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Abstract

Background Lyme disease is a tick-borne illness that causes an estimated 476,000 infec-

tions annually in the United States. New diagnostic tests are urgently needed, as existing

antibody-based assays lack sufficient sensitivity and specificity.

Methods Here we perform transcriptome profiling by RNA sequencing (RNA-Seq), targeted

RNA-Seq, and/or machine learning-based classification of 263 peripheral blood mononuclear

cell samples from 218 subjects, including 94 early Lyme disease patients, 48 uninfected

control subjects, and 57 patients with other infections (influenza, bacteremia, or tubercu-

losis). Differentially expressed genes among the 25,278 in the reference database are

selected based on ≥1.5-fold change, ≤0.05 p value, and ≤0.001 false-discovery rate cutoffs.

After gene selection using a k-nearest neighbor algorithm, the comparative performance of

ten different classifier models is evaluated using machine learning.

Results We identify a 31-gene Lyme disease classifier (LDC) panel that can discriminate

between early Lyme patients and controls, with 23 genes (74.2%) that have previously been

described in association with clinical investigations of Lyme disease patients or in vitro cell

culture and rodent studies of Borrelia burgdorferi infection. Evaluation of the LDC using an

independent test set of samples from 63 subjects yields an overall sensitivity of 90.0%,

specificity of 100%, and accuracy of 95.2%. The LDC test is positive in 85.7% of seronegative

patients and found to persist for ≥3 weeks in 9 of 12 (75%) patients.

Conclusions These results highlight the potential clinical utility of a gene expression clas-

sifier for diagnosis of early Lyme disease, including in patients negative by conventional

serologic testing.
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Plain language summary
Lyme disease is a bacterial infection

spread by ticks and there are nearly

half a million cases a year in the

United States. However, the disease

is difficult to diagnose and existing

laboratory tests have limited accu-

racy. Here, we develop a new genetic

test, described as a Lyme disease

classifier (LDC), for diagnosing early

Lyme disease from blood samples by

assessing the patient’s response to

the infection. We find that the LDC

can identify early Lyme disease

patients (those presenting with

symptoms within weeks of a tick

bite) accurately, even before stan-

dard laboratory tests turn positive. In

the future, the LDC may be clinically

useful as a test for Lyme disease to

diagnose patients earlier in the

course of their illness, thus guiding

more timely and effective treatment

for the infection.
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Lyme disease is a systemic tick-borne infection caused by
Borrelia burgdorferi sensu lato and the most common
vector-borne disease in the United States1. Lyme disease can

cause arthritis, facial palsy, neuroborreliosis (neurological disease
including meningitis, radiculopathy, and encephalitis), and even
myocarditis resulting in sudden death2. Most patients treated
with appropriate antibiotics recover rapidly and completely, but
5–15% of patients develop persistent or recurring symptoms.
When prolonged and associated with functional disability,
patients are considered to have post-treatment Lyme disease
syndrome (PTLDS)3,4. The failure to diagnose and treat Lyme
disease in a timely fashion results in higher morbidity and pro-
tracted recovery times5.

Diagnosis of early Lyme disease is challenging6. Clinical
manifestations can be highly variable, presenting as non-specific
“flu-like” symptoms, and a characteristic bullseye erythema
migrans (EM) rash is seen only 60–70% of the time7. Available
FDA-approved serologic assays, including two-tier antibody
testing recommended by the CDC for diagnosis, are negative in
up to 40% of early Lyme patients8–10. Nucleic acid testing is
hindered by low titers of B. burgdorferi in the blood during acute
infection, with only 20–62% reported sensitivity of detection11,12.

