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Abstract

Background In response to the SARS-CoV-2 pandemic, the Austrian governmental crisis unit

commissioned a forecast consortium with regularly projections of case numbers and demand

for hospital beds. The goal was to assess how likely Austrian ICUs would become over-

burdened with COVID-19 patients in the upcoming weeks.

Methods We consolidated the output of three epidemiological models (ranging from agent-

based micro simulation to parsimonious compartmental models) and published weekly short-

term forecasts for the number of confirmed cases as well as estimates and upper bounds for

the required hospital beds.

Results We report on three key contributions by which our forecasting and reporting system

has helped shaping Austria’s policy to navigate the crisis, namely (i) when and where case

numbers and bed occupancy are expected to peak during multiple waves, (ii) whether to ease

or strengthen non-pharmaceutical intervention in response to changing incidences, and (iii)

how to provide hospital managers guidance to plan health-care capacities.

Conclusions Complex mathematical epidemiological models play an important role in

guiding governmental responses during pandemic crises, in particular when they are used as

a monitoring system to detect epidemiological change points.

https://doi.org/10.1038/s43856-022-00219-z OPEN

1 Institute of Information Systems Engineering, TU Wien, Favoritenstraße 8-11, A-1040 Vienna, Austria. 2 dwh simulation services, dwh GmbH, Neustiftgasse
57-59, A-1070 Vienna, Austria. 3 Austrian National Public Health Institute, Stubenring 6, A-1010 Vienna, Austria. 4 Private University for Health Sciences,
Medical Informatics and Technology GmbH, UMIT, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria. 5 Association for Decision Support Policy and
Planning, DEXHELPP, Neustiftgasse 57-59, A-1070 Vienna, Austria. 6 Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23,
A-1090 Vienna, Austria. 7 Complexity Science Hub Vienna, Josefstädterstraße 39, A-1080 Vienna, Austria. 8 Santa Fe Institute, 1399 Hyde Park road, Santa
Fe, NM 87501, USA. ✉email: peter.klimek@meduniwien.ac.at

Plain language summary
During the SARS-CoV-2 pandemic,

health authorities make decisions on

how and when to implement inter-

ventions such as social distancing to

avoid overburdening hospitals and

other parts of the healthcare system.

We combined three mathematical

models developed to predict the

expected number of confirmed SARS-

CoV-2 cases and hospitalizations

over the next two weeks. This pro-

vides decision-makers and the gen-

eral public with a combined forecast

that is usually more accurate than

any of the individual models. Our

forecasting system has been used in

Austria to decide when to strengthen

or ease response measures.
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The first known COVID-19 cases in Austria appeared at the
end of February 2020 together with one of the first Eur-
opean superspreading events in the Tyrolean tourist region

of Ischgl, visited by travellers from all over the globe1. In the first
half of March 2020, a nationwide spread of the virus occurred
with an exponential rise of confirmed cases2. These developments
occurred against the dramatic backdrop of the neighbouring
country of Italy, where despite strict non-pharmaceutical inter-
ventions (NPIs) case numbers kept surging, hospital capacities
were exceeded and the military had to assist the health
authorities3,4. To understand how likely similar developments
would have been in Austria, mid-March a forecast consortium
was formed and tasked by the government with a weekly fore-
casting of the expected developments in case numbers and how
these developments would translate into demand for healthcare
resources. The overarching policy goal at this stage was to navi-
gate the crisis without overburdening the Austrian healthcare
system. Over the summer, this was also given a legal basis with a
clause in the Austrian COVID law that stay-at-home orders may
only be implemented if healthcare capacities are in danger of
becoming exhausted5. The Austrian Corona Commission, an
advisory committee to the minister of health tasked with assess-
ment of epidemiological risk, defined that ICUs would be able to
cope with situations in which up to 33% of all ICU beds would be
occupied by COVID-19 patients6.

Austria took a series of non-pharmaceutical interventions
(NPIs) in response to the crisis7 during the first wave. Next to a
ramping up of healthcare and public health capacities, airport
restrictions and landing bans intensified in the first week of
March. Gatherings were limited to 500 persons, cultural and
other events started to be cancelled on March 10. On March 16,
Austria went into a full lockdown with schools, bars, restaurants,
and shops being closed, as well as a transitioning into home office
for all non-essential employees7. Together with other, earlier
measures, these NPIs effectively led to a rapid reduction of daily
infection numbers. The number of new cases per day reached a
first peak on March 26 with 1,065 cases8. In the first wave,
COVID-19 related hospitalizations peaked on March 31 with 912
regular beds, whereas the ICU utilization peaked on April 8 with
267 beds (roughly 10% of the overall capacity) being occupied by
COVID-19 patients. Daily new cases decreased over April after
which they fluctuated at values below one hundred until July9.

