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Abstract

An increasing array of tools is being developed using artificial intelligence (AI) and machine

learning (ML) for cancer imaging. The development of an optimal tool requires multi-

disciplinary engagement to ensure that the appropriate use case is met, as well as to

undertake robust development and testing prior to its adoption into healthcare systems. This

multidisciplinary review highlights key developments in the field. We discuss the challenges

and opportunities of AI and ML in cancer imaging; considerations for the development of

algorithms into tools that can be widely used and disseminated; and the development of the

ecosystem needed to promote growth of AI and ML in cancer imaging.

Artificial intelligence (AI) and machine learning (ML) are rapidly transforming the sci-
entific landscape, including many domains in medicine. AI refers to the creation of
machines or tools that can simulate human thinking and behaviour, whereas ML is a

subset of AI in which machine or tools learn from data to make classifications or prediction
either with or without human supervision1. The advancement in these fields in recent years has
been accelerated by the emergence of high performance computers.

In medicine, digitised domains, such as imaging, lend themselves to become early adopters of
AI and ML. The imaging pipeline from image acquisition, reconstruction, interpretation,
reporting and the communication of results is operated within the digital space, allowing such
data to be effectively captured for AI and ML. In particular, as cancer imaging represents a
substantial proportion of the work in many departments, it is an area where early exploration
and adoption of these technologies by radiologists as primary users appear likely. This is
especially the case since these tasks can be repetitive (such as in cancer screening, where readers
need to sieve through a large volume of normal studies to identify abnormalities), tedious (such
as serial tumour measurements) and burdensome (such as outlining tumours for disease seg-
mentation). Indeed, there are already a number of extant commercial products in the cancer
imaging space, with the aim of improving work efficiency, reducing errors, and enhancing
diagnostic performance.
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Many technological solutions are being developed in isolation,
however, which may struggle to achieve routine clinical use.
These may have been hampered by the limited opportunities for
clinicians, radiologists, scientists, and other experts to interact
collectively to understand the clinical and data science landscape;
to identify the needs, risks, opportunities and challenges for the
development, testing, validation and adoption of such tools. This
requires the nurturing of multidisciplinary ecosystems collec-
tively, including commercial partners as appropriate, to drive
innovations and developments.

This review aims to foster interdisciplinary communication on
the above issues. We outline relevant AI and ML techniques and
highlight key opportunities for implementing AI and ML in
cancer imaging. The clinical, professional and technical chal-
lenges of implementing AI and ML in cancer imaging are dis-
cussed. We draw upon lessons learnt from the past, and take a
forward look into the technical and infrastructural developments
that are needed to facilitate AI in cancer imaging, enabling the
integration of AI and ML technologies into hospital systems and
the appropriate training of the future workforce.

The medical image as imaging data: Radiomics. Medical images
are still largely evaluated by expert radiologists, who are able to
visually assess the absence or presence of disease, delineate the
boundaries of tumours, evaluate tumour response to treatment
and identify disease relapse. These human skills are generally
used to define the reference standards against which AI and ML
techniques are evaluated. However, there is increasing interest in
exploring the smaller subunits that make up medical images
(pixels/voxels) as imaging data, which lend themselves to analysis
by computers to discover objective mathematical features that
may be linked to disease behaviour or outcomes.

Radiomics is the computerized analysis of medical images, or
regions within medical images2. The images can be multi-
dimensional, e.g., 2D X-ray, 3D computed tomography (CT), 4D
ultrasound; and scalar-, e.g., CT, where the CT value is directly
related to the tissue electron density, or vector-valued, e.g. phase-
contrast magnetic resonance imaging (MRI), where the measured
MRI signal is related to a mathematical vector function. The main
goal in radiomics is to utilize algorithms that can identify patterns
within images—usually beyond those that the human eye can
perceive—and to exploit them to make predictions and therefore
aid the clinical decision-making process. The computerized
processing of images usually leads to a large number of imaging
features. However, it is the non-redundant, stable and relevant
features that are selected to develop a mathematical model that
will answer the relevant clinical question, the so-called ground
truth variable. Figure 1 illustrates the selection and testing of
radiomics features to determine their ability, in a specific use-
case, to distinguish between benign and malignant breast lesions.
As a further extension, radiogenomics approaches, which
integrate both radiomics and genomics analyses, are being
developed to provide integrated diagnostics to aid disease
management3,4.

Another example of a data set for radiomics analysis is a
volumetric chest CT scan containing a tumour (e.g. a lung
nodule), and a typical workflow could include: (1) identification
of the tumour within the scan; (2) annotation of the tumour with
semantic features (usually by expert radiologists)5; (3) outlining
or segmentation of the tumour6; (4) computation of pre-
determined tumour features (e.g. size, mean intensity, image
texture, shape, margin sharpness)7–9 and/or using automated
learning for task-relevant features; and (5) building a classifier
that uses the computed features to predict a clinical state, e.g.,

probability of a specific gene mutation, response to therapy or
overall survival10,11.

Several groups are building radiomics processing tools to
facilitate pipeline data analysis. At Stanford, the Quantitative
Image Feature Pipeline12 has been developed, which contains an
expandable library of quantitative imaging feature extraction and
predictive modelling algorithms, capable of comprehensive
characterization of the imaging phenotype, and cloud-based
software for creating and executing quantitative image feature-
generating and predictive pipelines, and for using and comparing
image features to predict clinical and molecular features. It also
allows users to upload their own algorithms as Docker
containers13, and to configure them in a customizable workflow
(Fig. 2).

AI and ML techniques in cancer imaging. In cancer imaging,
images acquired from patients are pre-processed and transformed
(to ensure data conformity or uniformity) as inputs to develop
ML algorithms and models. Such pre-processing steps are used
whether they relate to radiologist-defined features or mathema-
tically derived radiomics features. This involves ensuring that the
images are of similar image section thickness and of similar pixel-
dimensions. As an overview, an ML model or algorithm maps the
input imaging data and learns a simple or complex mathematic
function that is linked to the target or output, such as a clinical or
scientific observation. An ML algorithm can be established or
trained with or without the use of so-called ground truth vari-
ables, which are reference findings verified by domain experts or
by other means (e.g. pathology, laboratory tests, clinical follow-
up). ML algorithms are usually developed using a training dataset,
refined using a validation dataset, and then tested for their per-
formance in an independent test dataset, ideally from a different
institution.

