age.

MSE ¼ 1
n
∑
n

i¼1
ðŷi-yiÞ2 ð1Þ

The models were trained on the training dataset to minimize the
loss functions. The models were trained using the Adam optimizer
and cyclic learning rate policy40. During transfer learning, only the
parameters in the FCL and batch norm layers of the convolutional
part are updated. Then, we fine-tuned the entire network by
unfreezing and updating the pre-trained weights with a much lower
learning rate. The validation set was used to select hyperparameters
to determine when to stop training to avoid overfitting and to select
the final model. Validation data were not used to update the
weights of the DNNmodel. The NIH chest X-ray database provides

Fig. 1 Data usage and overall study framework. The NIH Chest X-ray dataset was randomly divided into training, validation and test datasets. Our deep
neural network (DNN) models were trained to estimate the age using the training dataset. The weights of the models were initialized with pre-trained
weights on ImageNet data and trained using transfer learning and fine-tuning techniques. Various models with different architectures were separately
trained. Validation data were only used to tune the hyperparameters and to select the final model. The accuracy of the deep learning model was estimated
using a hold-out test dataset. The independent JSRT dataset was also used to estimate the performance to verify the generalizability of the trained DNN in
an independent population. The trained DNN was applied to CXRs of heart failure patients to evaluate the association between the estimated age (X-ray
age) and various clinical parameters and the clinical outcomes of heart failure.
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png images and the JSRT and HF patients’ CXRs were DICOM
images. All the images were transformed into png images using
Python’s pydicom library and resized to 320 × 320 pixels. To
improve the generalizability of our model and avoid overfitting, we
applied image augmentation41. The images in the training datasets
were augmented with random padding and random rotation up to
±20°. Image flipping was not performed. Our DNNs were trained
on NVIDIA Tesla V100 GPUs using a mixed precision training
technique42. After the training, we selected the model with the
lowest loss value in the validation dataset as the final model
(Supplementary Table 1). We applied the trained DNN to the test
dataset and the JSRT dataset to assess the estimation performance.
Inference with the trained model was performed on NVIDIA
RTX1080Ti GPUs. Image augmentation was not applied to the test
or JSRT datasets. We used gradient-weighted class activation
mapping (Grad-CAM)43 and guided backpropagation44 methods
to visualize the area of interest of our models.

Age estimation by human physicians. To compare our model
with human physicians’ and radiologists’ prediction performance,
four trained physicians (three cardiologists and one pulmonolo-
gist) and three radiologists estimated the patient’s age from CXRs
on the JSRT dataset. They had 8, 9, 15, 30+, 12, 24, and 26 years
of clinical experience, respectively. They estimated the patient’s
age from the CXR image without any additional information. We
used the JSRT data because they are physicians in Japan and are
accustomed to analyzing Japanese CXRs. They were allowed to
see the training dataset images and labels before estimating age in
the JSRT dataset. For ensemble prediction, the age estimates of
the four physicians were averaged. For instance, the ensemble
prediction is 45-years-old when the four physicians estimated a
CXR as a 48-year-old, 52-year-old, 55-year-old, and 25-year-old.

Statistical analysis of test results. To estimate the predictive
performance of the age estimation model, Pearson’s correlation
coefficient (r) between chronological age and estimated age was
calculated. The correlation coefficient would remain high if the
estimated ages were correlated but always estimated higher or
lower than the chronological age. To fairly assess the DNN esti-
mation performance, intraclass correlation coefficient case 1 (ICC)
and the mean absolute error (MAE) between chronological age and
estimated age were also calculated. ICC was calculated using psych
package in R. To test the model’s reproducibility, we extracted
patients who had multiple CXRs within one year in the validation
and test data. Age was estimated from CXRs using our DNN and
the Pearson’s r correlation coefficient was calculated. To remove
the possibility of overestimation of estimation performance due to
the relatively small amount of test data (0.8% of patients), five-fold
cross validation was performed. The NIH chest X-ray data were
randomly divided into training, validation, and test datasets in a
ratio of 7:1:2, with no overlap of patients among the datasets
(Supplementary Table 2). A pre-trained SENet154 model and with
the same hyperparameters were used for training. The estimation
performance on the test dataset and the JSRT dataset in each split
were averaged (Supplementary Table 3). Training of the model
using only the No finding data was performed using the 59,998
CXR images from 24,706 patients in the training and validation
datasets. The same hyperparameters were used to train the model.
The trained model was evaluated using the test dataset and JSRT
dataset. Estimation performance was compared between the model
trained with all the dataset and the model trained with No finding
data only. For the ensemble model, estimated age of the 11 different
DNN models was averaged and compared with the SENet154-
based single model output. The P value was derived using a 20,000
bootstrap replications method. To analyze the association between

