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Multiplexed imaging mass cytometry reveals
distinct tumor-immune microenvironments linked
to immunotherapy responses in melanoma
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Abstract

Background Single-cell technologies have enabled extensive analysis of complex immune

composition, phenotype and interactions within tumor, which is crucial in understanding the

mechanisms behind cancer progression and treatment resistance. Unfortunately, knowledge

on cell phenotypes and their spatial interactions has only had limited impact on the patho-

logical stratification of patients in the clinic so far. We explore the relationship between

different tumor environments (TMEs) and response to immunotherapy by deciphering the

composition and spatial relationships of different cell types.

Methods Here we used imaging mass cytometry to simultaneously quantify 35 proteins in a

spatially resolved manner on tumor tissues from 26 melanoma patients receiving anti-

programmed cell death-1 (anti-PD-1) therapy. Using unsupervised clustering, we profiled

662,266 single cells to identify lymphocytes, myeloid derived monocytes, stromal and tumor

cells, and characterized TME of different melanomas.

Results Combined single-cell and spatial analysis reveals highly dynamic TMEs that are

characterized with variable tumor and immune cell phenotypes and their spatial organizations

in melanomas, and many of these multicellular features are associated with response to anti-

PD-1 therapy. We further identify six distinct TME archetypes based on their multicellular

compositions, and find that patients with different TME archetypes responded differently to

anti-PD-1 therapy. Finally, we find that classifying patients based on the gene expression

signature derived from TME archetypes predicts anti-PD-1 therapy response across multiple

validation cohorts.

Conclusions Our results demonstrate the utility of multiplex proteomic imaging technologies

in studying complex molecular events in a spatially resolved manner for the development of

new strategies for patient stratification and treatment outcome prediction.
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Plain language summary
Immunotherapies help the immune

system to fight cancer. However, they

only benefit a subset of melanoma

patients, and currently no single

marker is sufficient to determine

which patients will respond to these

treatments. Here, we use imaging

mass cytometry, a technique to

measure the levels of multiple mar-

kers in individual cells, to analyze

tumor tissue from melanoma patients

receiving immunotherapy. By deter-

mining the different cell types pre-

sent and the spatial relationships

between them, we identify six distinct

melanoma cellular environments that

are associated with different clinical

responses to immunotherapy. Our

results demonstrate how complex

information about the spatial rela-

tionships of cell types can be inte-

grated to help to identify patients that

might benefit from immunotherapy.
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Advanced melanoma has a poor prognosis with a 5-year
survival rate lower than 10%1. Immune checkpoint inhi-
bitors (ICIs) targeting PD-1 and CTLA-4 have shown

improved survival in advanced melanoma patients1–4, but potent
and durable response only presented in a subset of patients. To
date, no single biomarker has been sufficient for patient stratifi-
cation, presumably due to the complex immune response to
cancer driven by both inter- and intrapatient cellular hetero-
geneities in tumor microenvironments (TMEs)5,6. Indeed, with
deeper knowledge of the mechanisms of immune checkpoint
blockade (ICB) based immunotherapy developed from recent
clinical and preclinical studies, it is now recognized that ICI
efficacy is driven by multifaceted interactions among a large
diversity of cell lineages at both localized and systemic levels7–15,
thus defying the concept of patient stratification based solely on
biomarkers that capture only limited dimensions of these intricate
interactions.

In this study, we used imaging mass cytometry (IMC) to
explore the composition and spatial arrangements of different
immune and stromal cells in the vicinity of cancer cells in
baseline tumor samples from 26 advanced melanoma patients
treated with anti-PD-1 monoclonal antibody at Peking University
Cancer Hospital and Institute (PUCH), Beijing, China. Using
single-cell analysis on high-dimensional mass cytometry images,
we quantified inter- and intra-tumor heterogeneities in a spatially
resolved manner and identified important cellular features to
classify melanoma into distinct archetypes linked to immu-
notherapy outcome.

Methods
Ethics statement. The use of tumor samples in this study was
approved by the Medical Ethics Committee of the Peking Uni-
versity Cancer Hospital and Institute (2019KT92). Written
informed consent was obtained from each participant.

Patient material. A total of 55 formalin-fixed, paraffin-embedded
(FFPE) tumor tissue samples were obtained from melanoma
patients with anti-PD-1 monotherapy at Peking University
Cancer Hospital and Institute (PUCH), Beijing, China. Patients
were treated between March 2016 and March 2019, and their
tissue samples were collected from untreated patients before anti-
PD-1 monotherapy.

Twenty-nine tissue samples were excluded as they did not meet
the IMC experimental requirements, yielding the final cohort of
26 samples in the study (14 responders and 12 nonresponders)
(Supplementary Tables 1–3). Clinical data, including sex, age,
overall survival (OS), progression-free survival (PFS), and clinical
efficacy, were obtained from records of the patients with updated
follow-up in Oct 2021 (Supplementary Table 2). PFS was defined
as the time from the date of treatment to disease progression or
last contact. OS was defined as the time from treatment to death
or last contact. The clinical efficacy to anti-PD-1 monotherapy
was evaluated by Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.116, including complete or partial response
(CR/PR), stable disease (SD), and progressive disease (PD). All
patients with CR/PR or SD were considered as responders and
PD patients were considered as nonresponders.

Antibody conjugation and validation. An antibody panel of 35
proteins was designed to distinguish cell types and states,
including immune, mesenchymal, proliferative, and immune
checkpoint proteins (Supplementary Table 4). Twenty-five
labeled antibodies were purchased from Fluidigm (https://www.
fluidigm.com), and the remaining ten unlabeled antibodies were
purchased from Abcam (https://www.abcam.com/). Antibodies

from Abcam were conjugated with metals using Maxpar X8
Multimetal Labeling Kit (Fluidigm, 201300) following the man-
ufacturer’s protocol. All conjugated antibody titration and spe-
cificity were tested by visual comparison of IMC images of some
tissue slides from melanoma patients. Details about antibodies,
metals, and concentration used in the study can be found in
Supplementary Table 4.

Preparation and staining. Tissue slides were stained following
IMC staining protocol (Fluidigm, PN400322) provided by Flui-
digm. FFPE tumor samples were baked at 65 °C for 2 h to remove
all visible wax. Slides were deparaffinized in fresh xylene (10 min
twice) followed by rehydration through a graded alcohol series
(100%, 95%, 80%, 70% for 5 min each). Antigen retrieval was
conducted in a 96 °C water bath with Tris-EDTA buffer (pH 9.0)
for 30 min. At room temperature (RT), slides were then blocked
with 3% BSA in PBS (Maxpar) for 45 min in a hydration chamber
after cooling to 70 °C. Meanwhile, the antibody cocktail was
prepared in 0.5% BSA buffer mixed with the optimal dilution for
each antibody (Supplementary Table 4). After blocking, slides
were incubated with the antibody cocktail overnight at 4 °C in a
hydration chamber. The next day, each slide was washed twice
with 0.2% Triton X-100 in PBS (Maxpar), and twice with PBS
(Maxpar). For DNA staining, slides were incubated with
Intercalator-Ir (Fluidigm, 201192A) in PBS (Maxpar) at RT for
30 min. Finally, slides were washed with deionized water twice
and air-dried at least 20 min before IMC acquisition.