Some types of ML models are more widely used than others in
imaging studies. As a simplistic discussion, (assuming that x is the
input variable, f the mathematic function and y the target/output
variable), the most common form is the predictive model, where
one tries to predict y by learning the f(x). In exploratory models,
one may simply attempt to link the input data x (e.g. an imaging
feature) with the output y (e.g. gene expression).

When working with continuous variables, regression models,
such as Linear, Cox (Proportional Hazards), Regression Trees,
Lasso, Ridge, ElasticNet, or others can be used14,15. As for discrete
variables, classification models such as Naïve Bays, Support Vector
Machines, Decision Trees, Random Forests, KNN (k-nearest
neighbours), Generalized Linear Models, Bagging and others can
be used16. These models can inform cancer diagnosis, disease
characterization and stratification, treatment response or disease
outcomes17.

The success of any ML algorithm is influenced by data
availability, machine computational power and subsequent
algorithm refinements. The choice of ML algorithm may depend
on data size. With smaller datasets (e.g. <1000 patients/
examinations/images depending on use case), classical ML
algorithms, such as Naïve Bayes, logistic regression, decision
trees and support vector machines, are often applied. With larger
datasets, more complex ML models, such as convolutional neural
networks (CNN) that are very efficient in learning directly from
images, may be preferable, although such models are more
demanding in terms of computational power. CNN represent a
type of deep learning, a subset of ML methods based on artificial
neural networks. Artificial neural networks are inspired by the
organization of neurons in the brain, simulating the connectivity
of neurons to solve problems. ML algorithms can be supervised
(i.e. the algorithm is developed using data that are labelled with
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some type of ‘correct answer’) at one end of the spectrum, or
unsupervised (i.e. the algorithm uses the data to discover
information by itself) at the other. The latter are associated with
more complex CNN algorithms, which are able to discover
patterns within imaging data without human intervention.

The driving force of CNNs has emerged from the computer
vision domain, where the large dataset of ImageNet18 (a library of
labelled photographic images) and the interest by internet
developers to identify objects automatically on photographic

pictures led to the development of very efficient ML architectures
(e.g. Inception V3, AlexNet, VGG-16 and 19); Some of these have
shown value for medical applications using a method called
transfer learning3, where a pretrained architecture trained using
ImageNet is then applied to medical imaging and fine-tuned for
the specific use case.

In ML-based cancer imaging, it is not unusual for the number
of predictors (e.g. CNN-derived features) to outweigh the number
of data points or samples (patients or imaging studies). The latter

Fig. 1 Feature selection for radiomics. In this illustration, a model classifier is shown to differentiate benign from malignant breast lesions on imaging.
Initially, a large number of radiomic features were computed and after removing the highly correlated features, the zero and near-zero variance features; a
recursive feature elimination and reduction method was applied. The model performance illustrated here identifies11 features to be at the saturation point.
The red curve (left) is showing accuracy versus number of features, while the blue curve (right) represents the model’s error function over the number of
features. In this example, using 11 imaging features shows high accuracy while minimising the error function.

Fig. 2 Quantitative Imaging Feature Pipeline. This shows an example of the quantitative imaging feature pipeline (QIFP) used to process a positron
emission tomography (PET) imaging cohort stored on a local network ePAD server. The box next to the “modify workflow” button is a selection button,
which has been set to choose the workflow displayed. This workflow moves the image data into Stanford’s Quantitative Image Feature Engine (QIFE)64,
which computes thousands of image features for each segmented tumour in the cohort, followed by a sparse regression modeler (LASSO TRAIN) that
derives an association between a linear combination of a small number of image features to 5-year survival, and finally tests that model in an unseen cohort
and produces an ROC curve displaying the accuracy of the association. Other workflows can be chosen that use one or more of the existing tools stored on
the QIFP system.
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results in model overfitting, where the model is optimized for the
training dataset but consequently performs poorly on the test
dataset. The most common strategies to reduce or prevent
overfitting include: (a) to use techniques such as k-fold cross-
validation by using multiple sub-samples of the dataset; (b) to
train the algorithm with more data, where possible; (c) to perform
feature selection, as appropriate, to reduce the dimensionality/
number of the initial features; and/or (d) to implement ensemble
learning, where feasible, to increase data size, that is to undertake
algorithm training at multiple sites/institutions. Although an
increasing number of healthcare organizations are moving to the
cloud and centralized facilities to host and exploit their data, there
is still resistance to data sharing and the need to protect patient
privacy. These issues have fuelled distributed or federated
learning approaches19,20. In federated learning, instead of
collecting all data to a centralized repository, the models are
circulated to different institutions and the models trained using
local data at each site, sharing only the so called weights of a
model between institutions. There is now also significant interest
in the explainability21 and interpretability of algorithms to
increase their trustworthiness. Clinical users may be less
interested in the inner mechanics of ML models but would like
to understand the way a model generates its output or prediction
at a patient cohort level, as well as at an individual patient level.

Clinical opportunities for AI/ML in cancer imaging. Machine
learning can be harnessed in multiple ways to advance and
improve cancer imaging. Figure 3 illustrates the typical clinical
journey of a patient with cancer and highlights some of the key
aspects of imaging where AI systems could exert a positive
impact22. Here, we outline some of these in more detail.

Risk assessment: The optimal use of cancer imaging technologies
requires that we direct resources to patients at greatest risk. In the
US, many states require assessment of breast density to assess risk
for developing cancer. A deep learning system has shown high
accuracy in classifying breast density, and such systems will help
support consistent density notification to patients in breast cancer
screening23,24. This is particularly valuable since visual breast

density measurement has been shown to be associated with
considerable interobserver variations (6–85%)25. The use of AI-
based approaches can improve upon current risk models. For
example, a deep learning model that incorporated mammo-
graphic features and traditional risk factors to determine those at
greatest risk for malignancy performed more effectively than
conventional breast cancer risk models alone26,27. More recently,
very good agreement was reported for breast cancer risk evalua-
tion using mammographic breast density determined by a senior
radiologist, a junior radiologist and an AI software28.