the X-ray age and finding labels, linear regression was performed
using the validation and test data. Only the first CXR was used for
analysis for patients with more than one CXR. The three finding
labels of edema, infiltration, and consolidation were grouped
together as consolidation and hernia was excluded from the ana-
lysis because it was labeled in a small number of CXR images (227
images out of 112,104 images). Regression coefficients of finding
labels adjusted for chronological age (Formula in R: lm(X-ray age ~
finding label+ chronological age)) were determined. Linear
regression analysis was also performed to analyze the association
between X-ray age and clinical measurements (vital signs, labora-
tory measurements and past clinical history, such as hypertension,
dyslipidemia, diabetes mellitus, smoking history) in the heart fail-
ure cohort. Continuous variables were rank normal transformed.
The Cox proportional hazards model was used for survival analysis.
The median follow-up period was 407 days (interquartile range,
122–879 days). An event was defined as the composite endpoint of
heart failure re-hospitalization and all-cause mortality. The inde-
pendent variables in the Cox model were determined by referring
to the empirical rules and previous articles. Age, sex, BMI, history
of hypertension, diabetes mellitus, dyslipidemia, and smoking; left
ventricular ejection fraction (LVEF); NT-pro BNP; Hb; eGFR and
X-ray age by the deep learning model were incorporated as inde-
pendent variables. In the selection of variables for the multivariate
analysis, age, sex and LVEF were fixed as independent variables
because they are known to be strong predictors of heart failure
outcome45,46. Independent variables that showed P values of less
than 0.05 in the univariate analysis were employed in the multi-
variate analysis. To compare the Cox model and different inde-
pendent variables, we used IDI, continuous net reclassification
improvement (cNRI), median improvement (MI), and AIC. For
the MIMIC data, survival analysis was performed using the Cox
proportional hazard model. Events were defined as all-cause
mortality. Independent variables in the Cox model were age, sex,
eGFR, Hb, diagnosis of congestive HF, diagnosis of myocardial
infarction, and age discrepancy (the deviation between chron-
ological and X-ray age). To assess whether X-ray age is clinically
useful beyond simply identifying pathological features on CXRs, we
also included the CXR abnormality information in the Cox model,
using a recently developed abnormality classification DNN47. The
model output is binary values of whether it is a normal (0) or
abnormal (1) CXR and its probability. We calculated the
abnormality binary value and its probability from the heart failure
cohort’s CXRs. We compared Cox model results, including the
binary value (abnormality) or logit [logitðpÞ ¼ logð p

1�pÞ] of prob-
ability (abnormal score) with and without X-ray age information.
The R version 3.6.3 base function and ‘caret’, ‘psych’, ‘survival’,
‘boot’, and ‘survIDINRI’ packages were used for all statistical
analyses. A raw two-sided p value is provided when the p value
is greater than 2.2 × 10−323; otherwise, it is provided as
p < 2.2 × 10−323 because of generic computational limitations.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Dataset and model training. An overview of this study is shown
in Fig. 1. First, we used the NIH chest X-ray dataset to develop a
DNN that estimates the patient’s age from CXR29. This dataset is
a large publicly available image dataset containing 112,120 png
images of frontal-view CXRs from 30,805 unique patients. The
dataset also includes metadata containing patient age and sex
information with finding labels. After removing individuals with
age >100 years because they were considered mislabeled, 112,104
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CXRs remained; of these, 63,328 (56%) were male. The ages
ranged between 1 and 95 years, with a median age of 49 years and
an interquartile range of 35–59 years (Supplementary Fig. 1a, d).
We randomly assigned these data to the training, validation, and
test data (Supplementary Fig. 2).