The advent of the genomics era has spurred the development of
diagnostic tests based on transcriptome (“RNA-Seq”) analyses of
the human host response13. Classification by gene expression
profiling has been useful in the identification of various infec-
tions, including Staphylococcal bacteremia14, active versus latent
tuberculosis15, influenza16,17, and COVID-1918,19. Transcriptome
profiling of peripheral blood mononuclear cells (PBMCs)20 or
EM skin lesions21 from patients with early Lyme disease has
demonstrated pronounced inflammatory responses predominated
by interferon signaling. Machine learning (ML)-based analyses of
RNA-Seq data have been used for cancer classification22, but to
date have not yet been applied for infectious disease diagnosis.
Here we sought to leverage iterative ML analyses of global and
targeted RNA-Seq data to define a panel of differentially
expressed genes (DEGs) to distinguish Lyme disease from non-
Lyme controls. This panel, referred to as a Lyme disease classifier
(LDC), consisted of 31 genes and was able to diagnose Lyme
disease with >95% accuracy, including in >85% of Lyme ser-
onegative patients.

Methods
Patient information. Patient enrollment, chart review, collection
of clinical samples, and analysis of clinical samples by tran-
scriptomic profiling or targeted RNA sequencing were done
under protocols approved by the Institutional Review Boards of
Johns Hopkins University (JHU) (JHU IRB # NA_00011170) and
the University of California, San Francisco (UCSF IRB #
17–241124211). Written informed consent was obtained from all
JHU Lyme disease and uninfected control patients for enrollment
into the study. No consents were obtained from other, non-JHU
patients since only remnant clinical samples from these patients
were used, and the samples were analyzed under protocols
approved by the UCSF IRB as part of a “no subject contact”
biobanking study with waiver of consent (UCSF IRB #17–2411).

All 94 Lyme disease subjects included in this study presented
with a physician documented EM of ≥5 cm and either concurrent
flu-like symptoms that included at least one of the following:
fever, chills, fatigue, headache, and/or new muscle or joint pains
or dissemination of the EM rash to multiple skin locations.
Controls (n= 26) were enrolled from the same physician practice
as cases. Two-tier serological Lyme disease testing was performed
on clinical Lyme patients by a clinical reference laboratory (Quest
Diagnostics) at the first visit and at 3 weeks, following a standard

3-week course of doxycycline treatment. Patients found to be
Lyme seropositive at the first visit did not get repeat testing.
Seropositivity was assessed according to established CDC
criteria23, including the requirement that patients have had
symptoms for less than or equal to 30 days for Lyme diagnosis by
positive ELISA and IgM testing. All controls were required to
have a negative Lyme serologic test and no clinical history of
Lyme disease to be enrolled in the study. All Lyme disease
patients and controls were collected in Maryland, USA, an area
highly endemic for Lyme disease.

PBMC samples from 57 patients diagnosed with other
infections were collected at the UCSF, and 22 controls
(asymptomatic blood donors) were collected at the Blood Systems
Research Institute in San Francisco, California. Patients with
other infections were diagnosed with either bacteremia (n= 21),
caused by Enterococcus faecium, Escherichia coli, Klebsiella
pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis,
or Streptococcus pneumoniae by standard plate culture, or
influenza (n= 36) by positive RT-PCR testing (Luminex NxTAG
Respiratory Pathogen Panel). PBMC samples from 19 adults, 9
patients diagnosed with tuberculosis using an interferon-gamma
release assay (Oxford Immunotec T-SPOT.TB), and 10 unin-
fected controls, were collected at the British Columbia Centre for
Disease Control in Vancouver, Canada.

PBMCs were isolated from freshly collected whole blood in
EDTA tubes (kept at 4 °C for <24 h) using Ficoll (Ficoll-Paque
Plus, GE Healthcare) and total RNA was extracted from 107

PBMCs using TRIzol reagent (Life Technologies).

Transcriptome sequencing. Messenger RNA was isolated with
the Oligotex mRNA mini kit (Qiagen). The Scriptseq RNA-Seq
library preparation kit (Epicentre) was used to generate the RNA-
Seq libraries according to the manufacturer’s protocol. Libraries
were sequenced as 100 bp paired-end reads on a HiSeq 2000
instrument (Illumina).