Imaging mass cytometry. Images were acquired using a Hyper-
ion Imaging System (Fluidigm). All operations were conducted
following the manufacturer’s procedure. Briefly, based on
hematoxylin and eosin (HE)-stained serial tissue sections by a
professional pathologist, we randomly selected regions of interest
(ROIs) at the core tumor (CT) or invasive margin (IM) region
(Supplementary Fig. 1; the number of ROIs per patient is listed in
Supplementary Table 2). Images were laser ablated at 200 Hz, and
raw data were acquired using a commercial acquisition software
(Hyperion Imaging System, Fluidigm). The state of Hyperion
Imaging System was monitored by the interspersed acquisition of
data from the tuning slide (Fluidigm). We further asked our
pathologist to determine whether these ROIs contain tertiary
lymphoid structure (TLS), and 9 ROIs were determined as having
TLS region based on its HE image and the protein (i.e., CD20,
CD4, CD8, Ki67) expression pattern (Supplementary Fig. 2).

IMC image processing, single-cell segmentation, and quanti-
fication. We first checked the quality of every image by inspecting
all marker staining patterns in the MCD Viewer (Fluidigm,
v1.0.560.2). After quality control, a total of 158 images resulting
in 662,266 single cells were used in the following analysis. Raw
data (.mcd files) were converted to TIFF format using the
imctools Python package (https://github.com/BodenmillerGroup/
imctools). Then we used an in-house developed segmentation
tool to perform single-cell segmentation on each image17. The
mean expression of 35 proteins of the segmented single cells were
extracted using the measure module in scikit-image (Python
package, v0.16.2) by overlaying the generated segmentation
masks on the corresponding TIFF images. To improve the
accuracy of cell protein expression value, all images for each
channel were processed by our developed quantification
pipeline18. Briefly, for each protein channel, a large number of
random decoy cells were generated from IMC image regions that
likely contained noise only. We then subtracted the mean
expression of the decoy cells from those of the segmented single
cells to remove the effect of the background noise on the
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quantification results. To remove the potential batch effect
between ROIs, for each protein channel, we further identified
positive cells by comparing the distribution of the expressions of
the segmented single cells to that of the decoy cells with a false
discovery rate (FDR) of 0.01, and normalized expressions of the
segmented single cells across ROIs based on the expression of
positive cells.

Cell clustering analysis. Single-cell protein expression data were
clipped at the 99th percentile, followed by min–max normal-
ization. For cell-type identification, 20 markers were used to
define cell types: CD45, CD3, CD4, CD8a, FoxP3, CD20, CD68,
CD14, CD16, CD11c, CD11b, IDO, Vimentin, α-SMA, E-cad-
herin, EpCAM, CAIX, VEGF, PDGFRb, CollagenI. Three main
cell types (lymphoid cells, myeloid cells, and other cells) were
clustered and identified based on the protein expression pattern
of each cluster. Then a second clustering was performed sepa-
rately for each cell type on all markers except for the immune
checkpoint proteins and PD-L1, resulting in 4 main cell types
(lymphoid cells, myeloid cells, stromal cells, and tumor cells) and
20 distinguishable cell subtypes from 75 clusters. To obtain stable
and robust cell clustering results19, we followed the clustering
pipeline from ref. 20 for our dataset (Supplementary Fig. 3a).
Specifically, all clustering analyses were performed with two
consecutive steps. First, meta-clusters were grouped with a self-
organizing map implemented in FlowSOM21 (R package,
v1.18.0), and then Phenograph22 (R package, v0.99.1) was applied
on the mean expression values of each group from FlowSOM to
obtain the final clustering results. Cell-type density was measured
by the number of a certain cell type over total cells segmented
from each image.

Spatial analysis. To investigate cell–cell interactions, a
permutation-test method23 implemented in neighbouRhood (R
package, v0.3.0) was used to determine whether the interaction/
avoidance between or within cell types occurred more frequently
than random observation. Briefly, cells were classified based on
their protein expression values by cell clustering analysis as
mentioned above, then a null distribution of cell interaction pairs
was generated with 1000 times permutation of random selection
for each image. Observed cell interaction pairs were defined with
a certain distance (20 μm between cell centroids). The P value of
interaction/avoidance between cell type A and B for each image
was calculated as:

PAB ¼
1; Cobs ¼ 0;
∑ðCperm ≥ ð≤ ÞCobsÞþ1

Npermþ1 ; otherwise;

(
ð1Þ

where Cperm is the number of cell pairs (A, B) in each permuta-
tion, Cobs is the actual number of cell pairs (A, B) given a defined
distance, and Nperm is the number of permutation. P values ≤ 0.01
were considered as significant interaction/avoidance between cell
types. Spatial proximity between two cell types were measured
based on the distribution of the shortest distance from cells of one
cell type to those of the other cell type on IMC images.

We further performed community analysis to identify common
communities of multicellular units that existed across different
TMEs24. Briefly, the IMC images were converted into topological
neighborhood graph in which cells were represented as nodes and
cell–cell neighboring pairs (20 μm between cell centroids) were
represented as edges. Then we used the Louvain community
detection method25 to identify highly interconnected spatial
subunits in the graph. This analysis was performed on all cells to
uncover the microenvironment communities across samples.
Phenograph (R package, v0.99.1) was then used to identify

recurring similar spatial cell-type communities between samples
based on minimum to maximum normalized percentages of cell
types in each community.

Measurement of intrapatient heterogeneity. Each tumor sample
represents a mixture of cells, including lymphoid, myeloid,
stroma and tumor cells. We used Shannon entropy (H) to
characterize intrapatient heterogeneity based on annotated cell
subtypes from cell clustering results. To account for the different
number of cells per sample, we subsampled 1000 cells from each
sample i for three times and calculated its Shannon entropy of
each occurred cell-type frequency Pc as:

Hi ¼ �∑
C
Pclog2ðPcÞ: ð2Þ

This analysis was performed on samples with different regions to
investigate the cell-type composition diversity in the CT or IM
regions of patients using the Wilcoxon rank-sum test. We then
compared the distribution of Shannon entropies of patients
between responders and nonresponders.