We applied transfer learning and fine-tuning techniques to
train the DNN. Briefly, these methods utilize a pre-trained DNN
to improve the efficiency of the training time and the amount of
data used for training. Rather than training the DNN from
scratch, the DNN can learn much faster and with significantly
fewer training examples by using transfer learning and fine-
tuning48,49. We adopted four commonly used architectures,
namely ResNet34, DenseNet35, Inception-v436, and SENet37 as
pre-trained DNNs. To improve the generalizability of our DNN
and to avoid overfitting, we applied image augmentation41. After
the training, we selected the model with the lowest loss value in
the validation dataset as the final model. The metrics of the model
with the lowest loss (mean squared error [MSE] between the
chronological and estimated age) in the validation dataset for
each architecture are summarized in Supplementary Table 1. For
age estimation, the SENet-based model yielded the lowest loss
(MSE loss = 27.34 years2) in the validation data (Supplementary
Fig. 3). All CXR images in the holdout test dataset were used to
measure the performance of the model. The estimated age
showed a very strong significant correlation with chronological
age (Pearson’s r: 0.962 [95% confidence interval (CI),
0.955–0.967]; Intraclass correlation coefficient case 1 (ICC1):
0.957 [95% CI, 0.951–0.962]) and the mean absolute error (MAE)
between the estimated age and chronological age was 3.67 (95%
CI, 3.44–3.89) years in the test dataset (Fig. 2a, Table 1,
Supplementary Data 1).

An important phenomenon known as domain shift sometimes
occurs in machine learning, which makes generalization of the
machine learning model to unseen data with different distribu-
tions difficult50. The NIH chest X-ray data were collected from
hospitals in the United States29 and most of the patients were
likely to be American. To determine whether our model trained
using these data can be applied to other populations with
different physiques and from different datasets, we also tested
the model on the JSRT dataset, which is a frontal CXR image
dataset comprising 247 frontal CXR images from Japanese

patients (Supplementary Fig. 1b, e)30. In the JSRT dataset, we
also observed a strong significant correlation between the
estimated age and chronological age (Pearson’s r: 0.916 [95%
CI, 0.893–0.934], ICC1: 0.878 [95% CI, 0.852–0.900]), and MAE
between the estimated age and chronological age was 4.95 (95%
CI, 4.43–5.48) years (Fig. 2b, Table 1, Supplementary Data 2).

To remove the possibility of overestimation of performance due
to the relatively small amount of test data, we also conducted a five-
fold cross validation (Supplementary Table 2), which showed that
the model performance was slightly better when more training data
were used (Supplementary Table 3). The performance of the model
when trained using only CXRs labeled as No Finding is shown in
Supplementary Table 4. The model trained with all CXR images
showed better estimation performance compared to the DNN
model trained on CXRs labeled as No Finding (Pearson’s r: 0.962 vs
0.951, p < 0.0001; ICC1: 0.957 vs 0.945, p= 0.0005). This is
probably due to the fact that in DNN training, the generalization
performance of the model improves as the variability of the training
data increases51. Our DNN estimated patient age more accurately
in younger patients than in elderly patients (Supplementary
Table 5). We further compared the ensemble inference of eleven
different architectures of DNNs with the individual SENet154
model and found no significant difference in prediction perfor-
mance on either the test or JSRT data (Pearson’s r: 0.962 vs 0.960,
p= 1; ICC: 0.957 vs 0.955, p= 1 in the test data; Pearson’s r: 0.916
vs 0.912, p= 1; ICC: 0.878 vs 0.889, p= 0.053 in the JSRT data,
Supplementary Table 6). We examined the reproducibility of this
model by extracting images taken multiple times for the same
patient from the NIH data. The correlation coefficient between the
two estimated ages was 0.967 (p < 2.2 × 10−323), indicating that
both models also showed high reproducibility (Supplementary
Fig. 4). These results suggest that our model can accurately estimate
age from CXRs, even in different population groups and cohorts.

Comparison of predictive performance with human experts.
We compared the predictive performance of our model with that
of four experienced physicians and three experienced radiologists
using the JSRT dataset. We found a slight correlation between the
physicians’ estimated age and chronological age, and the average
Pearson’s correlation coefficient was 0.481 (95% CI, 0.331–0.630).