Cancer screening and cancer detection: Cancer screening has
been a highly active area of AI research. AI algorithms have been
tested in diseases with active screening programmes such as lung
cancer29–31 and breast cancer32–36. In breast cancer, some studies
have shown that AI algorithms can equal the performance of
expert readers36, be used as a second reader for screening
mammographic reviews33, provide triaging for prioritizing image
reading34 and have been found to be acceptable to women
undergoing mammographic screening37. However, real-world
evidence is still insufficient to recommend the wide adoption of
AI-based tools for breast screening38. In addition to systematic
screening, opportunistic screening (the detection of abnormalities
in exams obtained for other purposes) may create possibilities to
detect other cancers, especially where directed screening tests
would be impractical or cost ineffective. For example, in patients
undergoing low-dose CT for lung cancer screening, it is possible
to use the same images to assess breast cancer risk by assessing
the breast density on CT39.

AI systems are now available for the detection of pulmonary
nodues31, which also includes nodule classification, nodule
measurement and malignancy prediction. When radiologists
used a deep learning model for detection and management of
pulmonary nodules, their performance improved and reading
time was reduced40. Undoubtedly, the use case for AI in cancer
detection will widen to include other tumour types.

Diagnosis and classification: ML systems provide ways to improve
classification of imaging findings related to cancer. Malignant

Fig. 3 Potential use cases for artificial intelligence (AI) and machine learning (ML) in cancer imaging in relation to a patient’s cancer journey. A typical
asymptomatic patient eventually develops cancer presenting symptoms, which usually leads to the cancer diagnosis. Following appropriate disease staging,
cancer treatment commences, which can lead to good response or even cure. However, some patients will relapse or progress on treatment for which
additional treatment may be administered. Unfortunately, some patients will succumb to their disease. The potential uses for Imaging AI and ML are as
shown at various stages of the cancer journey and discussed in the text.
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brain tumours have different aetiologies and prognosis, but tissue
sampling is invasive and may not provide accurate characteriza-
tion due to disease heterogeneity. Studies have shown the
potential of AI to identify and classify major intracranial
tumours, which include variously high grade gliomas, low grade
gliomas, cerebral metastases, meningiomas, pituitary adenoma
and acoustic neuromas, as well as differentiating these from
normal tissues41–44. Another developing application in this area is
the classification of cystic lesions of the pancreas, since distin-
guishing between intraductal papillary mucinous neoplasms,
mucinous cystic neoplasm and serous cystic neoplasms of the
pancreas can be visually challenging45–47, and these conditions
are associated with different outcomes.

Treatment response prediction: Radiomics with machine learning
have been used to predict the response and outcomes of disease to
treatment. Some examples of these include predicting the
response of nasopharyngeal carcinoma to intensity-modulated
radiation therapy48, the response of non-small cell lung cancer to
neoadjuvant chemotherapy49, as well as the response to neoad-
juvant treatment of rectal50–52, oesophageal53,54 and breast
cancers55,56. Although highly promising, radiomics has not yiel-
ded widely generalizable results, thus limiting its current role and
implementation in clinical practice.

Radiology-Pathology correlation: Matching radiology data to
pathology report information is important for education, quality
improvement, and patient care. Using natural language proces-
sing techniques, it is possible to mine text-based radiology57 and
pathology58 report for key findings to cohort-specific populations
for further investigative scrutiny. A system for natural language
processing has been shown to classify free-text pathology reports
(at an organ-level) to support a radiology follow-up tracking
engine59, which can be used to alert radiologists to potential
misses at study follow-ups. There also are opportunities to inte-
grate anatomical pathology images with corresponding radi-
ological images60,61.

Disease segmentation: The outlining of disease, or segmentation,
is fundamental to many AI/ML and radiomics studies, and is

necessary to derive quantitative tumour measurements including
tumour diameters, as well as generating tumour contours for
radiotherapy planning62–64. Registration of segmentations across
time-series can also inform clinicians on how tumours are
changing with treatment. Manual tracing of lesion borders can
lead to high inter-reader variability65, which may be reduced with
automatic disease segmentation using AI models. Although deep
neural networks are powerful enough to segment lesions, it is
recommended that the final AI segmentation result should be
verified by an experienced radiologist.

Segmentation algorithms are relatively well developed for certain
image and disease types, probably due to the power of deep learning
methods which have shown to be very efficient when sufficient data
are available. A segmentation problem is a classification problem at
the voxel level (a voxel being the smallest unit that makes up the
image, determined by the image section thickness and the spatial
resolution at which the image is acquired), and given the fact that
lesions or whole organs are comprised of hundreds if not thousands
of voxels, the density of the data is much higher compared with the
classification problem usually considered at a per-patient level (e.g.
radiomics). From the segmentation of the disease, radiomic features
can be computed from the entire tumour, but a more sophisticated
approach is to extract radiomic features from physiologically
distinct regions (e.g. based on blood flow, cell density, necrosis)
within tumours inferred by their imaging characteristics known as
habitats66,67 (Fig. 4).

Organs-at-risk segmentation: The principle of radiotherapy is to
inflict maximum damage to tumours while sparing normal tis-
sues. However, normal tissues and organs often lie in close
proximity to tumours, such that they are considered as organs-at-
risk to the potentially detrimental scattering effects of radio-
therapy. Organs-at-risk segmentation is necessary in radiotherapy
to monitor and minimize radiotherapy damage to adjacent nor-
mal tissues. For example, when treating pelvic cancers68,69,
organs-at-risk segmentation includes the outlining of the normal
urinary bladder, bowel loops, rectum and both hip joints. ML has
also been successfully applied in organs-at-risk segmentation for
radiotherapy planning in head and neck cancers70,71, breast
cancers72 and non-small cell lung cancer73,74.