Starting in July 2020, case numbers in Austria started to
increase again leading to a second wave in October. In response
to this rise of case numbers, the Austrian government imple-
mented a series of lockdowns with varying levels of stringency
since beginning of November 2020. Hospitalizations peaked in
the end of November, with 3,985 regular beds occupied on
November 24, and 709 ICU beds occupied on November 25,
respectively. According to officially reported data, this peak
brought Austrian hospitals very close to the critical limit of 33%
ICU bed occupancy by COVID patients.

The Austrian COVID-19 forecast consortium provided weekly
short-term forecasts for case numbers and required hospital beds.
In particular, the role of the forecast consortium was to forecast
how likely the 33% threshold of ICU beds being occupied by
COVID-19 patients would be crossed within our forecast horizon.
Our consortium consisted of three independent modelling teams
with experience in the use and development of mathematical and
computational models to address epidemiological and public
health challenges10–16. The consortium was complemented with
experts from the Ministry of Health, the Austrian Agency for
Health and Food Safety, as well as external public health experts
in weekly meetings.

A plethora of epidemiological models to forecast the spread of
COVID-19 has been proposed recently17–22. In the forecast

consortium, we consolidated the output of three models into a
single forecast of case numbers for 8–14 days and used these case
numbers to predict the numbers of required hospital and ICU
beds for 21 days for the country as a whole and for each of its
nine federal states. In addition to these point estimates, we also
provided upper and lower bounds for these numbers at various
levels of confidence. These upper bounds of the hospital bed
forecasts served as a guidance system for the regional hospital
managers, allowing them to estimate how many beds should be
reserved for COVID-19 patients if they were willing to accept a
given level of risk. These forecasts have been published each week
on the homepage of the Ministry of Health23.

The idea of using a harmonized epidemiological forecast
became popular for influenza prognoses24 and was recently also
adapted for COVID-19 forecasts by the European Center for
Disease Control25. For influenza, the strategy has already been
shown to be superior to results of individual models with respect
to forecasting errors. Moreover, since the results are highly rele-
vant for policy-making, this strategy also allowed for risk-sharing
between the involved institutions making up the consortium.

While the SARS-CoV-2 pandemic has triggered an explosive
growth of epidemiological forecasting models, substantially less
research has been performed regarding how the results of such
models should be disseminated for decision support26–28. In this
work, therefore, we present the forecast and reporting system we
developed based on the three independent forecasting models to
support policy making in Austria. While the individual models
have been adapted from pre-existing works, our main novelty lies
in developing a reporting system to communicate relevant output
to non-technical experts and to inform decisions regarding
strengthening or easing NPIs.

After a brief summary of the individual models and strategies to
combine their output, we describe the accuracy of our forecasts and
how this accuracy depended on the phase of the epidemics (i.e., in
high or low incidence phases, during waves, etc.). We consistently
find that the combined forecasts were more accurate than any of the
individual forecasts for three different strategies of combining them.
Susbstantial over- or underestimations of the actual development
typically occurred in all models simultaneously and sometimes sig-
nalled epidemiological change points. We discuss how our results
were received by policy-makers, stakeholders in the healthcare sys-
tem, and the public. We outline the main contributions of our
approach to chart a safe path to re-open the country after the first
lockdown and how the system informed the necessity for a second
lockdown in November 2020. The aim of this work is to commu-
nicate the methods applied and developed which allowed three
individually thinking modelling and simulation research units to
work together in a joint task force producing a consolidated forecast,
the benefits and shortcomings of the process, and the political
impact of the achieved results. We conclude that epidemiological
models can be useful as the basis for short-term forecast-based
monitoring systems to detect epidemiological change points which
in turn inform on the necessity to strengthen or ease NPIs.

Methods
We used three conceptually different epidemiological COVID-19
models, developed and operated individually by three research
institutions, namely a modified SIR-X differential equation model
(Medical University of Vienna / Complexity Science Hub), an
Agent-Based simulation model (TU Wien/dwh GmbH), and an
epidemiological state space model (Austrian National Public
Health Institute).

Data. Although the three models use different parameters and
parametrization routines, they are calibrated using the same data
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to generate weekly forecasts. Consequently, differences between
the model forecasts are a result of different model structure and
calibration, but not a result of different data sources. The models
also used different nowcasting approaches to correct for late
reporting of positive test results. We used data from the official
Austrian COVID-19 disease reporting system (EMS9). The sys-
tem is operated by the Austrian Ministry of Health, the federal
administrations, and the Austrian Agency for Health and Food
Safety.