Fig. 2 Estimation accuracy of the deep learning model and human physicians. Estimated age by the trained deep learning model (X-ray age) in the test
dataset (n= 613) (a), JSRT dataset (n= 245) (b), and estimated age by human physicians and radiologists in the JSRT dataset (n= 245) (c). Scatter plots
of the chronological age (x-axis) and estimated age (y-axis) with Pearson’s correlation coefficient and intraclass correlation coefficient case 1 (ICC) and
95% confidence interval are shown. A strong positive correlation between the chronological and estimated ages was observed in the deep learning model.
For the human estimation, the estimated age is the average of the estimations by the four physicians and three radiologists. The correlation between the
chronological and estimated ages is modest (c).
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Age estimation performance was better for radiologists than for
physicians (Supplementary Table 7, Supplementary Fig. 5).
The ensemble predictions by the physicians and radiologists
improved the predictive performance (Pearson’s r 0.698 [95% CI,
0.627–0.757], MAE 10.06 [95% CI, 9.17–10.94] years); however,
this did not match the performance of our DNN (Fig. 2c, Sup-
plementary Table 7, Supplementary Fig. 5, Supplementary
Data 3). These results demonstrate that our DNN can learn
patterns that are difficult for human experts to recognize.

Interpretation of the deep learning model by heatmap analysis.
We attempted to visualize the DNN to understand which part of the
image it focused on when estimating the patients’ age. For this
purpose, we created a heatmap using Grad-CAM43 and guided
backpropagation44. The model mainly focused on the top of the

mediastinum as well as bony features in the sternum, clavicles, and
shoulders regardless of the pathology present in the CXRs (Fig. 3
and Supplementary Fig. 6). This is hypothesis provoking that per-
haps there are features in these areas (e.g., joint spaces, cartilage or
shape and calcification of the aorta) that are important for pre-
dicting X-ray age. This pattern is similar to the previously reported
CXR-based age prediction model using DNN24,25, and is consistent
with the previous report that tortuosity and calcification of the aorta
are hallmarks of atherosclerotic disease and are associated with
aging52–54. The heatmap analysis results suggest that our DNN
models successfully capture changes due to aging.

A difference between the estimated and chronological age
indicates the existence of a disease. We analyzed CXR images in
which the difference between the estimated age and chronological
age was large. Some examples of incorrectly estimated CXRs are
shown in Fig. 4b. CXRs with a large deviation of estimated age from
chronological age seemed to have abnormal findings. When the
performance was evaluated using only the CXR labeled No finding,
the Pearson’s r improved slightly from 0.961 to 0.965 (p= 0.215)
and the MAE improved from 3.79 to 3.66 years (p= 0.181),
but was not statistically significant. A significant difference was
observed between the estimated and chronological ages when the
images had some finding labels. Conversely, we found that CXRs
with a substantial difference between the estimated and chron-
ological ages were significantly more likely to have some finding
labels, and this tendency increased with age (Fig. 4c, Supplementary
Data 4). Regarding each finding label, CXRs with findings of lung
fibrosis and effusion were estimated to be significantly older
(fibrosis: +1.41 [0.17–2.66] years; effusion: +0.81 [0.10–1.52]
years) than the chronological age (Fig. 4d, Supplementary Data 5).
These results suggest that a difference between the estimated and
chronological age could be a marker for CXR findings, indicating
the existence of a disease.

Estimated age from CXRs (X-ray age) indicates the presence of
cardiovascular abnormalities. To further explore the clinical
significance of X-ray age in actual clinical data, we used a private
database of patients with acute heart failure (HF). This pro-
spective HF registry has enrolled all patients hospitalized for HF
at the Sakakibara Heart Institute since 2011. The registry was
designed to collect the clinical background and outcome data of
consecutive patients admitted to the Sakakibara Heart Institute
for acute decompensated HF. Conventional clinical parameters
including age, sex, etiology of HF, risk factors for cardiovascular
disease, blood pressure, heart rate, laboratory data, and echo-
cardiographic findings were collected from all study participants
(n= 1562). The events of HF re-hospitalization and death were
also recorded55–57. The data comprised 920 (59%) male patients
in the age range of 18–98 years, with a median age of 78 years
(interquartile range 69–84) (Supplementary Fig. 1c, f, Supple-
mentary Table 8).

Table 1 Summary of estimation performance of DNN in the test and JSRT datasets.