Fig. 4 Machine Learning (ML) in a radiomics pipeline for evaluating tumour habitats. a Whole tumour segmentation and identification of physiologically
different regions by means of tissue-specific sub-segmentation on computed tomograhy (CT) imaging (e.g. using 3D volume rendering of tissue
components with colour codes shown below). This is followed by b voxel-based radiomic feature map extraction and unsupervised clustering for tumour
habitats considering the most clinically relevant region. Next, c quantitative measurements and inferred tumoural heterogeneity metrics are processed by
ML predictive models to yield diagnostic and prognostic results. In this example, we have used CT images from a patient with metastatic ovarian cancer
with a representative omental lesion.
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Imaging optimization: One of the growing applications for AI
and ML in imaging, not limited to cancer imaging, is their use for
imaging optimization. For example, in MRI, the examination
time of an oncological body examination can take 30–60 min. AI
and ML techniques are increasingly applied to accelerate image
acquisition and/or image reconstructions (i.e. making the exam-
ination faster)75; as well as to improve image quality (e.g. creating
so-called super-resolution MRI images)76. The ability to shorten
MRI examination time without sacrificing image quality can
improve patient throughput to address bottlenecks in MRI
capacity across health systems.

Others: Natural language processing is also being investigated as a
tool to generate automated reports, and as a means of reducing
repetitive tasks by radiologists77. For the clinicians receiving the
radiology report, natural language processing can also potentially
be used a communication tool to alert clinicians to actionable
reports, so that critical findings can be highlighted to referrers in a
timely fashion78.

The current relative success of AI and ML in the different use
cases discussed above is dependent on the complexity of the
undertaking, data quality and availability, the sophistication of
the mathematical models and the subsequent real-world testing of
the algorithms. Many of these use cases are active areas of
research and development. However, algorithms that are being
developed and tested may fail to translate into meaningful clinical
tools. It is therefore important to understand the challenges and
barriers that need to be addressed to enable the implementation
of AI and ML in cancer imaging.

Challenges for implementation of AI/ML in cancer imaging.
While there are significant opportunities for the development of
AI and ML in cancer imaging, there are also challenges to
address. Below, we discuss some of the important clinical, pro-
fessional, and technical challenges that will be encountered in the
translation of useful mathematical algorithms into wider clinical
practice for patient benefit.

Clinical challenges. One of most important considerations for the
development of an AI or ML tool is that it should address a vital
clinical challenge or question. As such, developers should have
full appreciation of the clinical context and the implementation
environment in which the AI tool is anticipated to operate. This
will often require involving clinicians in the development of
the tool.

The clinical domain is characterized by data inflow from
different sources. The amount of biomedical data generated in the
clinic is increasing due to advances in multi-modal imaging (i.e.
imaging using a variety of techniques), high-throughput technol-
ogies for multi-omics (e.g. genomics, proteomics and molecular
pathology), as well as an increasing amount of data stored within
electronic health records. Hence, multidisciplinary engagement is
critical to success. This complex and diverse information can
potentially be integrated using AI and ML to support personalised
medicine79. However, such large-scale datasets pose new
challenges for data-driven and model-based computational
methods to yield meaningful results.

AI has the potential to revolutionise cancer image analysis by
applying sophisticated ML and computational intelligence.
Cutting-edge AI methods can enable the shift from
organisation-centric (based on organisational pathways) to
patient-centric organization of healthcare, which may improve
clinical outcomes and also potentially reduce healthcare costs80

by uncovering better individualized solutions. In addition,
computerised oncological image analysis is encouraging the

transition from largely qualitative image interpretation to
quantitative assessment through automated methods aimed at
earlier detection and enhanced lesion characterisation81, and the
provision of better decision support tools. Within such a
paradigm, there are important challenges that require better AI
and ML solutions to solve. These include the need for
reproducible and reliable tumour segmentation; accurate
computer-assisted diagnosis; and clinically useful prognostic
and predictive biomarkers with good performance. A particular
challenge will be the quantification and monitoring of intra-/
inter-tumoural heterogeneity throughout the course of the
disease82,83. This will require access to high quality, longitudinal
imaging datasets.

One area where AI/ML could be particularly transformative is
precision oncology, or the selection of a patient’s therapy based
on their tumour’s molecular profile. Precision oncology is likely
to benefit from integrated diagnostics84,85 (e.g. radiogenomics,
which combines radiomics and genomics analyses) to provide
robust computational tools for investigating cancer biology, as
well as for predicting treatment response (Fig. 5). The solution
includes large-scale structured data collection (from multiple
institutions) that deals with cyber-security and privacy issues and
supports continuous learning. At present, the main challenge is
bridging the gap between emerging AI tools and clinical practice,
by first performing well-validated clinical research studies of such
applications. This is vital for the translation and deployment of
AI approaches in precision oncology86 and, if used correctly, AI
has the potential to decrease the cost of precision oncological
treatments through more accurate patient selection strategies.

Professional challenges. Beyond the clinical challenges, there are
professional challenges that are likely to shape the development
and deployment of ML in cancer imaging. Stimuli promoting the
development of ML include the relentless rise in the demand for
imaging which, when coupled with acute and chronic workforce
shortages, can lead to radiologist stress and burnout. Departments
need to consider updating or redesigning their IT infrastructure
and workflow to be ready for the testing and adoption of AI and
ML technologies as these become available. Another challenge is
how the radiological workforce perceives the potential utility of
AI and ML in the clinic, including the threats and opportunities
associated with the use of such technologies.

In preparation for an AI and ML in Cancer Imaging meeting
organized by the Champalimaud Foundation (Lisbon) and the
International Cancer Imaging Society in 2019, an online survey of
569 radiologists from 35 countries was conducted. The majority
(>60%) perceived the benefits of AI to outweigh potential risks
(Supplementary Note). Most respondents agreed with the positive
impacts of AI in radiology, including (1) alerting radiologists to
abnormal findings; (2) increasing work efficiency; (3) making
diagnostic suggestions when the radiologist is unsure; (4)
accepting that the radiologist should be responsible when an
error is made; and (5) changing the service model by increasing
direct communications with patients. The respondents felt
confident that AI and ML techniques are unlikely to replace the
job of a radiologist. The majority (>70%) felt that it was
important to prepare for the arrival of AI by (1) investing in
education; (2) testing new tools; (3) supporting the curation of
images and image annotation data at scale; and (4) working with
commercial vendors to develop specific AI tools that improve
workflow.