Identification of TME archetypes. We first selected the cell types
that were differentially enriched between responders and non-
responders (log2FC ≥1.2, adjusted P ≤ 0.05), and with a cell-type
density of at least 1% over total cells. The cell types that met these
criteria were B, CD4+ T, CD8+ T, MC4, MC2, tumor (CAIX+)
cells for ROIs in the IM, and MC2 and MC4 cells for ROIs in the
CT. Hierarchical clustering was then conducted separately for
ROIs in the IM on the basis of the Euclidean distance on the
selected cell-type abundances using hclust function with the
Complete agglomeration method implemented in stats (R pack-
age, v3.6.3). For ROIs from the IM, six distinct groups were
generated by cutree function (R package stats) with k equal to 6.
The resulting TME archetypes were further classified into two
different categories (immune hot: H1, H2, and H3; immune cold:
C1, C2, and C3) depending on their respective cell compositions.
To characterize the TME for patients, we used majority voting on
the basis of the TME archetype of their IM ROIs, and patients
with equal numbers of cold and hot TME archetypes were con-
sidered as immune hot patients.

Whole-transcriptome RNA sequencing and external public
datasets. The RNA-seq data of the PUCH cohort were obtained
from our previous experiment26, which were generated from
unstained adjacent serial tissue slide from the same FFPE tumor
samples used in this study for generating the IMC images. Sample
RNA library construction and sequencing methods followed
those as described in ref. 26. Briefly, RNA-seq reads were mapped
by STAR27 and then quantified by RSEM28 to get fragments per
kilobase of transcript per million mapped reads (FPKM) values at
the gene level. We further log2-transformed the read counts to
avoid extremely skewed gene expression distributions.

In this study, we collected three RNA-seq datasets of
melanoma patients treated with immunotherapy, together with
their corresponding clinical information, including the Riaz17
(n= 51)29, Gide19 (n= 50)30, Liu19 (n= 54)31 datasets (Supple-
mentary Table 5). We used the immunotherapy outcomes
provided in the original papers following RECIST guidelines.
For the Gide19 and Liu19 studies, only samples that received
anti-PD-1 monotherapy (nivolumab or pembrolizumab) were
used. To obtain the gene expression data, we downloaded and
processed the RNA-seq raw data by the same pipeline mentioned
above for datasets Riaz17 and Gide19, and downloaded it from
respective references provided by the authors for dataset Liu19.
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Identification of DEGs, pathway analysis, and prognostic score
calculation. Patients were classified into different TME arche-
types based on majority voting, i.e., the archetype that had the
most number of ROIs from a particular patient was assigned to
the patient. Differential expression genes (DEGs) of each TME
archetype were then identified using GLM function in edgeR (R
package, v3.28.1) based on gene expressions of patients classified
into that archetype vs. those of patients classified into archetypes
of the opposite category. For example, DEGs of TME archetype
H1 were derived based on gene expressions of patients from H1
vs. those from C1, C2, and C3. All DEGs with log2FC ≥1 and P
≤0.05 for each TME archetype were inputted into ClusterProfiler
(R package, v3.14.3) for gene set enrichment analysis on hallmark
gene sets in Molecular Signatures Database (MSigDB v7.4).

To derive a prognostic gene signature, we identified DEGs
between immune hot and immune cold patients. By using the
common genes between DEGs and Nanostring’s IO 360 panel
(770 curated cancer immune-related genes), we found 20
upregulated genes (PLA1A, FAM30A, BLK, TDO2, CD19,
MS4A1, GZMA, CCL19, FBP1, CD79A, TNFRSF17, CTLA4,
CD7, CCL5, CDH1, CXCL9, CCL21, CD48, IL2RB, CD3G) and
4 downregulated genes (MAGEA4, FGF9, COL11A2, FZD9). For
each patient, the prognostic score was calculated as the ratio of
mean expression of upregulated genes to that of
downregulated genes.

Deconvolution and ssGSEA score of 29 gene signatures from
bulk RNA-seq data. To estimate cell composition from bulk
RNA-seq data, we used two deconvolution methods: MCP-
counter32 which uses average expression of canonical cell-type
markers for cell-type abundance estimation, and CIBERSORTx33,
of which cell-type abundance is estimated using support vector
regression on the basis of gene expression signatures of target cell
types. We uploaded the normalized log2-transformed FPKM
expression matrix on the MCP-counter website (http://134.157.
229.105:3838/webMCP/) to get abundance scores for ten cell
types. Immune cell frequencies of bulk RNA-seq data were
inferred using CIBERSORTx (https://cibersortx.stanford.edu/)
which uses gene expression profile matrices from scRNA-seq data
for deconvolution. We uploaded PUCH RNA-seq data, selected
the absolute mode with online provided melanoma scRNA-seq
data as the signature matrix, disabled quantile normalization and
applied 100 permutations for deconvolution robustness.

Single-sample gene set enrichment analysis (ssGSEA, Python
implementation by Bagaev et al.34) was performed for 29 gene
signatures which characterize four main TME groups (i.e.,
antitumor microenvironment, protumor microenvironment,
angiogenesis fibrosis, and malignant cell properties)34. To
account for local region bias of IMC data, the density of cell
types for each sample were measured as the mean cell fraction of
all ROIs taken from the same sample. Then we computed
Spearman’s rank correlation and R-squared of linear regression
model between cell-type abundance from IMC and from RNA-
seq data either by CIBERSORTx deconvolution or ssGSEA score
of gene signature.

Response prediction and survival analysis. To validate the
prediction performance for each dataset, Receiver Operating
Characteristic (ROC) curve was drawn based on the prognostic
score using sklearn (Python package, v0.22.2). Kaplan–Meier
analysis was performed to estimate OS or PFS using survival (R
package, v3.2.3). For each dataset, we separated samples into two
groups based on their prognostic scores with thresholds deter-
mined automatically by survminer (R package, v0.4.7). The log-
rank test was used to assess the statistical comparison between the

two groups, and a P value ≤ 0.05 was considered significant.
Univariable Cox proportional-hazards models adjusted by age
were used to estimate the prognostic factors on survival, and the
hazard ratio (HR) of each factor was reported using survival (R
package, v3.2.3).