Dataset Test dataset JSRT dataset

Estimate C.I. Estimate C.I.

lower 95% upper 95% lower 95% upper 95%

R 0.962 0.955 0.967 0.916 0.893 0.934
MAE 3.67 3.44 3.89 4.95 4.43 5.48
ICC 0.957 0.951 0.962 0.878 0.852 0.900

The age estimation performance of the trained DNN model on the test and JSRT datasets.
R, Pearson’s r between the chronological and estimated age, MAE mean absolute error, ICC intraclass correlation coefficient, DNN deep neural network.

Fig. 3 Visualization of the deep learning model with Grad-CAM and
guided backpropagation. Example of original CXRs and heatmap
visualization using Grad-CAM and guided Grad-CAM. a Original CXR
image in the dataset with chronological age, sex; F, female; M, male; y/o,
years. b Visualization of deep learning model using Grad-CAM and a
combination of guided backpropagation and the Grad-CAM.
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Fig. 4 Characteristics of images resulting in inaccurate age estimation by the deep learning model. a Examples of CXR images with an age estimation
error of less than 5 years. The chronological age, sex, and X-ray age are shown above each image. Pred, prediction; F, female; M, male; y/o, years.
b Examples of CXR images with an age estimation error of more than 10 years. c Relationship between age estimation error and presence of any
finding labels. The odds ratio with a 95% confidence interval is shown on the x-axis (n= 2773 independent X-ray images). The odds ratio of having
any finding labels was lower in CXR images in which the deep learning model correctly estimated the age. On the other hand, images for which age
could not be accurately estimated were significantly more likely to have finding labels. d Different finding labels that affect the patient’s estimated age.
The effect of each finding label on the predicted age derived from linear regression adjusted for chronological age (see Methods) is shown on the
x-axis (n= 2773 independent X-ray images). For example, CXRs with the ‘fibrosis’ label are likely to be estimated 1.4 years older than the
chronological age.
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We applied our model to the CXRs of these patients to estimate
their age. Although the performance of age estimation was
expected to decrease because all the CXRs were of HF patients
and accordingly had some abnormal findings, there was still a
significant positive correlation between estimated and chronologi-
cal age (Pearson’s r: 0.769 [95% CI, 0.747–0.789], p= 4.6 × 10−291;
ICC1 0.257 [95% CI, 0.218–0.296], p= 2.1 × 10−25). This result
suggests that our DNN is still able to estimate aging in the patients
with a disease, although its accuracy is reduced. We first examined
the association between the patient’s history and estimated age
from CXR (X-ray age) and found that hypertension and atrial
fibrillation were significantly associated with increased X-ray age
after adjustment for chronological age (Fig. 5a, Supplementary
Data 6). Regarding clinical parameters, increased left atrial
diameter on echocardiography, tachycardia and elevated diastolic
blood pressure were associated with increased X-ray age,
whereas increased weight and taller stature were associated with
decreased X-ray age (Fig. 5b, Supplementary Data 7). These
significant associations suggest that X-ray age can be an indicator of
cardiovascular abnormalities.

X-ray age predicts cardiovascular prognosis. Next, we examined
the association between HF outcomes and X-ray age. We defined
the primary endpoint as the composite endpoint of all-cause
mortality and HF re-hospitalization. In the univariate Cox pro-
portional hazards model, X-ray age was associated with the pri-
mary endpoint (hazard ratio [HR], 1.040 [per year] [95% CI,
1.031–1.050], p= 9.29 × 10−17) as well as other conventional risk
factors such as age, sex, body mass index (BMI), hemoglobin
(Hb), NT-pro BNP, and eGFR (Supplementary Table 9). For
multivariate analysis, the difference between X-ray age and
chronological age was independently associated with the primary
endpoint after adjustment for conventional risk factors (HR:
1.019 per 1-year increase of X-ray age [95% CI, 1.005–1.032],
P= 6.69 × 10−3), suggesting that patients estimated to be older
had a worse HF prognosis (Fig. 5c, Table 2). Compared to the
Cox proportional hazard model with conventional risk factors
for HF, the model with the addition of age discrepancy as an
independent variable significantly increased the predictive per-
formance (continuous net reclassification improvement [cNRI],
0.134 [95% CI, 0.025–0.201], P= 0.01; integrated discrimination
improvement (IDI): 0.01 [95% CI, 0.0007–0.0245], P= 0.02,
Supplementary Table 10, Fig. 5d). The Akaike information cri-
terion (AIC) is often used for better model selection and lower
values suggest a better model for this criterion. AIC also
decreased in the Cox model by adding X-ray age information to
the conventional model (7608.6 (nominal model) vs 7206.6,
Supplementary Table 10), indicating that X-ray age is an inde-
pendent prognostic indicator for HF outcome. This additional
value of X-ray age in the Cox model was retained, even after
adding the CXR abnormality information (see “Methods”) to the
model (Supplementary Table 10).