The survey also identified areas of priority and need for AI tool
development including the need for (1) tools that automatically
track tumours across multiple time points to assess their response
to treatment; (2) tools that improve automatic or semiautomatic
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tumour segmentation; (3) tools that support proforma reporting
allowing annotation of image data to be captured prospectively;
(4) tools that help confident identification of normal studies so
that radiologists can focus on dealing with abnormal examina-
tions; and (5) tools that help to identify tumours throughout
the body.

In addition, imaging departments need to plan for their
workforce needs to deliver future AI empowered practice.
Radiographers and technicians will require better understanding
of AI, including their deployment in workflow management and
image acquisition. Critically, an informatics team is needed to
create the platform on which AI tools can be developed or tested
in-line; a space for interacting with and annotating imaging data;
and well-curated imaging and data repositories.

Technical challenges. Many state-of-the-art AI methods based on
deep learning are achieving outstanding performance87. Reasons
for their success include the strong ability of deep ML models to
learn independently and the availability of large-scale labelled
datasets that include precise annotations. Unfortunately, in bio-
medical research, collecting such accurate annotations is an
expensive and potentially time-consuming process due to the
need for domain experts’ knowledge88. Therefore, ML models
that can work on rough annotations and weak supervision (e.g.
bounding boxes that encompass an area of interest rather than
precise outlining, or image-level labels rather than specific image-
feature labels) have been attracting much attention89. The gen-
eration of large mineable imaging datasets might overcome data
paucity and heterogeneity issues. However, along with the avail-
ability of samples, data quality and diversity should be considered
by collecting and preparing harmonized datasets. The ability to
generalize across multi-institutional studies may be improved by
exploiting transfer learning and domain adaptation techniques.

Designing and identifying reliable AI imaging studies is a
challenge. Studies have been published with as few as 10 patients,
making the results of such AI models highly questionable due to
potential overfitting effects, which will negatively impact upon the
generalizability of the findings. In radiomics, there is a rule of
thumb when dealing with binominal classification tasks where
10–15 patients should be recruited for each feature that is part of
the final radiomics signature90. Performance estimation should be
based on the so-called test set: that is, a dataset comprised of
examples that were completely excluded from the model’s
training and tuning processes. To evaluate the model’s general-
izability, apart from internal validation, external validation should
be performed to test the model’s performance in one or more
datasets acquired using different imaging equipment or in
different geographical patient populations. Ideally, models should
be validated in an external patient cohort that is 25–40% of the
size of the training sample.

Integrative models fusing information from other omics data
such as genomics or proteomics, as well as clinical, environmental
and social data, are gaining attention, especially in the setting of
more complex clinical problems such as disease risk assessment
and prognosis. Data sparsity and non-standardized therapeutic
approaches between institutions are ongoing challenges when it
comes to developing integrative ML models, but there is
recognition of the need for better standardization (including
data acquisition) that will facilitate these use cases of AI91.

The use of images and integrating these with clinical and
molecular data can be a source of real-world data to be used for
evidence-generating studies. Retrospective data from imaging
biobanks and repositories provide excellent opportunities to test
AI tools and validate their performance. Harmonization techni-
ques like ComBat92 can be considered to bring the imaging
features into a standardized space, especially in multicentre
studies when the amount of variability, if not reduced, can harm a

Fig. 5 Potential future real-time tracking of whole tumour volume, spatial and temporal phenotypic heterogeneity with multi-omics data integration
for precision oncology. This schema would allow the processing of multi-institutional data, where each medical centre acquires and stores (in local PACS)
its own medical imaging data. To execute quantitative analyses, a radiomics gateway is used to communicate outside the institution by requesting an
automated, real-time tumour segmentation from a trusted and specialised AI/ML centre, which allows for continuous learning. The medical images leaving
the hospital are anonymised to deal with cyber-security and privacy issues. The segmentation results are used for radiomic feature extraction and analysis,
acting as virtual biopsies. The quantitative imaging results are integrated with other biomedical data streams to determine associations with clinical and
multi-omics information. Such an approach may develop reliable diagnostic and prognostic tools for multidisciplinary team meetings to improve cancer
care in clinical practice; and the evolution of precision oncology. PACS Picture Archiving and Communication System, ML Machine Learning.
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model’s performance and generalizability. Radiologists have an
excellent opportunity to lead the field by promoting observational
in silico studies, taking care to oversee all relevant aspects from
data harvesting to analyses to improve the reproducibility of
results. The main aspects to be considered are as shown in
Box 193.

For the specific application in radiomics, there are also many
challenges to radiomic computation and the use of radiomic
features for prognostication, assessment of response to therapy,
and diagnosis of molecular phenotype, including the sensitivity of
radiomic feature values to image acquisition and reconstruction
techniques94–98 and to variations in segmentations among
different users and software99,100. To address these points,
improvements in algorithms, and community agreement on use
of open-source software, phantoms and standardized
approaches101 are required for radiomics to reach its full
potential.

One of the reasons for the lack of translation of AI models to
clinical application is that the focus has been on increasing model
performance by AI enthusiasts, possibly at the expense of
explainability. A typical example is the black-box approach of
deep neural networks that produces outstanding performance,
but may present difficulty in establishing its trustworthiness,
therefore impeding its clinical adoption. A lack of multi-
disciplinary engagement may also impede the prioritization of
AI solutions of significant clinical value. The clinical community
may be skeptical about embracing AI technology into clinical
routine, as long as the AI models are non-transparent in the way
they reach a specific decision.

In recent years, the AI community has started to recognise this
limitation and has moved towards the development of explainable
AI. The explainability of AI models touches upon a sensitive issue
concerning patient safety, especially in clinical decision-support
systems102. Since the vast majority of AI models are trained with
retrospective, observational data, patient selection bias in
machine learning models can lead to poor performance and
erroneous predictions in prospective unknown cases. Therefore,
domain experts should always verify the predictions and the
reasoning behind the predictions made by the AI models. The
latter can only be achieved when the models by design offer a
degree of transparency. Involving the domain expert in model
development is likely to make AI models more robust and

reproducible and help gain the trust of end-users. Evaluating the
overall performance of the AI solution beyond accuracy is also
mandatory in the clinical pathway setting. This would include
testing the real-world implementation of such models to ascertain
their use and usability, trustworthiness, as well as cost and cost-
effectiveness.