Samples were processed in two batches (Fig. 1). Set 1 corresponds
to samples from 28 Lyme disease patients and 13 matched control
samples as previously described20. Set 2 corresponds to samples
from 13 new Lyme disease and 6 matched control samples prepared
and sequenced alongside samples from 6 influenza and 6
bacteremia patients. One sample was not included in the pooled
analysis due to insufficient read counts.

Transcriptome RNA-Seq data analyses. Paired-end reads were
mapped to the human genome (hg19), followed by annotation of
exons and calculation of FPKM (fragments per kilobase of exon
per million fragments mapped) values for all 25,278 expressed
genes with version 2 of the TopHat/Cufflinks pipeline24. Differ-
ential expression of genes was calculated using the variance
modeling at the observational level transformation25, which
applies precision weights to the matrix count, followed by linear
modeling with the Limma package. Genes were considered to be
differentially expressed when the change was ≥1.5-fold, the
p value ≤ 0.05, and the adjusted p value (or false-discovery
rate, FDR) was ≤0.00126.

Targeted RNA sequencing. Quantitative analysis of a custom
panel of transcripts of interest was performed using a targeted
RNA enrichment sequencing approach that incorporated an
anchored multiplex PCR technique. PBMC samples (~1 million
cells) were extracted using Zymo DirectZol RNA Miniprep Kit
with on-column DNase following the manufacturer’s instruc-
tions. Reverse transcription was performed using the Illumina
TruSeq Targeted RNA Expression Kit on 50 ng of RNA according
to the manufacturer’s instructions. A custom panel of
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oligoucleotides representing the genes of interest was designed
and ordered using the Illumina DesignStudio platform. This pool
of oligonucleotides, each attached to a small RNA sequencing
primer (smRNA) binding site, was used to hybridize, extend, and
ligate the second strand of cDNA from targeted genes of interest.
Thirty-five cycles of amplification were then performed using
primers with a complementary smRNA sequence. The resulting
libraries were sequenced on an Illumina MiSeq to a depth of
~2500 reads per sample per gene. Expression counts per sample
per gene were calculated on the instrument using MiSeq reporter

targeted RNA workflow software (revision C). Briefly, following
demultiplexing and FASTQ file generation, reads from each
sample were normalized in R and then aligned locally against
references corresponding to targeted regions of interest using a
banded Smith–Waterman algorithm27.

Machine learning. The k-nearest neighbor classification with leave-
one-out cross-validation algorithm (KNNXV)8, as implemented on
Genepattern28, was used on the set of DEGs identified by RNA-Seq-

Transcriptome set 1
(n=41 samples, 25,278 genes)

Transcriptome set 2
(n=31 samples, 25,278 genes)

TREx runs 1 and 2
(n=90 samples, 172 genes)

Training set
(n=137 samples from 122 subjects)

44 Lyme seropositive 93 controls

Best-performing gene panel 
and ML algorithm (31 genes)

10 early Lyme seropositive
 6 late Lyme seropositive

18 controls28 Lyme seropositive 13 controls

Test set
(n=63 samples from 63 subjects)

Lyme seropositive at 3 weeks (n=17 samples)
and 6-month (n=10 samples) post-diagnosis 

TREx runs 1 and 2
(n=90 samples, 86 genes)

Welch’s t-test
(p<0.05)

10X cross-
validation

machine learning (ML)
based gene pruning

with comparison of 10
ML methods

10 Lyme seropositive, 3 Lyme seronegative

43 controls38 Lyme seropositive
9 Lyme seronegative

9 Lyme seronegative
samples excluded from

the training set

+4 housekeeping genes

14 Lyme seronegative

inclusion of 39 samples from
transcriptome analyses

and 51 additional samples

inclusion of 5 samples
from transcriptome
analyses and 51

additional samples

Independently
collected samples

(n=63 samples from 63 subjects)