For every person tested positively in Austria, the EMS contains
information on the date of the test, date of recovery or death, age,
sex and place of residence. Furthermore, hospital occupancy of
COVID-19 patients in ICU and normal wards are available from
daily reports collected by the Ministry for Internal Affairs.

We declare that our research does not require ethics approval.
We used an existing secondary dataset maintained as database to
collect the information needed. It includes anonymous informa-
tion and it is not possible to link data in order to generate
identifiable information. Data are properly anonymised. The
information is legally accessible and appropriately protected
by law.

Extended SIR-X model. One of our models is an extension of the
recently introduced SIR-X model17. The original SIR-X model
introduced a parsimonious way to extend the classic SIR
dynamics with the impact of NPIs. In particular, two classes of
NPIs are considered. First, there are NPIs that lead to a contact
reduction of all individuals (susceptible and infected ones). Such
NPIs include social distancing and other lockdown measures.
Second, the model also represents NPIs that reduce the effective
duration of infectiousness for infected individuals. Contact-
tracing and quarantine belong to this category.

The model was extended by adding mechanisms by which
susceptible but quarantined individuals increase their number of
contacts again as well as waning immunity; we refer to this model
as the XSIR-X model. The model further includes an age-
structured population. Model parameters are calibrated using a
numerical optimization procedure that is separately performed in
multiple time windows corresponding to phases with different
regimes of NPIs. Whether changes in NPIs indeed led to
substantial changes in behaviour was inferred from mobility data
to identify such calibration time windows29,30. A more detailed
technical model description can be found in Supplementary
Note 2.

Agent-based SEIR model. The second model is an Agent-Based
SEIR type model, furthermore abbreviated as AB model. In this
section we will only give a rough overview of this model. For a
detailed and technical model description (about 20 pages long)
including all used parameter values we refer to previous published
work (see supplemental material in [13]). Since the model is
subject to continuous improvements, the model description is
continuously updated and found at http://www.dwh.at/en/
projects/covid-19/.

The AB model is stochastic, population-dynamic and depicts
every inhabitant of Austria as one model agent. It uses sampling
methods to generate an initial agent population with statistically
representative demographic properties and makes use of a
partially event-based, partially time-step (1 day)-based update
strategy to enhance in time.

The model is based on a validated population model of Austria
including demographic processes like death, birth, and
migration15. Contacts between agents are responsible for disease
transmission and are sampled via locations in which agents meet:
schools, workplaces, households and leisure-time. After being

infected, agents go through a detailed disease and/or patient
pathway that depicts the different states of the disease and the
treatment of the patient.

The model input consists of a time-line of modelled NPIs;
parameters are calibrated using a modified bisection method. For
generation of the weekly forecasts, the model is fitted to the 7 day
incidence of the new confirmed cases of the last 21 days including
a nowcasting correction for the last week to supplement for
subsequent registrations.

Results are gathered via Monte-Carlo simulations as the point-
wise sample mean of multiple simulation runs. Due to the large
number of agents in the model, eight simulation runs are used
which are sufficient to have the sample mean approximate the
real unknown mean with an error of less than 1% with 95%
confidence (estimated by the Gaussian stopping as introduced in
ref. 31).

The model considers uncertainty with respect to the stochastic
perturbations in the model by tracing the standard deviation of
the Monte-Carlo simulations. Parameter uncertainty is consid-
ered in form of manually defined best and worst case scenarios.

Epidemiological state space model. The third model isolates
weekday effects, statistical outliers and exogenous shocks in order
accurately identify and extrapolate the current trend in reported
new infections.

We therefore use a multivariate autoregressive state space
model, where reported numbers of daily new infections
(including corrections for exogenous shocks and nowcasting for
the recent days) are explained by underlying latent factors
(“states”) and exogenous variables.

The basic structure of the model follows a random walk of
order 2 and includes weekday effects that may change over time.
Further information can be incorporated into the model by
defining exogenous variables. The coefficients of these effects are
not determined in the model but extracted from external sources.
Currently, exogenous data included in the model comprise the
effective immunization rate of the population, seasonal effects,
number of imported cases, and NPI.

Effective immunization rates are calculated as the share of
immunized individuals (vaccinated and/or recovered) times the
corresponding empirically estimated effectiveness of protection
against reported infections based on the screening method32.
Seasonal forcing is modelled by the cosine function, with a
maximum positive impact on transmission rates in January. The
magnitude of seasonal effects are based on literature estimates33.
The number of imported cases is based on Austrian contact-
tracing data34. NPIs are incorporated based on information on
NPIs in place at federal and regional level35 and their reported
effects on transmission rates36.

For a more technical model description refer to Supplementary
Note 2.