We further validated the clinical significance of age
discrepancy in patients with cardiovascular disease who were
admitted to the ICU at the Beth Israel Deaconess Medical
Center in Boston. We extracted 3586 patients with cardiovas-
cular diseases whose CXRs during their ICU stay were available
from the MIMIC-IV database (Medical Information Mart for
Intensive Care)32. The median age of this cohort was 71 years
with an interquartile range of 61–80 and 2097 (8.5%) patients
were male (Supplementary Fig. 1d, h). Baseline characteristics
of this cohort are shown in Supplementary Table 11. In the
multivariate Cox model, the difference between X-ray age and
chronological age was also significantly associated with all-cause
mortality (HR 1017 per 1-year increase in X-ray age [95% CI,

1.0027–1.0305], P= 1.9 × 10−2, Supplementary Fig. 7, Supple-
mentary Table 12).

Finally, we compared the prognostic performance of age
discrepancy between younger and older patients. The results
showed that the effect of age discrepancy on prognosis was
significant in the elderly over 65 years of age (HR 1.024 [95% CI,
1.01–1.038], p= 9.4 × 10−4 (≥65 y.o.), Supplementary Fig. 8).
Since the speed of aging varies from patient to patient and the
aging effects accumulate with age, this result suggests that the
difference in the degree of aging is not so pronounced when
patients are young and becomes greater as they get older.

Discussion
In this study, we verified the performance of our DNN in esti-
mating patients’ age from CXRs without any additional clinical
data. We also explored the clinical implications of the estimated
age. To summarize the main findings of this study: (1) The
patient’s age was estimated from CXR within 5 years of MAE
using a deep learning algorithm. (2) Our DNN estimations of age
were much more accurate than the ensemble estimations made by
experienced physicians and radiologists. (3) In the heatmap
analysis, our DNN successfully captured aging-related changes in
CXRs. (4) In the HF population, patients with hypertension and
atrial fibrillation were estimated to be older. X-ray age was
independently associated with HF outcomes after adjusting for
covariates and an association was also observed with prognosis in
patients admitted to the ICU for cardiovascular disease. From
these findings we conclude that age can be estimated from CXRs
with high accuracy and reproducibility using our DNN and that
X-ray age can be used as a simple measure to suggest abnorm-
alities and clinical outcome in patients with cardiovascular
disease.

Many applications of DNN to automated diagnosis have been
studied and human physician-level high accuracy has been repor-
ted for various medical images such as skin images, pathology
slides, ECGs, CXRs, CT, MRI, and echocardiography9,10,13,14,58–61.
Several studies have reported that DNN can accomplish tasks that
are even difficult for human physicians14,16,17,62. In the example of
CXRs, Lu et al. created a deep learning model to predict mortality
risk from CXR images and stratified the risk of long-term
mortality63. Toba et al. estimated the pulmonary to systemic flow
ratio, an indicator of the severity of congenital heart disease, from
CXRs64. Since our DNNs age estimation was much better than that
of the radiologists, our results also document DNN-learned pat-
terns that were difficult for human experts to recognize.

There have been several studies regarding the estimation of
patient age from medical images. A deep learning model that can
estimate the age of young adults from MRIs of hands, clavicles,
teeth, and knees with high accuracy has been reported65–68. Attia
et al. created a deep-learning model to predict age and sex from a
12-lead ECG and achieved an MAE of 6.9 years for age estima-
tion. They also reported that patients with a predicted age
exceeding the chronological age of more than 7 years had a higher
incidence of cardiovascular diseases17. Wang et al. proposed a
deep learning model to predict patients’ age using brain MRI and
reported that the estimated age is associated with the future
development of dementia18.