27 samples from transcriptome
analyses not processed further due to

insufficient remnant material

33 controls

TREx runs 3 and 4
(n=63 samples, 86 genes)

TREx runs 3 and 4
(n=56 samples, 86 genes)

TEST SET (n=63)TRAINING SET (n=137)

shared top
50 genes

KNNXV set 1
(58 genes)

KNNXV set 2
(60 genes)

Fig. 1 Flowchart of the approach used to develop and validate a 31-gene Lyme disease classifier panel for identification of early Lyme disease. DEGs
differentially expressed genes, KNNXV k-nearest neighbor cross-validation, TREx targeted RNA expression sequencing.
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based transcriptome profiling, using a k of 3, signal-to-noise ratio
feature selection, Euclidean distance, and by iteratively decreasing
the number of features until reaching maximum accuracy.

Class prediction performance using receiver-operating char-
acteristic (ROC) metric on targeted RNA sequencing read count
results was tested using the glmnet29 and caret30 packages in R for
ten different ML methods at default parameters: classification and
regression trees (“rpart” method), generalized linear models
(“glmnet” method), linear discriminant analysis (“lda” method),
k-nearest neighbor (“knn” method), random forest (“rf” method),
eXtreme Gradient Boosting (“xgbTree” method), neural networks
(“nnet” method), linear and radial support vector machine
(“svmLinear” and “svmRadial” methods), and nearest shrunken
centroid (“pam”method). Subsequent feature selection and fitting
of the glmnet or generalized linear models were performed using
10-fold cross-validation with regularization using lasso (least
absolute shrinkage and selection operator) penalty and lambda
(λ) parameter. The value of lambda that provided the minimum
mean cross-validated error was used to determine the optimal set
of genes.

Statistical methods. The performance of the classifier was eval-
uated with the use of ROC curves, calculation of area under the
curve (AUC)31, and estimates of sensitivity, specificity, positive
predictive value, and negative predictive value. A Mann–Whitney
nonparametric test was used for the analysis of continuous
variables, and Fisher’s exact test was used for categorical variables.
All confidence intervals were reported as two-sided binomial 95%
confidence intervals. Statistical analysis was performed, and plots
were generated using R software, version 4.0.3 (R Project for
Statistical Computing).

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
The study comprised a total of 263 samples from 218 subjects
(Table 1 and Supplementary Data 1). The 218 subjects included
94 Lyme disease patients, 66 infected “non-Lyme” controls with
influenza (n= 36), tuberculosis (n= 9), and other bacteremia
(n= 21), and 58 uninfected asymptomatic controls. All Lyme
patients, including 61 seropositive and 33 seronegative by clinical
two-tiered antibody testing, had documented EM rash and his-
tory of tick exposure at the time of presentation and were enrolled
in the “Study of Lyme disease Immunology and Clinical Events”
study at the Johns Hopkins Medical Institute. Control subjects
categorized as uninfected asymptomatic were from regions with
an incidence of Lyme disease of ≤0.2% (San Francisco, California
and Vancouver, British Columbia) or had a negative Lyme ser-
ology test and no clinical history of tick-borne disease. No sig-
nificant differences in age or sex were noted between Lyme and
control subjects.

Transcriptome profiling using RNA-Seq was initially per-
formed on PBMC samples from 72 subjects, including 41 Lyme
patients and 31 controls (Fig. 1). Included were 41 samples from
28 Lyme patients and 13 uninfected controls (set 1), as previously
reported20. For the remaining 31 samples from 13 Lyme patients
and 18 controls (set 2), a mean of 30 (±17 standard deviation)
million reads was generated per sample (Supplementary Fig. 1).
No batch effect based on the geographic site of the collection was
observed (Supplementary Fig. 2). DEGs were selected separately
for each set of PBMC samples using the KNNXV ML feature
selection algorithm32. The best accuracy for sets 1 and 2 was
achieved using a panel of 58 and 60 genes, respectively.