Model harmonization. In order to harmonize the model output
and generate a single consolidated forecast for the number of new
and accumulated positive COVID-19 tests, each model was set up
to generate its output in a common data format for each of the
nine federal states of Austria. Our forecasts consisted of time
series of confirmed cases for each day starting with the number of
positive tests at the day of the forecast consortium meeting at
11:59 pm and ending between 8 and 14 days in the future (over
time, we slightly increased the forecast horizon).

Different averaging procedures were considered to generate the
joined forecast from the three individual forecasts. These included
the point-wise arithmetic and geometric mean as well as an
adaptive weighting procedure wherein the timeseries for each
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model contributes with weights proportional to the accuracy of its
most recent forecasts. This strategy was adapted from previous
work 24,37. The following three strategies have been evaluated in
terms of their forecast error. Let Fj

iðtÞ denote the forecasts for the
total number of COVID-19 cases on day t for model j for runs
made in week i,

Fh
i ðtÞ ¼ f ðF1

i ðtÞ; F2
i ðtÞ; F3

i ðtÞÞ ð1Þ
the harmonized forecast with strategy f, and Ri the corresponding
reported number.

● Naive. This strategy describes a static arithmetic average

f ðF1
i ðtÞ; F2

i ðtÞ; F3
i ðtÞÞ :¼

1
3
F1
i ðtÞ þ

1
3
F2
i ðtÞ þ

1
3
F3
i ðtÞ ð2Þ

● Geometric. This strategy describes the static geometric
average of the forecasts.

f ðF1
i ðtÞ; F2

i ðtÞ; F3
i ðtÞÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1
i ðtÞF2

i ðtÞF3
i ðtÞ3

q

ð3Þ
● Continuously weighted dynamic mean. This strategy

describes a dynamically weighted arithmetic average.

f ðx; y; zÞ :¼ a1i F
1
i ðtÞ þ a2i F

2
i ðtÞ þ a3i F

3
i ðtÞ ð4Þ

The weights are determined from the forecasting errors of
the previous three weeks.

aji ¼
1
3

∑
i�1

k¼ði�3Þ
wj
k; wj

k ¼
1

maxðjkjF�Rkj;0:5Þ
∑3

r¼1
1

maxðjkrF�Rkj;0:5Þ
; j 2 f1; 2; 3g:

ð5Þ

Hospital bed usage model. Hospital occupancy is modelled in a
stock-flow approach, in which the “stock” of hospital patients is
changed over time by means of an in- and outflow of patients.
Inflow (admission to ICU and normal wards) is calculated as a
ratio of the time-delayed number of recently reported and pro-
jected new cases from the harmonized model forecast. Length of
stay determines outflow. Admission rates are scaled in order to fit
the current occupancy in all federal states. The scaling parameter
(one for each federal state) can thus be interpreted as an effective
hospitalization rate. Model parameters were initially extracted
from literature38 and subsequently calibrated to observational
data to better fit the observed time series; see Supplementary
Table 1 and Supplementary Table 2. Length of stay is modelled
based on the empirical distribution of length of stay with a cut-off
value of maximum 100 days. The hospital bed usage model is
stratified by four age groups and sex as depicted in Supplemen-
tary Fig. 1. Mean average length of stay for admissions in the
period January to May 2021 (and discharges in the period January
to June 2021) was 13.4 for ICU stays and 10.7 for normal
ward stays.

Confidence intervals for forecasts. Confidence intervals (CIs) for
both case numbers of the harmonized model and hospital occu-
pancy are derived from the empirical forecast error of each
prognosis day. More specific, we retrospectively evaluate the ratio
of the consolidated forecast and the observed seven-day-incidence
rate of confirmed cases for each day over the forecast interval.
The upper and lower limits of the 68% and 95% CIs used for the
reporting of our forecasts are derived from the corresponding
percentiles of the empirical distribution of the observed
forecast error.

It is assumed that forecasting errors can be reasonably
approximated by a log-normal distribution that is independent
of the starting level of case numbers, that the variance increases

with the forecast horizon, and that the forecast error of the first
and second day of the forecast is skewed because increases due to
delayed reporting are more likely than decreases in case numbers
due to backdating. We therefore consider the relative logarithmic
forecast error tuples Δi,h where i denotes the number of the
prognosis, and h denotes the forecast horizon. These tuples are
evaluated in a 2-dimensional kernel-density estimation (KDE).
The resulting density function is evaluated at slices of
h= 1, 2,…,H, where H is the last day of the forecast. 0.025,
0.16, 0.84 and 0.975 percentiles give thresholds for the error
bands in the case number projections for h.

For the confidence intervals of the ICU and hospital occupancy
we additionally take the occupancy on the first prognosis day into
account because the fluctuations of the occupancy numbers
played a much higher role for the error than the parameter
uncertainty. Specifically, an almost linear relation between the
level of uncertainty and the square root of the occupancy on the
first prognosis day could be observed.