Although aging is associated with CXR findings, few studies
have reported age estimation from CXR images23–28. Karargyris
et al. reported the first convolutional neural network (CNN)
model that predicts age from CXR using the NIH dataset.
However, they only reported the predictive performance on
internal validation datasets, which can lead to overestimation
because validation data were used for tuning the hyperparameters
of the model. To demonstrate the robustness of the model, its
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Fig. 5 Relationship between X-ray age and clinical characteristics and outcome in heart failure patients. n= 1562 study participants. Past clinical history
(a) and continuous clinical measurements (b) affected X-ray age. The effect of specific clinical history or clinical measurements on the predicted age is
shown on the x-axis with a 95% confidence interval. For example, the X-ray age of patients with atrial fibrillation or atrial flutter is likely to be estimated
1.22 years older than their chronological age. HTN hypertension, DM diabetes mellitus, DL dyslipidemia, HUA hyperuricemia, AFAFL atrial fibrillation or
atrial flutter, COPD chronic obstructive pulmonary disease, device cardiac pacemaker, implantable cardioverter defibrillator, or cardiac resynchronization
therapy devices, LAD left atrial diameter, LVEF left ventricular ejection fraction, LVDd left ventricular end-diastolic diameter, TC total cholesterol, BS blood
sugar (glucose), HR heart rate, dBP diastolic blood pressure, sBP systolic blood pressure. c Adjusted event-free survival curve for heart failure patients
stratified by the age discrepancy between the chronological age and X-ray age. An event was defined as the composite endpoint of heart failure re-
hospitalization, heart transplantation and all-cause mortality. The top 20% of patients, middle 60%, and bottom 20% were grouped as older, middle, and
younger, respectively. d Additional value of age discrepancy as assessed by the paired difference of risk scores derived from the Cox proportional hazard
model. The figure shows the empirical distribution function of the change in estimated risk score for heart failure patients in the model of conventional risk
factors (age, sex, body mass index, LVEF, NT-proBNP, hemoglobin, and estimated glomerular filtration rate) without age discrepancy (thick solid line) and
the model with age discrepancy (thin blue solid line). The difference between the areas under the two curves is IDI and the distances between two black
dots and between two gray dots are cNRI and median improvement, respectively.
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performance should be evaluated using unseen data, i.e., an
independent dataset, to avoid overfitting and domain shift
problems69,70. We evaluated the estimation performance on an
external test dataset as well as an entirely independent JSRT
dataset, neither of which were used during the training phase.
Raghu et al. also recently developed a deep learning model to
estimate a patient’s biological age from CXRs and reported that
estimated age was associated with mortality25. Although their
concept seems similar to ours, there are several key differences. In
their model development, Raghu et al. defined biological age as
the patient’s chronological age plus the difference between the
expected death age and the actual death age. Compared to their
model, our DNN model is more straightforward in that our DNN
is directly trained to estimate the patient’s chronological age from
a CXR. We showed the generalizability of X-ray age by applying it
to other populations with different physiques from an indepen-
dent dataset. We also showed the additional value of X-ray age by
comparing the prognostic models of conventional risk factors
with or without X-ray age information. We also demonstrated
that the prognostic impact of X-ray age was more pronounced in
elderly patients. This is consistent with the fact that the speed of
aging varies from person to person and the differences are more
pronounced among the elderly.

Our DNN model can be used in several ways in clinical
practice. It provides a simple biomarker that represents a single
quantification of information from the entire CXR image. Any
discrepancy between X-ray age and chronological age suggests the
presence of abnormal CXR findings. We found that older patients
had a significantly higher probability of hypertension and atrial
fibrillation, both of which are related to cardiovascular aging71,72.
In survival analysis, for example, a 10-year increase in X-ray age
has a hazard ratio of 1.20, even after adjusting for other clinical
parameters, indicating the clinical significance of X-ray age. Our
results suggest that X-ray age has the potential to be used as a
simple health indicator, which estimates possible diseases affect-
ing the heart and vessels. As an indicator of the degree of aging,
perceived age is a robust biomarker that has been linked to age-
related diseases and prognosis. However, a combined dataset of
patient facial photographs and clinical information would not be
available for research purposes due to ethical and privacy con-
cerns, which hinders the clinical application of perceived age.
Furthermore, since the estimated age by a single physician is
highly variable and not reproducible, it is necessary to average the
estimates by multiple health care providers2–4. Since a CXR is
used in most patients as a screening test, X-ray age has the
potential to replace perceived age as an objective biomarker. In
clinical practice, lung age, estimated from spirometry forced
expiratory volume (FEV)73, and vascular age, estimated from
carotid artery ultrasonography74, are used as simple health