Statistics and reproducibility. No statistical method was used to
predetermine sample size, and sample selection of this study was
based on sample availability. All analyses were conducted using
software R (version 3.6.3) and Python (version 3.7). Association
between response and melanoma subtypes was tested using
Fisher’s exact tests. The Wilcoxon rank-sum test was used for
statistical analysis comparing continuous measurements, with
Benjamini–Hochberg adjustment for all statistical tests involving
multiple comparisons. An FDR-adjusted P ≤ 0.05 was considered
significant. All boxplots depict the median (the center line),
interquartile range (IQR), and 1.5 times the IQR (whiskers), with
outliers exceeding 1.5 times the IQR. For survival analysis, the
statistical significance between Kaplan–Meier curves was tested
by the log-rank test. Correlation between cell-type abundance was
assessed by nonparametric Spearman’s rank correlation. All sta-
tistical information used for experiments are defined in the figure
legends.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Global characteristics of cell compositions in melanoma TME.
To comprehensively characterize the microenvironment of mel-
anoma patients with various stages and subtypes, we used a
customized IMC panel of 35 antibodies on baseline tissue samples
from 26 melanoma patients treated with anti-PD-1 (Fig. 1a and
Supplementary Tables 1–3). In this cohort, melanoma subtypes
were analyzed for association with immunotherapy outcome, and
no factor shows a significant correlation with the clinical out-
come, possibly due to our limited sample size (Supplementary
Table 3). We then selected recognizing phenotypic markers of
immune and stromal cell, immunoregulatory proteins, and pro-
teins providing insights into cell activation and proliferation
status (Supplementary Table 4). Regions of interest (ROIs) were
randomly selected for each sample from core tumor (CT) and
invasive margin (IM) regions based on hematoxylin and eosin
(HE)-stained serial tissue section inspected by a professional
pathologist. After quality control by manual inspections, 158 IMC
images (59 from the CT: 34 responders, 25 nonresponders, 99
from the IM: 58 responders, 41 nonresponders) were further
analyzed (“Methods” and Supplementary Fig. 1).

In total, 662,266 cells were clustered into 20 different cell subtypes
using FlowSOM21 and Phenograph22 (“Methods”), which were
further grouped into four major cell types, including lymphocytes,
myeloid-derived monocytes, stromal cells, and tumor cells (Fig. 1
and Supplementary Fig. 3a, b). The lymphocytes included five
different subtypes, namely, CD4+ T cell (CD3+CD4+), CD8+ T cell
(CD3+CD8+), double-positive T cell (DPT; CD4+CD8+),
T-regulatory cell (Treg; CD4+FOXP3+) and B cell (CD19+)
identified by their canonical cell markers. Myeloid-derived mono-
cytes (MC1-MC6) were identified by CD14 and CD16, which can be
classified into two categories based on their MHC Class II molecule
(HLA-DR) expression. The first category included three subtypes
characterized with highly elevated HLA-DR expression (MC4-
MC6), indicative of their potential role as antigen-presenting cells
(APC) within TME. Among them, subtype MC4 was further
characterized with elevated dendritic cell marker CD11c and MC6
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with elevated macrophage marker CD68. The second category was
comprised of HLA-DR− subtypes with elevated expression of
exhaustion markers CAIX and VEGF (MC2, MC3) or indoleamine
2,3-dioxygenase 1 (IDO-1; MC1), representing their potential
immune-suppressive roles as myeloid-derived suppressor cells
(MDSCs). Stromal cells consisted of five subtypes denoted as S1
to S5 for Collagen+, FAP+, PDGFRb+, SMA+, and Vimentin+ cells,
respectively, and tumor cells included 4 subtypes denoted as T1 to
T4 for CAIX+, Ki67+, VEGF+, and a non-classified subtype (n.c.)
that did not show the elevated expression on any markers from the
defined panel, respectively.

All major cell types and subtypes were observed in all patients
but with variation in cell compositions among patients and
different tumor regions (Fig. 1c). Overall, the IM demonstrated
more diversified cell-type compositions as indicated by higher
Shannon entropy (“Methods”) than the CT for both responders
and nonresponders (Supplementary Fig. 3c). Furthermore,
Shannon entropy analysis indicated more diversified cell-type
compositions in responders than in nonresponders in the IM, but
not in the CT. Two IMC images to exemplify TMEs with typical
immune cells in a responder and a nonresponder are shown in
Fig. 1d.
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Fig. 1 Overview of the study of melanoma patients using imaging mass cytometry (IMC) and characteristics of cell composition in tumor
microenvironments. a Workflow of IMC images acquisition from melanoma patients and data analyses. b Heatmap of mean values of scaled protein
expression per cell type identified by unsupervised clustering (FlowSOM and Phenograph) for a total of 662,266 single cells. The boxplots on the right
depicting the cell proportion of each IMC image. Each boxplot is shown with the median (the center line), interquartile range (IQR), and 1.5 times the IQR
(whiskers), with outliers exceeding 1.5 times the IQR (n= 158 images). c Stack bars showing averaged cell percentage in images in the invasive margin (IM,
top) and core tumor (CT, bottom) from responders and nonresponders, colored by four main cell types (left) and 20 cell subtypes (right). d Representative
multichannel IMC images (ROI: region of interest) from one responder (left) and one nonresponder (right). Vimentin (magenta) and collagen I (white)
were used to portrait the structure of the tissue.
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Cell phenotype proportions differentiate TMEs of responders
and nonresponders. Examination of abundances of individual
cell clusters from different TMEs revealed different cell compo-
sitions in TMEs from responders and nonresponders. The per-
centages of lymphocytes were significantly higher in responders
than in nonresponders in the IM but not CT (Fig. 2a, b). A
similar trend was observed in all five lymphocyte subtypes,
indicating the important role of the IM in identifying TMEs that
would respond to immunotherapy. Interestingly, despite the well-
established immunosuppressive role of Treg, significantly elevated
Treg densities were observed in the IM of responders compared
to nonresponders, which were possibly recruited to the site for
maintaining immunological unresponsiveness to self-antigens
and suppressing excessive immune responses detrimental to the
host. As a result, high abundance of Treg could indicate the
presence of highly immunogenic tumor-associated antigens that
would be able to induce a T-cell-mediated immune response after
ICB for cancer rejection. For myeloid cells, we identified that
HLA-DR+ myeloid cells MC4 were significantly more abundant
in responders, while HLA-DR− myeloid cells MC2 were

significantly enriched in nonresponders, and the difference can be
observed in both the IM and CT. We also found that tumor cells
with hypoxia signals (CAIX+) were significantly enriched in the
IM from nonresponders compared to responders, but this dif-
ference was not observed in the CT (Supplementary Fig. 4). No
significant differences in other cell-type abundances were
observed.

Cox regression analysis further revealed that the abundance of
several cell types in the IM were associated with immunotherapy
outcome. In the IM, CD4+ T cells, SMA+ stromal cells (S4), and
Vimentin+ stromal cells (S5) were associated with better
outcome, whereas HLA-DR− myeloid cells (MC2) and
PDGFRb+ stromal cells (S3) were indicative of poor outcome
after adjusted for age (Fig. 2c). None of the identified cell
phenotypes in the CT was prognostic (Fig. 2d).

Characteristics of immune checkpoint expressions in TME. We
next investigated the expressions of checkpoint molecules on
different cell subtypes within TMEs to see if the compositions of
any cell subtypes are associated with outcome to ICI treatments.