We regard the tuples Yi;j ¼ ðΔi;j;
ffiffiffiffiffi

Xi

p Þ. Hereby, Δi,j denotes
the logarithmic error logðXi;j=~Xi;jÞ between the reported occu-

pancy Xi,j and the forecast occupancy ~Xi;j of day j in prognosis

week i. Furthermore Xi ¼ Xi;0 ¼ ~Xi;0 denotes the occupancy on
the day of the prognosis in week i. The tuples Yi,j are evaluated in
a 2-dimensional kernel-density estimation (KDE) using Scott’s
Rule to obtain the kernel function f ðΔ; ffiffiffiffi

X
p Þ.

To generate CIs, the marginal distributions

f ffiffiffi

X
p ðΔÞ ¼ f ðΔ; ffiffiffiffi

X
p Þ

R

Δf ðu;
ffiffiffiffi

X
p Þdu

are calculated numerically. Finally, the percentiles of f ffiffiffi

X
p ðΔÞ give

the CIs for the logarithmic error, given a certain occupancy X on
the day of the prognosis.

Forecasting error evaluation. Forecasts are evaluated at the
weekly official meetings of the consortium. A list of all dates (as
well as officially reported forecasts) can be found online23. To
quantify the error of the case forecasts, the total number of
reported and projected new cases since the last meeting are
compared using data as reported on the day of the meeting. For
example, the forecast harmonized on April 3, 2020 was evaluated
on the meeting on April 10th by comparing the total number of
new cases reported between April 3rd and April 9th with the
projected ones.

To avoid bias, relative and not absolute differences and errors
are taken into account.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Forecasting positive test numbers. We show the results for our
rolling forecasts compared with the actual case numbers in Fig. 1
for 72 forecasts. For the time period from April 4 to Summer 2021,
we performed and harmonized weekly forecasts that are visibly as
bundles of lines in Fig. 1. The first published forecasts coincided
closely with the peak of the first epidemic wave in Austria. While
the models showed a clearly discernible divergence for the first
forecast, the agreement increased over the first wave. The starting
points for the early weekly forecasts occasionally lie below the
actual cases due to a substantial amount of very late reporting of
cases in these early periods of the epidemic. From May until July,
reported cases remained at a comparably low level.
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Starting from late August to early September, the onset of the
second wave is visible. A critical point was the prognosis for the
week until October 25, highlighted in yellow in Fig. 1. There, the
consolidated forecast clearly underestimated the actual rise in
confirmed cases. The forecasts made in the weeks thereafter were
more accurate, however, the CI strongly increased due to the less
accurate forecasts from the first half of October. A gradual
flattening of the curve until end of January can be observed after
the steep increase in November, during which the forecasts had a
tendency to overestimate the degree of the flattening.

The early increase of the third wave in March 2021 was
anticipated by the models due to the alpha variant becoming
dominant. However, the peak of the third wave was not
anticipated, as were the substantial decreases in reported cases
in the following weeks when possibly seasonal factors increasingly
curbed the virus spread.

In Fig. 2, we compare the model-specific forecast error with the
forecast error of the consolidated model, the incidence and the
effective reproduction number in Austria. In April 2020,
agreement amongst the three models is typically stronger than
the agreement with the data, meaning if one model over- or
underestimated the actual trend, so did the other models. After
the summer, agreement between the three models was larger than

in the early phases of the pandemic. Comparing the upper and
lower part of this image also shows that none of the models
anticipated a spontaneous rise in Reff in combination with a large
number of daily cases in August/September and October. This
was particularly well visible at end of October (see the dotted lines
in Fig. 2). Nevertheless, the violin representation in Fig. 3, which
shows the relative differences between forecasts and reported data
of all forecasts ever made, indicates that no persistent systematic
over- or underestimation occurs while it cannot be ruled out that
such systematic aberrations might have occurred over smaller
periods of time.

We investigated the performance of different averaging
procedures that weigh models according to their past perfor-
mance in terms of their relative difference and error, see Methods.
The results are summarized in Table 1. Performance weighting
procedures yielded only a marginal improvement over simple
averaging in terms of forecast accuracy. This further corroborates
that agreement amongst the model forecasts is typically higher
than their agreement with the observed case numbers.