indicators and these methods help clinicians explain test results to
patients. With continued advances in deep learning, as demon-
strated in this study of X-ray age, medical images will also be
quantified as age. Several studies have been conducted on auto-
mated diagnosis of CXRs; however, in practice, even the same
CXR finding can be normal or abnormal considering the age of
the patient and it has been difficult to discuss such issues quan-
titatively. Further research on estimating aging from medical
images using DNN may make such quantitative discussions
possible.

This study had several limitations. First, all CXR images were
obtained from patients; hence, they were obtained for some clinical
indications. Further studies are needed to determine if this is
applicable to other patients in the general population, such as using
a large amount of data from medical checkups. Second, as is often
the case with large datasets, the NIH chest X-ray dataset contains
low-quality images and labels. Finding labels may not necessarily
be accurate because the NIH dataset is labeled using natural lan-
guage processing29. Third, the analysis of our model in HF and
MIMIC cohorts is a single-center observational study with a
modest number of patients and the findings of the study can
potentially include some bias due to its retrospective nature.
Fourth, we only examined the relationship between the X-ray age,
disease, and prognosis in patients who were hospitalized with heart
failure. Thus, these relationships need to be validated in more
general and prospective cohorts.

In conclusion, we developed DNNs that accurately estimate
patients’ age from CXRs without any additional information and
with high reproducibility. Our results suggest that estimated age
(X-ray age) can serve as an indicator for cardiovascular aging and
abnormality and can be a key tool to help clinicians predict, prevent
and manage cardiovascular diseases in the era of digital medicine.

Data availability
The data generated and analyzed during this study are available from the corresponding
authors upon request. The NIH chest X-ray dataset used in this study is openly available
and can be downloaded at https://cloud.google.com/healthcare/docs/resources/public-
datasets/nih-chest. The JSRT database used in this study is publicly available and can be
downloaded at http://db.jsrt.or.jp/eng.php. Heart failure patients’ data is available upon
reasonable request. The MIMIC-IV and MIMIC-CXR-JPG databases used in this study are
publicly available and can be downloaded at https://physionet.org/content/mimiciv/1.0/
and https://physionet.org/content/mimic-cxr-jpg/2.0.0/, respectively. Source data for the
main figures are available in Table 2, Supplementary Table 10, and Supplementary
Data 1–7.

Code availability
Both our code and trained model for estimating X-ray age are on GitHub (https://github.
com/pirocv/xray_age) and archived on Zenodo75.

Table 2 Multivariate Cox proportional hazards model for the primary endpoint.

Variable (unit) Coefficient HR Confidence interval Z score P value

lower 95% upper 95%

Age (years) 0.0407 1.042 1.030 1.054 6.910 4.85 × 10−12

Sex (male) 0.0769 1.080 0.899 1.297 0.823 4.11 × 10−1

BMI (kg/m2) −0.0272 0.973 0.950 0.997 −2.239 2.51 × 10−2

LVEF (%) −0.0153 0.985 0.978 0.992 −4.447 8.73 × 10−6

Log10(NT-proBNP) (pg/ml) −0.1177 0.889 0.718 1.101 −1.080 2.80 × 10−1

Hb (g/dl) −0.1057 0.900 0.860 0.941 −4.612 3.99 × 10−6

eGFR (ml·min−1·1.73m−2) −0.0131 0.987 0.982 0.992 −5.025 5.02 × 10−7

Age discrepancy (years) 0.0184 1.019 1.005 1.032 2.712 6.69 × 10−3

Coefficients of the Cox proportional hazards model for the primary endpoint in patients with HF.
HR hazard ratio, BMI body mass index, LVEF left ventricular ejection fraction, Hb hemoglobin, eGFR estimated glomerular filtration rate, age discrepancy, difference between the X-ray age and chronological
age (X-ray age− chronological age).
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