Lessons learnt from the past: computer-aided diagnosis (CAD)
for breast cancer. Even though AI and ML are hugely promising
technologies in imaging, it is worth noting lessons from the
previous effort to apply computational approaches in cancer
imaging, using computer-aided diagnosis of breast cancer as an
example. Development of algorithms for automated detection of
calcifications and masses on mammograms started in earnest in
the mid-1980s, and in 1998 the first commercial CAD system for
mammography, initially based on digitized film, received FDA
approval103. Transition to digital mammography facilitated the
implementation of CAD in clinical practice. The introduction of
Medicare reimbursement coverage for the use of CAD in the
United States, and promising preliminary results from clinical
trials104,105, led to a rapid uptake of CAD in the US with ~74% of
mammography interpretations utilizing CAD by 2010106. How-
ever, even though stand-alone sensitivity of commercial CAD
systems in enriched reader studies is consistently superior to that
of radiologists106, large retrospective registry-based studies failed
to show a significant improvement in the diagnostic accuracy of
screening mammography after implementation of CAD107,108.
This disappointing result is likely to be explained by the relatively
high number of false-positive prompts generated by current
commercial CAD systems, which average between 1 and 2 false
prompts per case. In the low-prevalence screening setting, this
false-positive prompt rate translates into a positive predictive
value of a CAD prompt of <1%. As radiologists will have to
ignore more than 99% of the CAD prompts to find the one
prompt actually pointing to a cancer, there will be a tendency to
ignore the computer-generated prompts altogether. There is hope
that newer deep learning algorithms will overcome some of the
limitations of traditional feature-based CAD systems. Unsu-
pervised training on much larger datasets with up to a million
mammographic images has the potential to overcome the
shortcomings of human observers, as deep learning algorithms no
longer have to imitate the way the radiologist reads a

Box 1 | Important considerations from data curation to analyses to improve the robustness and generalizability of AI and ML in
cancer imaging

● Participant recruitment criteria
Consistency in the inclusion of the study population based on the presenting symptoms, results from previous tests, defining the appropriate index
tests or by the selected reference standard

● Participant sampling
To avoid or control bias in participant sampling, considerations could include the use of consecutive series of participants, use of well-defined
selected data silos, clear and well-defined selection criteria; as well as adjusting for possible confounding variables

● Data collection
What data to collect and how this is performed should be planned before participant recruitment and sampling. Where appropriate, target trial
emulation may be undertaken, which is the application of design principles from randomized trials to the analysis of observational data, which may
improve the quality of the observations.

● Reference standard
The rationale and description of the reference standard should be clear

● Technical specifications of materials and methods
Aspects of technical specifications should be well defined. These include how and when images and measurements were taken; the definition of
units; cut-off thresholds; defined results categories (of both the index tests and the reference standard); description of the number, training, and
expertise of persons executing and reading (original or new reporting); index tests and the reference standard; and blindness aspects (if the readers
of the index tests and the reference standard were masked to other test results)
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mammogram109. However, increased automation of the detection
task will come with added responsibilities for the algorithms110,
which may need to show an improvement in patient outcome
beyond diagnostic performance.

Hence, the key lessons from previous CAD implementation in
breast cancer suggest that the next generation AI tool to for
cancer detection will need to have high diagnostic accuracy, in
particular, high positive predictive value that will result in fewer
false positives in the low disease prevalence setting. There is also
the need for real-world testing of these tools beyond diagnostic
performance to establish the health-related and wider benefits
associated with their deployment.

Technical, infrastructure and professional developments
required for the adoption of AI/ML in cancer imaging
Imaging repositories and archives: Supervised learning approa-
ches require large quantities of labelled data for training and
validation103. There is a plethora of data sources that one could
exploit for AI modelling in cancer imaging. These include ima-
ging biobanks, which are virtual repositories of medical images;
imaging biomarkers identified as endpoint surrogates; and
population studies111. Imaging biobanks allow the in silico eva-
luation and validation of new biomarkers by establishing disease
development probabilities, early disease diagnosis and pheno-
typing, disease grading and staging, targeting therapies and eva-
luation of disease response to treatment and prediction of adverse
events.

Open access data repositories are one approach to capturing
and disseminating sufficient high quality, well curated data.
There are not many open access cancer image repositories. Data
sharing is not a universally accepted concept112. Furthermore,
patient privacy, data privacy, informed consent laws, regula-
tions and the growing interest in the potential commercial value
of patient data, differ by country and can pose barriers to data
sharing113. Institutions and researchers consider data to be
intellectual property, and limit or prohibit access to valuable
data sets. Regulatory agencies (e.g. the FDA) argue for
sequestration of data used to validate algorithms approved for
commercial use114.

The US National Cancer Institute funded the creation and
continued operation of the largest open access cancer image
repository, The Cancer Imaging Archive (TCIA) (Fig. 6)115,116.

TCIA is designed to foster increased public availability of high-
quality cancer imaging data sets for research. Data are accessible
due to strict adherence to F.A.I.R. (Findable, Accessible,
Interoperable, and Reproducible) standards for data release117,118.
Other research-funded initiatives to create data warehouses are
also being developed across the European Union and elsewhere.

Although size of a dataset matters, data quality and data
variability are of equal importance. Data should be of sufficient
quality and be acquired with uniform parameters. Clinical trials
generate data with a higher level of quality control and
consistency of data acquisition protocols. TCIA focuses on
collecting, curating and publishing data from completed clinical
trials. Curation in this context includes assurance of consistent
metadata, anatomy coverage, and data formats which strictly
comply with international data standards, as well as the
anonymization of any patient identifiable data.

For an ML algorithm to be clinically useful it must be trained
on data that appropriately represent the variance in the human
population, the presentation of disease and data collection
systems119,120. Labelled data are created manually by human
experts, resulting in high cost and limited volume of high-quality
training (and testing) datasets. Perhaps the most time-consuming
process within a ML project is annotating the data and presenting
them in a format compatible with further analysis and modelling
processes. Image annotation is often a bottleneck for AI and ML,
and crowd sourcing for such activity is being trialled as a way of
improving efficiency. Depending on the task, the annotations may
be provided at the patient level (overall survival, disease-free
survival), at the image level (benign, malignant) or at the voxel
level (lesion, non-lesion). Typically lesion detection algorithms
need to be provided with annotations of a bounding box type
usually encasing the lesion, while for training automatic
segmentation models, radiologists need to outline lesions
manually in multiple image slices121.