Forecasting bed usage. In Fig. 4, we show our rolling forecasts
for the number of intensive care beds in use for COVID-19

Fig. 1 Rolling combined and consolidated out-of-sample forecasts for the 7 day incidence rate of confirmed cases in Austria. We show the weekly
predictions from the three different models, their arithmetic average with it corresponding CI, and the actual case numbers. The underlying data is found in
Supplementary Data 1.
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Fig. 2 Evaluation of the forecast performance. Daily new confirmed cases and estimated Reff9 (top panel) and forecasting performance (relative difference,
bottom panel) of the individual models and the harmonized mean are shown for 72 forecasts. Weeks in which the forecasts substantially underestimated the
actual case numbers (vertical dotted lines) tend to coincide with steep increases in Reff. The underlying data is found in Supplementary Data 2.

Fig. 3 Evaluation of the forecasting performance for federal states. The
distribution of relative differences over all 72 forecasts to the reported data
for Austria (AT) and all nine federal states (AT-1 to AT-9) is shown. Since
the mean relative differences are close to zero, no persistent systematic
over or underestimation of the cases occurs. For large federal states such
as Lower Austria (AT-3) and Vienna (AT-9), forecasts are more reliable.
The underlying data is found in Supplementary Data 3.

Table 1 Forecast accuracy with different model
harmonization strategies.

Week 22, 2020-09-08 to 2020-09-17 (strong underestimate due to decline
of seasonal effects)
Strategy Formula for mean (SIR-X (x), AB

(y), SS (z))
Relative error

Naive 0.33x+ 0.33y+ 0.33z 30.4%
Geometric

ffiffiffiffiffiffiffi

xyz3
p

30.5%
Continuous 0.36x+ 0.32y+ 0.32z 30.7%
Week 51, 2021-03-30 to 2021-04-06 (overestimated seasonality-caused
turning point in spring)
Naive 0.33x+ 0.33y+ 0.33z 14.3%
Geometric

ffiffiffiffiffiffiffi

xyz3
p

14.3%
Continuous 0.36x+ 0.37y+ 0.28z 14.4%
Week 45, 2021-02-01 to 2021-02-09 (well predicted turnaround of case
numbers after lockdown end)
Naive 0.33x+ 0.33y+ 0.33z 6.6%
Geometric

ffiffiffiffiffiffiffi

xyz3
p

6.6%
Continuous 0.20x+ 0.36y+ 0.44z 7.3%
Week 40, 2021-01-12 to 2021-01-19 (very well predicted decline under
constant measures)
Naive 0.33x+ 0.33y+ 0.33z 1.2%
Geometric

ffiffiffiffiffiffiffi

xyz3
p

1.8%
Continuous 0.76x+ 0.08y+ 0.16z 0.6%
Weeks 2–86
Strategy Median relative error iqr
Naive 5.21% 9.70%
Geometric 5.23% 10.02%
Continuous 4.98% 10.06%

We consider a naive arithmetic mean (strategy “naive”), geometric mean (“geometric”) as well
as an adaptive method ("continuous”) which weights the models according to their recent
performance. The table displays harmonization function as well as relative errors for selected
weeks and a summary of the forecasts for weeks 2–86. None of the harmonization strategies
stands out.
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patients. There are three peaks in ICU bed occupancy corre-
sponding and delayed with respect to the peaks in case numbers.
The red dashed line gives the threshold of 33% of all ICU beds
being in use for COVID-19 patients. We highlight again (yellow
in Fig. 4) the forecast for the week until October 25, in which we
severely underestimated the developments. After adjusting the
models for these developments, the next forecast projected that
the 33% threshold would likely be crossed in two to three weeks.
After the second peak passed, the model showed a tendency to
overestimate the pace at which patients would be released from
ICU. Forecast accuracy during the third wave was overall much
higher for the ICU forecast compared to the forecasts of the case
numbers.

Reporting of the forecasts. We developed a standard reporting
template to communicate our forecasts to other stakeholders and
decision-makers, see Fig. 5. These visual reports showed our
forecasts for cases and hospital occupancy, as well as information
on the effective reproduction number. The visual reports are
complemented by a brief synopsis of the researcher’s appraisal of
the current situation and particularities of the most recent fore-
cast. These appraisals are publicly accessible 23. Furthermore, the
researchers are at disposal for any questions that members of the
health ministers’ office or the regional crisis management units
may have.

The first panel in Fig. 5 provides an outlook for the expected
developments in weekly cases (per 100,000 population). Due to
known weekday effects, we do not give forecasts for daily case
numbers. Expected hospital occupancy is given in the second
panel. All forecasts are supplemented with 68% and 95%
confidence intervals. The forecasts are also presented in the
weekly sessions of the Austrian Corona Commission, an advisory
body to the minister of health tasked with assessing the
epidemiological risk in Austria. The expected occupancy rates
of ICU is an indicator in assessing the risk of health system
overburdening and thus directly contributes to the classification
of Austrian regions according to this risk, which in turn informs
recommendations on easing or strengthening control measures6.