These genes, along with an additional top 50 DEGs that were
ranked according to adjusted p value/FDR in order of decreasing
significance and did not overlap with the two panels, were then
combined into a 172-gene targeted RNA sequencing panel
(Supplementary Data 2). The 172-gene panel was used to test
90 samples (38 Lyme seropositive, 9 Lyme seronegative, and 43
controls) over 2 targeted RNA expression sequencing runs (TREx,
“targeted RNA expression” runs 1 and 2). A subset of 86 genes
out of 172 (50%) with the maximum differences in gene
expression between Lyme and “non-Lyme” control samples
across the first 2 TREx runs was identified using Welch’s t-test at
a p < 0.05 cutoff. The smaller 86-gene panel was then used to
analyze an additional 119 samples in TREx runs 3 and 4.

Next, ML-based methods were applied to select from the list of
86 candidate genes and determine the optimal combination of
genes and classification model for the LDC. We randomly par-
titioned samples from TREx runs 1–4 into a training set or test
set. After ensuring that the training set consisted entirely of
samples from laboratory-confirmed (“Lyme seropositive”) Lyme
disease patients and that no prior analyses had been performed
on the independent test set, 137 and 63 samples were assigned to
the training and test sets, respectively, at an approximately 2:1
(68.5%:31.5%) ratio. The training set was used to evaluate ten
different ML algorithms for feature and model selection while
varying the number of features (genes) from 1 to 86 for

Table 1 Performance characteristics of the 31-gene Lyme
disease classifier.

Study subjects No. of samples
tested

No. classified as
Lyme (%)

Training seta 137
Serologically confirmed Lyme
diseaseb

44 39 (89)

Seropositive at time of
presentation

26 23 (88)

Seropositive at 3 weeks 18 16 (89)
Controls 93 12 (13)

Uninfected 57 9 (16)
Bacteremia 9 2 (22)
Influenza 21 1 (5)
Tuberculosis 6 0 (0)

Test setc 63
Serologically confirmed Lyme
diseaseb

16 15 (94)

Seropositive at time of
presentation (early
seroconversion)

10 10 (100)

Seropositive at 3 weeks (late
seroconversion)

6 5 (83)

Seronegative Lyme disease 14 12 (86)
Controls 37 0 (0)

Uninfected 15 0 (0)
Bacteremia 6 0 (0)
Influenza 9 0 (0)
Tuberculosis 3 0 (0)

Longitudinally collected samples
Lyme disease 0 week 16 14 (88)
Lyme disease 3 weeks post
diagnosis

17 13 (76)

Lyme disease 6 months post
diagnosis

10 3 (30)

aSensitivity 95.5% [84.1–100%), specificity 86.0% (77.4–98.98%), accuracy 87.6%
(80.9–92.6%), area under the curve (AUC) 97.2% (95.0–99.3%).
bPositive by two-tiered Lyme antibody testing.
cSensitivity 90.0% (83.3–100%), specificity 100% (90.0–100%), accuracy 95.2%
(86.7–99.0%), AUC 98.2% (95.7–100%).
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discriminating Lyme from non-Lyme patients using a 10-fold
cross-validation scheme (Supplementary Fig. 3). A generalized
linear model (“glmnet”) was found to provide the highest AUC-
ROC statistic (97.2%) with the AUC-ROC of other methods
varying from 70 to 93%. The optimal cutoff as determined by
Youden’s J statistic (Youden, 1950) was 0.3. The highest AUC and
lowest rate of misclassification error were found with a panel of
31 genes (Fig. 2A).