As sizeable imaging data from different sites and scanners
become consolidated within repositories, it will be necessary to
consider steps that will account for data diversity or hetero-
geneity. A possible solution might be to use deep learning
approaches to learn from such data lacking homogeneity, which
may result in outputs with lower variability and higher
reproducibility. Retrospective observational studies with real-
world data and quality assurance checklists93,122 will allow
reproducible causality123 inferences from virtual patient cohorts

Fig. 6 The Cancer Imaging Archive (TCIA) is a system of systems constructed from open-source software. TCIA is also a set of services designed to
collect and curate high quality cancer image data and related clinical data and make it publicly available. (VMs= virtual machines).
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to address clinical and policy-relevant questions. Particularly
where the disease under study is relatively rare resulting in small
datasets, it would be appropriate to use a cross-validation
approach to develop and test the AI models.

Open-source software and open collaborations: The use of open-
source software (OSS) strategy could help to alleviate some of the
concerns regarding transparency and explainabiltiy when using
AI in cancer imaging. OSS is software code made available under
a legal licence in which the copyright holder provides (depending
upon the specific terms) various rights to the licensees to study,
change, improve and re-distribute the code without any fees.
Today, there are many different types of OSS licences [https://
opensource.org/approval] depending on the preference of the
copyright holder. These licences range in the United States from
what is commonly known as permissive licences, such as Apache-
2.0, to strongly protective licenses, such as general public licence
(GPL). OSS is available in its non-commercial form, however it
can be made into commercial products with additional services
such as warranty, training, documentation and maintenance
under various commercial contracts.

A successful open-source ecosystem has three interacting
components: (i) OSS itself, (ii) governance, and (iii) community
of collaborators. Currently there are more than 50 open-source
ML packages using different OSS licences, operating platforms,
and programming languages. Some of the more popular packages
include TensorFlow, Keras, PyTorch, Caffe2 and many others.
They all have varying strengths and weaknesses depending on
users’ needs.

These OSS packages are developed and sponsored by
corporations and some individuals for their own use cases and
applications, often not for medical imaging, but the packages are
good initial platforms from which medical imaging research can
be pursued. However, they will need to be optimized for higher
performance for medical applications. For example, the pattern
recognition in consumer applications usually depends on graphic
features and image orientation. However, medical image patterns
are usually orientation-independent, and diseases in medical
images are subtle in nature and present themselves in minor grey
value differences rather than graphical features. For these reasons,
algorithms available on OSS packages will need to be re-trained
and tuned using medical imaging data to optimise their
performances. In summary, OSS represents a practical route by
which the AI community can work together to collaborate and
develop new AI tools, which can be more widely tested, and at the
same time address some of the transparency and privacy
concerns.

Healthcare and regulatory systems: There are significant per-
ceived values of using AI solutions in healthcare124 at every stage
of the clinical workflow. In radiology, this means improvements
to the patient diagnostic pathway, from the appropriateness of
imaging requests125 to how actionable findings in radiological
reports are followed up126. The full potential of these improve-
ments are not yet realised as there remain significant barriers to
implementation.

From 2021, the new EU Medical Device Regulations has been
enforced, mandating deeper scrutiny of software as a medical
device (SaMD). Certification is given in accordance with how the
software is used and applied within the clinical workflow. The
majority of AI software in imaging are being certified as a
decision-support tool, that is to say it should not be used on its
own in for clinical or patient management. It is also worth
considering whether the software is intended to be use by
radiologists at primary reporting, or only after the initial primary
report is issued as a second read. In the current commercial

landscape, there are multitudes of software tools that are cleared
by regulators but have not been adopted into healthcare systems.

AI products may continue to evolve after initial release through
continuous training. Many products have found their way into
the marketplace without being independently tested, despite
obtaining CE labelling or FDA clearance. As such, a new FDA
framework has been proposed to ensure the safety and
effectiveness of AI tools127. The FDA has introduced a
predetermined change control plan in premarket submissions.
This plan includes anticipated modification (SaMD pre-specifica-
tions) and the associated methodology used to implement these
controlled changes (algorithm change protocol). The FDA
expects a commitment from manufacturers on transparency
and real-world performance monitoring, as well as updates on
changes implemented as part of the approved pre-specifications
and the algorithm change protocol.

Once the product or software has been validated as a certified
medical device, a Data Protection Impact Assessment process
must be initiated, usually at the local level, to safeguard data
privacy—in Europe, this means compliance with the General
Data Protection Regulations (GDPR). At the same time, a
Solution Architecture Review should also be undertaken to
carefully examine the possible IT architecture for implementa-
tion. Local rules must also be adhered to with regards to patient
data use and storage, since each country can vary in the
interpretation of the GDPR. Privacy concerns and the need for a
rational and coherent digital infrastructure has been referred to as
‘the inconvenient truth’ in medical AI128.

The process of software integration with existing hospital IT
infrastructure is influenced by the experience of the AI company
and its product design, the diversity and size of the healthcare
system, as well as knowing how and what data are being
transferred to and from the healthcare provider to the software
processor and vice versa. Failure of software integration is a
known barrier for adoption. Well-established companies with a
sound product could be integrated in days, but the timeline
usually gets longer in hospitals running an array of different
radiology informatic systems (e.g., Picture Archiving and
Communication Systems [PACS] and Vendor Neutral Archives
[VNA], which communicate with the Hospital and Radiology
Information Systems [HIS & RIS],) as well as dealing with a
complex range of data inputs (e.g. non-standardised naming of
imaging sequences from different scanners).

To facilitate AI workflows, similar imaging procedures should
be standardised to the same acquisition protocol (regardless of
scanner model and vendor), and all radiological reports could be
structured in a similar way using common lexicon to facilitate
data mining (e.g. RadReports.org with suggested structured
reporting templates endorsed by the American College of
Radiology). Without satisfying such conditions, software integra-
tion may need to be organised on a per-modality basis, which
may require complex data mapping within the same hospital
system. Hence, depending on how mature the software algorithm
is, program bugs may reveal themselves as a consequence of such
data input heterogeneity.