Fig. 2 The prognostic impact of cell phenotypes density. a Volcano plots showing differential testing of cell abundance in the invasive margin (IM, left)
and core tumor (CT, right) between responders (R) and nonresponders (NR). The color of the nodes represents significantly higher abundance (red) and
lower abundance (blue) of cell type in responders. The size of the nodes displays the percentage of cell type. b Boxplots showing the proportion of cell type
in regions of interest from R (red) and NR (blue). Each boxplot is shown with the median (the center line), interquartile range (IQR), and 1.5 times the IQR
(whiskers), with outliers exceeding 1.5 times the IQR. Points in the boxplot represent the cell percentage of each image. Comparisons were performed
using Wilcoxon rank-sum test and adjusted with Benjamini–Hochberg method. a, b n= 58 for R group and n= 41 for NR group in the IM, n= 34 for R
group and n= 25 for NR group in the CT. c, d Forest plots showing hazard ratios (nodes) and 95% confidence intervals (horizontal lines) of progression-
free survival for each cell type in the IM (n= 24 patients) (c) and CT (n= 26 patients) (d) by univariate Cox models adjusted for age. The red nodes
represent the significant factor with P value < 0.05. MC1: HLA-DR−CD14+CD11c+ myeloid cells, MC2: HLA-DR−CD14+ myeloid cells, MC3: HLA-DR
−CD11bhi myeloid cells, MC4: HLA-DRhiCD14hiCD16+CD11c+CD11b+ myeloid cells, MC5: HLA-DR+CD14hiCD16+CD11b+ myeloid cells, MC6: HLA-DR
+CD14+ myeloid cells.
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Overall, PD-L1 was expressed on a broad class of tumor and
stromal cells within TMEs from both responders and non-
responders, with MC4 having the highest average of PD-L1+

proportion (Supplementary Fig. 5a). However, none of their
relative abundances, i.e., the percentages of PD-L1+ cells among
the corresponding cell subtypes, was associated with response.
Instead, significantly higher relative densities of PD-1+ CD4+ T
and CD8+ T cells were observed in the IM of responders than
that of nonresponders (Supplementary Fig. 5b), which is con-
sistent with previous results that the fraction of exhausted cyto-
toxic T lymphocytes expressing high levels of CTLA-4 and PD-1
strongly correlates with response to anti-PD-1 in human
melanoma35.

In addition to PD-1, we also observed increased relative
abundances of CD27+ and TIM-3+ cells among a broad class of
lymphocyte and myeloid subtypes in the IM of responders
(Supplementary Fig. 5c, d). CD27 is typically upregulated in the
memory phenotypes of T cells upon exposure to stimulation36. In
addition to their assumed roles in local immunity control,
memory CD8+ T cells can further orchestrate the generation of
systemic antitumor immunity by triggering antigen spreading
through DC37, and the presence of resident memory T cells is
associated with durable response to immunotherapy in metastatic
melanoma38. TIM-3 is a checkpoint receptor expressed on
immune cells from TME including interferon (IFN)-γ-producing
T cells and other leukocytes as well including DC and natural
killer (NK) cells39. Although elevated expression of TIM-3 within
TME was typically associated with T-cell exhaustion, a recent
study showed that lack of TIM-3 expression of T cells may
indicate a specific dysfunction status of T cells from ICB-
refractory TMEs despite a brisk T-cell infiltrate40. In addition, a
preclinical study using a murine model of head and neck cancer
showed that the suppressive activity of TIM-3 can be reversed by
IFN-γ secreted by CD8+ T cells upon PD-1 blockade41. These
observations, together with the results described earlier, suggest
the potential clinical utilization of predicting outcome to PD-1
based ICB therapy based on signatures of activated or previously
activated antigen-experienced lymphocytes in the IM of tumor.

Spatial analysis reveals heterogeneous cell–cell interactions in
melanoma TME. We performed regional correlation analysis to
investigate the potential spatial co-occurrence patterns of differ-
ent cells across all images. To avoid the potential nuisance effect
of the absolute abundance of each cell type on the co-occurrence
analysis, we used permutation-test-based neighborhood
analysis23 to identify statistically significant interaction or
avoidance between pairs of cell types (“Methods,” Fig. 3a, b;
examples of cell–cell interactions and avoidance are shown in
Fig. 3c–g and Supplementary Fig. 6a, respectively). Notably,
subtypes of lymphocytes (CD4+ T, CD8+ T, DPT, Treg, and B
cells) tended to form dense compartments with strong cognate
interactions, and their proportions were highly correlated across
images in responders (Fig. 3a, highlighted area I and Fig. 3c, d). In
nonresponders, although the positive correlations between dif-
ferent lymphocyte subtypes were still maintained, co-locations of
these lymphocytes, particularly between CD4+ T and other T-cell
subtypes, were observed in fewer ROIs (Fig. 3b, highlighted area I
and Supplementary Fig. 6b), indicative of a more diffused dis-
tribution of lymphocytes in these TMEs. We also observed highly
different interaction patterns of HLA-DR+ and HLA-DR−

myeloid cells with lymphocytes. Strong cognate interaction
between the HLA-DR+CD11c+ myeloid cells (MC4) and lym-
phocytes can be observed in responders (Fig. 3a, highlighted area
II and Fig. 3e) and, to a lesser extent, in nonresponders as well
(Fig. 3b, highlighted area II and Supplementary Fig. 6b). In

contrast, significant interaction/avoidance between HLA-DR−

myeloid cells and lymphocytes were observed in a much smaller
number of ROIs (Fig. 3a, b, highlighted area III). Interestingly, in
nonresponders, HLA-DR− myeloid cells showed avoidance to
most lymphocytes except for MC1 and MC2, which showed
interaction with CD8+ T cells (Fig. 3b, highlighted area IV).
Significant proximate interaction between SMA+ stromal cells,
which are primarily vascular smooth muscle cells that surround
lymphatic vessels or blood vessels, and a broad class of immune
cells were observed in most ROIs from both responders and
nonresponders (Fig. 3a, b, highlighted area V and Fig. 3f, g),
indicative of the important role of lymphovascular structures in
maintaining the immune cell populations in TME.

Different TME archetypes based on multicellular composi-
tions. We investigated how to translate the composition of single
cells within TMEs into better stratification of melanoma to
identify patients for immunotherapy. Using unsupervised hier-
archical clustering on all the IMC images based the abundances of
cell phenotypes that significantly differ in the IM regions of
responders and nonresponders, we obtained six TME archetypes
that demonstrated distinct cell compositions, including three
immune hot TMEs characterized by strong infiltration of CD4+ T
and B cells (H1), HLA-DR+CD11c+ myeloid-derived cells (H2),
and CD8+ T cells (H3), respectively, and three immune cold
TMEs with enrichment of CAIX+ tumor cells (C1), HLA-DR
−CAIX+ myeloid-derived cells (C2), and an archetype with no
significant enrichment of any cell type (C3), respectively (Fig. 4a;
HE and IMC images of example ROIs from each TME archetype
are shown in Fig. 4c). Signal pathway analysis with bulk RNA-seq
data from paired samples also identified shared and distinct
pathways of different TME archetypes (Fig. 4d and Supplemen-
tary Fig. 7). As expected, all immune hot TMEs showed multiple
elevated signaling pathways that are correlated with adaptive and
innate immune activation including IFN-α/γ response, allograft
rejection, and complement pathway activities. H1 and H3 further
showed an unregulated inflammatory response and KRAS
upsignaling pathways, while H2 was uniquely enriched for hall-
marks of p53 pathway, and H3 uniquely enriched for hallmarks
of apoptosis, IL2-STAT5, and IL6-JAK-STAT3 pathways.
Immune cold TMEs were predominantly enriched for signaling
pathways typically associated with cancer progression or immune
evasion, such as epithelial–mesenchymal transition and KRAS
downsignaling.