Discussion
Considering the impact of COVID-19 policy measures on eco-
nomic and social life, any related decision support needs to be
done with caution. Our approach considers the high impact of
COVID-19 forecasts by (1) focusing on monitoring rather than
long-term prognosis and (2) consolidation of three different
“model opinions” which not only improved the quality of the
short-term forecast, but also distributed the responsibility of the
decision support on multiple teams.

From the very beginning of our work as consortium, we
decided to publish only short-term forecasts and to refrain from

Fig. 4 Forecasting bed usage. Rolling combined and consolidated out-of-sample forecasts for the number of intensive care beds currently in use for
COVID-19 patients including corresponding CI, the actual numbers of beds occupied, and 33% of total ICU capacity as a reference. The underlying data is
found in Supplementary Data 4.
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publishing longer-term scenarios. Due to the multiplicative
growth of uncertainties in epidemiological models, accurate
forecasts are typically only possible over a time horizon of several
days39–42. There is no meaningful way to estimate the uncertainty
for long-term scenarios that span over several weeks, months or
even years. For policy-makers and non-technical experts, the
distinction between a prognosis with a defined level of certainty
and a hypothetical what-if experiment is hard to communicate.

Our forecasts provided evidence for the expected total number
of daily infections and hospitalized cases including appraisals of
uncertainty via forecast intervals. This is in contrast to what has
been popularly described as “worst case coronavirus science”, i.e.
the communication of worst case scenarios as baselines in the
public pandemic management strategy 43. For instance, the UK
policy change toward adopting more drastic NPIs on March 23
was based on worst case scenarios created by the Imperial College
COVID-19 Response Team that within the current policy regime
250,000 deaths were to be expected. In a press conference in
April, the Austrian chancellor publicly stated that soon “everyone
will know someone who died because of COVID-19”, based on an
external SIR-model-based worst case scenario that contained a
death toll of 100,000 people (1.1% of the Austrian population).

Such scenarios are problematic due to the high levels of uncer-
tainty of long-term (multiple weeks and months) case number
forecasts; a generic feature of mathematical epidemiological models
which has been put under the spotlight by the COVID-19
pandemic40,42,44,45. Based on our results, we argue that a main

benefit of epidemiological models comes from their use as short-
termmonitoring systems. The models are typically calibrated to the
infection dynamics of the last couple of days or weeks and forward
project this dynamic based on epidemiological parameters often
assumed to be fixed. If a short-term forecast is accurate this means
that infection numbers have continued as expected, based on the
recent trend and accurate assumptions. In our forecasts, as shown
in Fig. 2, this holds true for some but not all time periods. If the
short-term forecast severely over- or underestimates the observed
dynamics, one should inquire more closely what might have caused
this change.

Inaccurate short-term forecasts, therefore, signal a change in the
epidemiological situation that needs to be explained. This occurred,
for instance, when our forecasts in August 2020 consistently
underestimated the observed case numbers. At this point, contact
tracing data revealed a growing number of travel associated cases
mainly from hotspots in South Eastern Europe contributed sub-
stantially to this unexpected increase in infections34. In response,
novel border restrictions for persons entering Austria from these
countries were put in place at the end of August. During the summer
2020, infection numbers increased from around 20 confirmed cases
per day to about 200 cases, mostly driven by patients aged below 40
years. Consequently, the number of severe COVID-19 cases
remained low and the effective rate to require intensive care dropped
to one percent and below. The situation changed qualitatively in
September, when not only case numbers started to soar again, but
also hospital admissions increased much more strongly than

Fig. 5 Example for a reporting template of our out-of-sample forecasts. The visual reports consist of four panels. First, we report the daily number of
cases in absolute terms and the weekly case numbers per 100 000 population as well as the forecasts for the weekly case numbers, including CIs.
Additional panels show the the effective reproduction number and the forecasts for intensive and normal care beds occupancy with COVID-19 patients
along with the corresponding CIs.
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projected. Our analysis revealed that the driver behind the observed
above-forecast ICU occupancy was above-forecast total case num-
bers, while age-specific ICU rates remained constant in our models.
In other words, the bed usage forecasts were inaccurate because of
the infection number forecast, but not because the characteristics of
the detected cases changed in terms of severity (e.g., age or more
symptomatic or severe cases).