Introducing the use of a new AI tool within a healthcare system
may proceed with initial caution by working with the supplier to
undertake a mutually agreed trial period. Such a “try to buy”
approach would allow users to assess the use and usability of the AI
tool, integration with the workflow, as well as its trustworthiness.
This is because physicians may distrust the tool unless it is proven
to be highly accurate. One solution is to build a radiologist feedback
tool onto the PACS interface. This would allow the radiologist to
score the performance of any given AI algorithm—for example,
using check boxes with legends such as ‘agree/AI overestimation/AI
underestimation/both over and underestimation’. This would allow
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users to raise perceived discrepancies that can then be further
assessed. Caution should also be given to tools that are developed by
vendors that may lock-in users to specific algorithms, especially if
they fail to meet local demands. The community of professionals
who interact with the software tool also needs to be educated about
its usage. It may be feasible for an AI developer to train a small
group but this becomes challenging when confronted by many
potential users in a large hospital system.

It is possible to process patient data using certified medical
devices in routine clinical practice without additional consent.
However, if vendors are seeking feedback to improve their
software algorithm, then specific data consent is required and
should be obtained prospectively from patients. Post-hoc sharing
of such data may be denied, which means that processes must be
put in place to identify patients who have provided consent and
to rescind it where appropriate.

Even when the barriers to AI implementation are overcome, it
may still be unclear: who pays for the AI? Whilst the development
and testing AI tools can be funded by research grants or
commercial partnership with companies, as yet, no healthcare
systems or private health insurers have reimbursed AI usage. In
the landscape of decreasing tariffs for radiological procedures, it is
a challenge to find specific funding to support the introduction of
AI, which can be costly to deploy across healthcare systems. Even
though AI holds substantial promise to improve work efficiency,
there are yet no published real-world evidence to date. The
development of specific patient-centric services using AI may
provide an opportunity to introduce tariff models for its use. One
example is the UK pilot of a bone health service, which pays for
identifying patients at risk of developing osteoporotic spinal
fracture. Instead of payment for a specific AI product, the
business case was constructed on the basis of the whole service,
which aimed to identify patients at risk of osteoporotic fracture,
thus enabling early intervention and potentially reducing
subsequent healthcare costs by decreasing the number of
fractures. This is an example of the coming together of value-
based healthcare and AI.

In less coherent healthcare models where imaging services are
component care providers (i.e. providers of specific services), it
would be important to accrue local metrics to help justify AI
adoption. Examples of these include metrics showing improvement
in the accuracy of reporting by reducing the rate of patient recall in
women undergoing mammography109; increasing the reporting
speed and finally increases in revenues. By testing novel AI
solutions in a variety of healthcare markets and trying different
combinations of payor models, it may eventually be possible for AI
software tools to be widely adopted into healthcare systems (Box 2).

Future radiological workforce: Appropriate training is required to
allow users to judge whether an AI tool is fit for purpose before
adoption into clinical practice, which would require radiologists
to understand the principles of AI and how AI algorithms should
be properly validated.

There are pressures that are encouraging the premature
introduction of AI tools into clinical workflows. Firstly, there is
a workforce crisis with a shortage of radiologists in many
countries. In the UK, about 10% of radiologist vacancies are
unfilled129. Secondly, there is a marked increase in global imaging
demand and workload. In the UK, the CT and MRI workload has
been rising by ~10% each year129. Thirdly, there is a relentless
drive to improve workflow efficiency, by improving image
procedure turnaround time without compromising diagnostic
accuracy. Finally, AI is seen as a tool to support repetitive tasks
(e.g. sequential tumour size measurement, or cancer screening),
that are time-consuming and relatively uninteresting for
radiologists to undertake.

Empowering radiologists to judge the performance of AI
algorithms would require changes in medical school and
radiology curricula to include an understanding of the terms
and main methodology of AI/ML; the requisite development,
training, testing and validation of algorithms; basic statistics
relevant to AI/ML; and the challenges of data requirements. Such
empowerment will also necessitate educating radiologists in how
they can meaningfully and rigorously test the performance of AI
algorithms within their own clinical practice.

The future of AI and ML applications in radiology will be
reliant upon the education of stakeholders including medical
students, trainee radiologists, qualified radiologists, other doctors,
radiographers, computer scientists, data scientists and data
engineers collaboratively to solve clinically relevant problems.
This multidisciplinary dialogue is necessary and critical to the
development of clinically relevant and technically accomplished
AI tools to address the unmet needs in oncology. There is a clear
need for more multidisciplinary AI meetings and conferences to
encourage interactions between all stakeholders, both at the local
level, as well as at the national and international level.

Conclusions
Cancer imaging is seeing rapid developments in AI, and in par-
ticular ML, with a broad range of clinical applications that are
welcomed by the majority of radiologists. The development of
new ML tools is often constrained by available imaging data;
however, there is the potential for building and using real-world
well-curated imaging data in biobanks and open access

Box 2 | Important factors for the selection of AI into a health system

Criteria and benchmarks

CE labelling
FDA clearance
UKCA marking

Incentives and motivations

Targeting a common disease
Potential for the AI algorithm to be developed into products that generate revenue
Attracting better or new payors
Formulation of fair value proposition between stakeholders or partners
Latitude to create/share own business model
AI tool Infrastructure fits with existing informatic systems
The AI tool can be assimilated into the clinical workflow
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repositories to overcome such limitations. Adopting open-source
tools for algorithm development, where possible, may lead to
better transparency and collaboration across centres. However,
even though exceptional diagnostic performance can be gained by
the application of these AI software algorithms, it is still not clear
how many of these will have a long-term meaningful impact on
patient outcomes or will be cost-effective. An improved reg-
ulatory framework for the approval of AI-based tools for clinical
deployment is evolving. There is a need for systematic evaluation
of these software, which often undergo only limited testing prior
to release. It is also important to empower all stakeholders,
especially radiologists, with sufficient understanding of this
growing field to enable them critically to appraise these tech-
nologies for adoption into their own practice. Creating oppor-
tunities for interdisciplinary engagement will also facilitate the
development of useful clinical tools that aim to enhance patient
care and outcomes.
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