We further performed community analysis24 to investigate if
single cells were organized differently in different TMEs. Using
Louvain community detection25 to identify communities of
multicellular units that were physically contacted with each
other, followed by unsupervised clustering based on their cellular
compositions using Phenograph, we obtained 19 common
communities across all images (“Methods” and Supplementary
Fig. 8a). Close examination on the community composition of
different TME archetypes showed that each archetype had its own
predominant multicellular communities (Supplementary Fig. 8b).
For the immune hot TMEs, H1 was dominated by Community 3
that constituted large networks of CD4+ T cells, B cells, and
CD8+ T cells (Supplementary Fig. 9a); while in H2, the dominant
community was Community 18 (Supplementary Fig. 9b) enriched
for myeloid cells, primarily the HLA-DR+CD11c+ subtype MC4;
and the majority community in H3 is Community 11
(Supplementary Fig. 9c) comprised of CD8+ T cells that
interacted with HLA-DR+ myeloid cells MC5. These multi-
cellular communities were seldom found in immune cold TMEs.
Instead, cold TME C1 contained the highest percentage of
Community 6 (Supplementary Fig. 9d) that was characterized by
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CAIX+ tumor cells in close contact with MC2 and Collagen+

stromal cells; and C2 was mostly dominated by Community 4
(Supplementary Fig. 9e) enriched for networks of Vimentin+

stromal cells and HLA-DR−VEGF+ myeloid cells MC2. Finally,
cold TME C3 showed a highly diffused cell distribution without
any dominant communities.

We asked if the above classification of TMEs was associated
with clinical outcome to anti-PD-1. Overall, by dividing the
clustering results into hot and cold categories, this clustering
achieved a classification accuracy of 79.3% (46 out of 58
responder ROIs classified as immune hot) for responders and
95.1% (39 out of 41 nonresponder ROIs classified as immune
cold) for nonresponders on the ROI level (Fig. 4b). Analysis

further revealed that ROIs from a same patient were in most cases
highly homogeneous: most patients had ROIs from only one or
two archetypes of the same immune hot or cold category
(Fig. 4b). The exceptions included only two responders (79F and
63F) and one nonresponder (41F) who had ROIs from both
immune hot and cold clusters. If we used majority voting to
determine the TME archetype for each patient, all the 11 patients
that were classified as immune hot were responders, representing
an objective response rate (ORR) of 100%; and only 3 responders
were from the immune cold patients, representing an ORR of
23.07%. Kaplan–Meier analysis revealed better overall survival
(OS, P= 0.0093) and progression-free survival (PFS, P= 0.06) in
patients defined as immune hot (Fig. 4e).

Fig. 3 Spatial analysis among cell phenotypes. a, b Circles indicating patterns of cell–cell interactions (green) or avoidances (red) for responders (n= 99
ROIs) (a) and nonresponders (n= 59 ROIs) (b). The circle size showing the percentage of images with significant interaction or avoidance determined by
the permutation test (P < 0.01). Rows representing the relationship of all other cell types surrounding a cell type of interest. Columns representing the
relationship of a cell type of interest surrounding other cell types. Color in heatmap squares indicating Spearman’s rank correlation of cell types across all
imaging mass cytometry (IMC) images in responders and nonresponders. Highlighted interactions or avoidance (numbered black boxes) include: (I)
lymphocytes; (II) MC4 cells and lymphocytes; (III) HLA-DR− myeloid cells and lymphocytes; (IV) MC1/MC2 cells and CD8+ T cells; (V) stromal SMA+

cells and immune cells. c–g Representative IMC images colored by marker (left columns) and cell type (right columns) showing the cell–cell interactions:
c B cells are surrounded by CD4+ T cells, d CD8+ T cells are surrounded by CD4+ T cells, e CD8+ T cells are surrounded by MC4 cells, f CD4+ T cells are
surrounded by SMA+ stromal cells, g CD8+ T cells are surrounded by SMA+ stromal cells. MC1: HLA-DR−CD14+CD11c+ myeloid cells, MC2: HLA-DR
−CD14+ myeloid cells, MC3: HLA-DR−CD11bhi myeloid cells, MC4: HLA-DRhiCD14hiCD16+CD11c+CD11b+ myeloid cells, MC5: HLA-DR
+CD14hiCD16+CD11b+ myeloid cells, MC6: HLA-DR+CD14+ myeloid cells. ROIs: regions of interest.
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Interestingly, despite the recognized important role of CD8+ T
infiltration to immunotherapy efficacy, only ROIs from H3 were
characterized with high CD8+ T infiltration, representing only 6
out of 14 responders from this cohort. Close examination on
different TMEs revealed highly different cell composition in the
vicinity of CD8+ T cells (Fig. 4f and Supplementary Fig. 10). In

immune hot TMEs, the dominant cells surrounding CD8+ T are
either CD4+ T and B cells in H1 or HLA-DR+ myeloid cells MC4
in both H2 and H3, which is consistent with the recognized
immune-enhancing actions governed by these cells. On the
contrary, we observed elevated accumulation of the HLA-DR−

subtypes of myeloid cells MC2 in close contact with CD8+ T cells

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00197-2 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:131 | https://doi.org/10.1038/s43856-022-00197-2 | www.nature.com/commsmed 9

www.nature.com/commsmed
www.nature.com/commsmed


in all three immune cold TME archetypes (Fig. 4f and
Supplementary Fig. 10), indicative of the potential role of these
cells in creating an ICI-resistant TME through suppressing
effector T-cells functionality.

Recently, the tertiary lymphoid structure (TLS) formed in
numerous tumor types is associated with improved clinical
outcome13,14,42,43. To study if any of the above TME archetypes
were associated with TLS, we asked a professional pathologist to
identify TLS from the selected ROIs (“Methods”). In total, nine
ROIs were determined as containing TLS (Supplementary Fig. 2).
Among them, seven ROIs are from H1 TME (0.78, 95% CI:
0.40–0.97), two ROIs are from the H3 TME (0.22, 95% CI:
0.03–0.60), while none of these TLS was from immune cold ROIs
(Fig. 4a). In addition, 46.7% of ROIs from H1 TME contain TLS.
These results suggested that the immune hot TME archetypes
identified in this study, in particular H1, were strongly associated
with TLS.