At the onset of the second COVID-19 wave in Austria in
October 2020 the forecasts influenced policy debate and con-
tributed to the decision of implementing a second lockdown. The
forecast of October 30 predicted an increase in ICU occupancy by
COVID-19 patients from 263 to 681 (34% of total ICU capacity of
2,007 beds) within the next 15 days and stressed that capacity
limits of around 700 to 800 ICU beds dedicated to COVID-19
patients may be exceeded by mid to end of November if this trend
would be unbroken. Additionally, the heterogeneous trend across
Austrian federal states – leading to regions with COVID-19 ICU
occupancy rates of more than 50% – was emphasized46. In a
speech in the Main Committee of the National Council the
Austrian Federal Minister of Health emphasized the dynamic of
the second wave. Referring to the forecast of October 30 which
predicted an increase in daily case numbers up to 6,300 by
November 7 and a critically high level of ICU occupancy rate, the
Minister called for a second lockdown46,47. While actual ICU
occupancy first remained below the forecast (e.g. 585 vs. 681 on
November 14) the call for action turned out to be appropriate as
the Austrian intensive care system operated around its capacity
limit with a maximum of 709 ICU beds occupied by COVID-19
patients a bit later on November 25 according to available
information.

After relaxing NPIs during December 2020 the forecasts also
contributed to the third lockdown after Christmas where persis-
tently high levels of ICU occupancy rates were predicted and
concerns regarding the seasonal increase in contacts which may
lead to a further increase in occupancy rates were raised48.

In total, within the study period we observed three waves. The
models anticipated the peaks or at least a substantial flattening of
the curves in wave 1 and 2 but failed to anticipate the observed
flattening of the third wave. The models also predicted the onset
of the third wave while the early growth of the second wave was
substantially stronger than forecasted. As discussed, the peaks of
the first two waves where the result of hard lockdowns, while the
third wave broke in several Austrian regions without a substantial
strengthening of NPIs, most likely due to seasonal influences.
This can also be seen in Fig. 2, where the effective reproduction
number continued to decrease on May and June 2021 at a time
where NPIs where gradually eased. The onset of the third wave,
however, coincided with the takeover of the Alpha variant in
Austria, which was successfully anticipated by the models. Taken
together, these findings suggest that mechanistic epidemiological
model can foresee certain types of turning points (e.g., due to
NPIs or the emergence of more transmissible variants), while
further research is needed to integrate other classes of drivers,
such as changes in mobility22 or meteorological factors33.

One might question whether complex epidemiological models
are necessary for such a short-term forecast-based monitoring
system or whether the use of simpler models could not serve a
similar purpose. Indeed, models that are not of the compart-
mental type but use other prediction algorithms, ranging from
ARIMA49,50 to deep learning51,52, have also been applied to
forecast the SARS-CoV-2 pandemic. The advantage of using
compartmental epidemiological models is that they also provide a
mechanistic description of why changes in the current epide-
miological situation are occurring. In particular, as a consortium
we were frequently asked by policy-makers to provide estimates
for possible future epidemiological developments given a certain

NPI would be implemented in a few days or not. To answer such
requests, it is beneficial to use models allowing to directly simu-
late the effects of hypothetical interventions. Such questions can
be even more reliably and consistently answered if the same
model is used to produce short-term forecasts as a baseline sce-
nario and a hypothetical scenario assuming the implementation
of a new NPI.

Our forecast-based decision support comes with limitations.
First, the weekly prognosis is partly based on shared data from
the Ministry of Health and the Ministry of Internal Affairs which
comes with quality and reporting bias limitations. Moreover, even
though the consortium has access to the most accurate and up-to-
date data about the epidemic in Austria, a lot of information
required for valid epidemiological forecasting is not available or
only available with considerable delay, since adequate reporting
systems are not in place; e.g., the fraction of undetected persons
due to asymptomatic disease progression. Further, our forecast is
based on simulation models which are generally subject to errors
that come from abstraction and simplification of the real system.
Through the harmonized handling of three models with entirely
different approaches we attempted to reduce such structural
uncertainties. Finally, our decision support framework is mostly
limited by its political and public visibility. According to our
experience, our forecast was of special public and policy interest
in periods of rapid movements but also had a confirmatory effect
in times of decreasing case numbers or slow growth with respect
to taken policy measures.

In conclusion, we argue that modellers need to be cautious and
responsible in communicating the sometimes strongly speculative
nature of their results and their uncertainties to politicians and
the public. Short-term epidemiological models can be valuable
ingredients of a comprehensive monitoring and reporting system
to detect epidemiological change points, identify their potential
causes, and thereby inform decisions to ease or strengthen gov-
ernmental responses.

Data availability
SARS-CoV-2 case and hopsitalization data for Austria is available via the COVID-19
open government data portal under https://www.data.gv.at/covid-19/. The data
underlying Figs. 1 to 4 in this work can be found in Supplementary Data 1 to 4,
respectively.

Code availability
No custom code was written for data collection. We describe a reporting system that
combines the output from several computational models which have been previously
described in the literature; the Extended SIR-X Model17, the Agent-Based SEIR Model13

and the Epidemiological State Space Model53.
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