Gene signature derived from distinct TME archetypes predicts
anti-PD-1 therapy response. Recently, numerous gene expres-
sion signatures33,34,44,45 have been developed to study the cellular
composition of TMEs based on bulk RNA-seq data when single-
cell information is not available. Here, we investigated the con-
sistency between our single-cell analysis results from IMC data
and the results from these signatures using RNA-seq data gen-
erated from adjacent serial sections from the same samples in the
PUCH cohort26. We performed correlation analysis between 29
curated functional gene expression signatures (Fges)34 and the
cell-type abundances estimated by averaging over all IMC ROIs
for each sample (Supplementary Fig. 11a). Interestingly, we found
an over-representation of CD8+ T-cells abundance in existing
signatures despite that many of them have a putative target other
than CD8+ T cells. Among the 29 Fges, the Macrophage Fges
shows the highest correlation with CD8+ T-cells abundance in
the paired sample, followed by Effector cell and T-cell Fges. Other
than CD8+ T cells, DPT abundance showed the strongest asso-
ciation with the Effector cell Fges, while Treg abundance showed
the strongest association with the macrophage-associated Fges.
Unfortunately, other than these three cell types, we did not find a
strong association between the abundance of other cells and Fges.
For example, no surrogate Fges for the abundances of myeloid
subtypes were identified, while some myeloid cells (e.g., MC4),
are strongly associated with clinical outcome to ICI in this study.
Similar observations can be made when we compared the cell-
type proportions estimated from IMC and those estimated by
deconvolution methods from bulk RNA-seq data including MCP-
counter32, which derives cell-type abundance based on mean
expression of canonical cell-type markers, and CIBERSORTx33,
of which cell-type abundance is estimated using support vector
regression on the basis of gene expression signatures of target cell

types (Supplementary Figs. 11b, c). These findings suggested that
existing RNA signature- and deconvolution-based methods for
analyzing cellular compositions of TME could, at best, only
capture the average cellular compositions of the whole tissue slide
rather than their localized accumulations within TMEs due to the
spatial heterogeneity of tummor tissues, while the latter are
generally more essential for immunotherapy response prediction.

We further asked if it is possible to derive a global RNA-seq
signature that could directly differentiate patients of different
TMEs for immunotherapy outcome prediction without using
cellular compositions as surrogates. To this end, we divided
PUCH patients into immune hot and cold groups based on
majority voting on their respective TMEs, and identified
20 significantly upregulated immune-related genes and 4 signifi-
cantly downregulated immune-related genes in the immune hot
group (Fig. 5a, b), where immune-related genes were defined as
genes from the 770 curated cancer immune-related genes by
Nanostring’s IO 360 panel (“Methods”). We then calculated a
response score as the ratio of mean expressions of 20 upregulated
genes and 4 downregulated genes to measure the antitumor
immunity level for predicting anti-PD-1 outcome.

To validate the performance of this signature, we analyzed
RNA-seq data from the PUCH cohort26 and three independent
external datasets from melanoma patients treated with anti-PD-1
(Riaz1729, Gide1930, Liu1931, Supplementary Table 5). The
receiver operating characteristic (ROC) curve generated with
clinical response data showed that the response score achieved an
AUC of 0.83 (95% CI: 0.67–0.96) on PUCH, 0.75 (95% CI:
0.54–0.91) on Riaz17, 0.74 (95% CI: 0.59–0.89) on Gide19, and
0.65 (95% CI: 0.49–0.8) on Liu19, respectively (Fig. 5c). In
addition, higher response scores were also associated with
improved OS in the four datasets (Fig. 5d). Collectively, the
above data demonstrated the potential value of using the response
score derived from differentially expressed immune-related genes
from patients of distinct TMEs as a biomarker for anti-PD-1 ICI
treatments.

Discussion
Our multidimensional interrogation of baseline melanoma tissue
samples before anti-PD-1 treatment provided a systematic land-
scape of immune microenvironments of melanoma patients with
different response to immunotherapy. Importantly, our results
revealed highly heterogeneous TMEs from responders to immu-
notherapy, and only a subset of these TMEs have high CD8+

T-cells infiltration prior to immunotherapy, suggesting that anti-
PD-1 therapy may have a much broader spectrum of mechanisms
of action than only rejuvenating cytotoxic T cells that already
reside in the TME. Indeed, rather than focusing on the specific
state of a single-cell type, a comprehensive recognition on the
contributions from all cell types relevant to effective anti-PD-1

Fig. 4 Identification of six distinct tumor microenvironment (TME) archetypes. a Heatmap showing scaled cell-type abundance from the invasive margin
regions of interest (ROIs). Six TME archetypes are clustered by the level of selected cell types (MC2, Tumor CAIX+, B, CD4+ T, CD8+ T, and MC4 cells).
b TME archetype patterns of each patient. If all ROIs from one patient are classified as having the same TME archetype, the patient is marked as the
corresponding color of TME archetype. Patients who have ROIs that contain heterogeneous TME archetypes are indicated with magenta. c An example ROI
from each TME archetype with hematoxylin and eosin (HE)-stained image (top) and its corresponding imaging mass cytometry image (bottom) with cell
phenotyping (B, CD4+ T, CD8+ T, MC2, and MC4 cells). d Gene set enrichment analysis (GSEA) of genes upregulated expressed in patients with each
TME archetype (the number of patients with C1, C2, C3, H1, H2, and H3 TME archetype are 6, 2, 5, 3, 6, and 2, respectively). Significantly enriched gene
sets (adjusted P < 0.05, Benjamini–Hochberg method) from MSigDB HALLMARK collection are shown. There is no significant pathway enriched in samples
with C2 TME archetype based on the 0.05 threshold for adjusted P value. e Kaplan–Meier curves of overall survival (left) and progression-free survival
(right) for melanoma patients based on their TME archetypes (n= 13 patients with immune cold TME, n= 11 patients with immune hot TME). P values
calculated using log-rank test. f Histograms showing the nearest distance in μm between CD8+ T cells and other immune cells. MC1: HLA-DR
−CD14+CD11c+ myeloid cells, MC2: HLA-DR−CD14+ myeloid cells, MC3: HLA-DR−CD11bhi myeloid cells, MC4: HLA-DRhiCD14hiCD16+CD11c+CD11b+

myeloid cells, MC5: HLA-DR+CD14hiCD16+CD11b+ myeloid cells, MC6: HLA-DR+CD14+ myeloid cells.
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activity would be required for developing successful biomarkers
in immunotherapy. For example, it is now well recognized that
helper CD4+ T cells play a pivotal role in generating effective
immune responses46,47 and CD4+ T-cell responses are required
for optimal priming of antigen-restricted CD8+ T cells and their
maturation48. Although PD-1 is thought to predominantly
restrain CD8+ effector T cells, recent studies show that its’
downstream effects further include activation of CD4+ T cells
through targeting its costimulatory receptor CD28 by PD-1-
recruited SHP2 phosphatase49,50. Moreover, recent studies
demonstrate that pre-existing T cells in TME have limited rein-
vigoration capacity51, and T-cell responses to ICB are mainly

derived from newly primed T-cell clones from extrinsic reposi-
tories such as tumor-draining lymph nodes (TDLN)52, for which
T-cell priming through APCs that acquire tumor antigen and
migrate to the TDLN would be required53,54. For these reasons, as
observed in the present study, enrichment of CD4+ T-cell and/or
myeloid-derived APCs within TME could be a strong indicator to
potential positive outcome to ICI in parallel to CD8+ T-cells
infiltration.

Tumors have been previously classified into immune hot with
strong immune cell infiltrates or cold with sparse infiltration, and
these pre-existing immune states are related to their potential
responses to immunotherapy55. Our results supported this
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Fig. 5 Prognostic impact of gene signature derived from tumor microenvironment (TME) archetypes. a Volcano plot showing the upregulated genes
(red) and downregulated genes (blue) in patients with immune hot TME. b Heatmap depicting the expression of 24 differential expression genes (DEGs,
20 upregulated genes, 4 downregulated genes) from PUCH patients classified as immune cold and immune hot groups. For panels (a) and (b), n= 13 for
the immune cold group and n= 11 for the immune hot group. c The receiver operating characteristic (ROC) curve of sensitivity versus 1−specificity of the
prediction performance of prognostic score calculated by the 24 DEGs for PUCH dataset (discovery cohort, nonresponsders NR= 35, responders R= 14)26

and other three public datasets (i.e., Riaz1729 (NR= 25, R= 10), Gide1930 (NR= 20, R= 23), Liu1931 (NR= 20, R= 28)). Patients with stable disease (SD)
were not included. AUC area under curve. d Kaplan–Meier curves of overall survival in melanoma patients with high versus low prognostic score calculated
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calculated using the log-rank test. PUCH Peking University Cancer Hospital and Institute.
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notion. Furthermore, empowered by multiplex single-cell image
analysis, we were able to identify multiple immune archetypes
from both immune hot and cold TMEs. Each archetype is made
up with a unique cellular community composition and char-
acterized by distinct dominant immune pathways, indicating that
the previous TMEs delineations are incomplete to reveal the
nuance of TMEs shaped by different tumor progression and
immune evasion mechanisms. It is thus conceivable that such
subdivision would enable us to further investigate the mechan-
isms behind different TME archetypes, from which better indi-
vidualized therapeutic strategies based on archetypal assignments
may be derived.

Although myeloid-derived cells are considered to associate
with immune suppression within TME, it is now recognized that
distinct myeloid cell subpopulations in the TME play different
roles56,57. Consistent with this notion, our results revealed two
highly distinct archetypes of TMEs enriched for different myeloid
cells. The first archetype (H2), of which the TMEs were all from
responders, showed enrichment of HLA-DR+ myeloid cells,
primarily the CD11c+ subtype MC4, but low pre-treatment
lymphocytes infiltration, suggesting a potential seminal role
played by this group of myeloid cells in mediating an inflam-
matory microenvironment towards positive outcome from anti-
PD-1 treatment. The second archetype (C2), which was asso-
ciated with poor clinical outcome to ICI, showed elevated accu-
mulation of subtypes of highly exhausted myeloid cells with low
HLA-DR expression and elevated VEGF and CAIX expressions
(MC2), confirming their roles in immune suppression. Hence, in
developing combination therapy that targets both T-cell rejuve-
nation and macrophage depletion58, e.g., through CSF1R
inhibitors59 combining with ICB therapy, it may be necessary to
identify the right target patients based on the composition of their
myeloid infiltration as these inhibitors may lack the specificity to
differentiate between protumor and antitumor myeloid cell sub-
sets. In addition, repolarizing myeloid cells within TME to sustain
or restore their tumoricidal activities through engaging pathogen
recognition receptors (PRRs)60 or agonistic anti-CD40 antibody61

could be a promising combination therapeutic strategy to
improve clinical response to ICI treatments for patients with this
archetype of cold TME.

Other than TMEs enriched with exhausted myeloid cells, our
results indicated the existence of another distinct immune cold
TME archetype derived primarily from nonresponders (C1).
TMEs of this archetype did not show strong infiltration of
myeloid cells but were characterized with enrichment of tumor
cells with high expression of hypoxia signaling molecule CAIX.
The hypoxic condition of tumor regions is typically arisen from
increased oxygen consumption by rapidly proliferating tumor
cells in combination with inadequate oxygen supply due to
abnormal tumor angiogenesis62. Hypoxia-driven mechanisms
allow tumor cells to continue to survive and proliferate in the
hypoxic TME, while creating an inhospitable environment for
immune cells through promoting apoptosis of T lymphocytes63

and DCs64, preventing effector T-cells activation65 and their
homing to the TME63, and promoting immune-suppressive
stromal cells differentiation66, leading to tumor resistance to
immunotherapy. Therefore, hypoxia may be exploited as a
potential biomarker to identify this type of nonresponders, for
whom strategies that combine methods to overcome hypoxia in
cancer, including hypxia-activated prodrugs (HAPs)67, inhibition
of HIF signaling or its downstream pathways68, or supplemental
oxygenation66,69 with immunotherapy may be explored.

The limitations of this study include the small size of the
cohort and retrospective design. Nevertheless, our analysis has
revealed highly heterogeneous multicellular features and their
spatial interaction within a histological context of tumor TME,

and confirmed that many of these features are associated with the
clinical benefit of immunotherapy. Our results thus provide the
basis for future studies on multicellular structures based on
spatially resolved single-cell data for an in-depth characterization
of the tumor microenvironment, from which better methods to
identify the right patients for different immunotherapy strategies
can be derived. Moreover, our results further indicate that such
knowledge is highly translatable, and can be exploited in multiple
applications ranging from guiding the design of traditional bulk
molecular tests for better patient segregation results despite their
limitations in both spatial and single-cell resolutions, or identi-
fication of targets for the development of novel therapies.

Data availability
Raw IMC images and processed data, including source data for the figures, are deposited
in Zenodo with the identifier https://doi.org/10.5281/zenodo.683816970. Previously
published melanoma RNA-seq datasets reanalyzed here are referenced to and available
accordingly (PUCH (n= 55)26, Riaz17 (n= 51)29, Gide19 (n= 50)30, Liu19 (n= 54)31).
All other data are available from the corresponding author on reasonable request.

Code availability
Analysis codes required to reproduce the results are available in Zenodo with the
identifier https://doi.org/10.5281/zenodo.683816970.
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