Based on the expression of the 31 genes in the finalized LDC
panel, a disease score ranging from 0 to 1 was calculated, with a
score >0.3 classified as Lyme and <0.3 as “non-Lyme”. Compared
to two-tier Lyme antibody testing as a reference gold standard,
training set sensitivity, specificity, and AUC-ROC using this
scoring metric were 95.5% (95% CI 84.1–100%), 86.0% (95% CI
77.4–98.9%), and 97.2 (95% CI 95.0–99.3%), respectively (Fig. 2B
and Table 1). Five of 44 (11.4%) Lyme samples and 12 of 93
controls (12.9%) in the training set were misclassified (Fig. 2C).
LDC results between subjects who were seropositive at pre-
sentation had comparable sensitivity to those who were ser-
opositive after 3 weeks (Table 1, 88% versus 89%, respectively).

For the independent test set of 63 samples, the LDC classifier
had an overall accuracy of 95.2% (95% CI 86.7–99.0%), with a
sensitivity of 90% (95% CI 83.3–100%) and specificity of 100%
(95% CI 90.9–100%) relative to two-tier Lyme antibody testing
and based on misclassification of 1 Lyme seropositive and 2 Lyme
seronegative samples (Fig. 2D, E). LDC results between subjects
seropositive at presentation had higher sensitivity than those who
were seropositive after 3 weeks (Table 1, 100% versus 83%,
respectively). LDC sensitivities for Lyme seropositive and ser-
onegative samples were 93.7% and 85.7%, respectively (Table 1).

The 31 identified genes on the panel were related to immune
cell signaling (n= 7), cell division (n= 6), apoptosis (n= 3), cell
growth and differentiation (n= 3), cell trafficking (n= 2), B.
burgdorferi receptor-binding (n= 2), and 8 other functions
(n= 8) (Fig. 2F). Many genes (23 of 31, 74.2%) had previously
been described in association with cell culture (n= 20), murine
(n= 2), and Lyme disease patient studies (n= 3) of B. burgdorferi
infection (Supplementary Data 3).

To evaluate for the persistence of the LDC gene signature, we
analyzed available serially collected samples from a subset of 18
clinical Lyme patients at 0 week (time of initial clinical pre-
sentation with EM rash) and 3 weeks (following completion of a
3-week course of doxycycline treatment) (Fig. 3). Among four
Lyme seronegative cases, three (75%) had a discordant result,
with negative Lyme serology but a positive LDC score of >0.3
(Fig. 3, P2–P4). Two of these three cases seroconverted at 3 weeks
by IgM testing (Fig. 3, P2 and P4) but did not formally fulfill CDC
criteria since the duration of illness from onset of symptoms was
>30 days (although would be considered seropositive using a
6-week cutoff as suggested by others)33, while the remaining
seronegative/LDC-positive patient (Fig. 3, P3) was ELISA positive
and had one and two bands for IgM and IgG, respectively, at
3 weeks, appeared close to seroconverting, Among the 4 cases
with late seroconversion 3 weeks after the presentation (Fig. 3,
P5–P8), 3 of 4 (Fig. 3A, P6–P8) were positive by LDC testing at
time 0 week, while P5 was negative at 0 week but positive at
3 weeks. Ten of 13 cases (76.9%) that were LDC positive at time 0
remained persistently positive at 3 weeks (Fig. 3, P2, P7, P8, P9,
P10, P11, P15, P16, P17, and P18), while the remaining 3 (Fig. 3,
P6, P12, and P14) showed a decline in the LDC score below the
0.3 threshold.

Samples from ten patients collected at 3 weeks and/or
6 months after the clinical presentation of Lyme disease were
available and, based on LDC testing, could be assigned into two
subgroups with different longitudinal trajectories (Fig. 4). One
subgroup (Fig. 4, I) contained three patients with positive LDC

scores at 0 week (Fig. 4, P2, P12, and P14) that declined at
3 weeks but rebounded by 6 months. P12 and P14 had persistent
symptoms at 6 and 12 months, respectively, but without the
functional disability to meet clinical criteria for PTLDS3,4. The
other subgroup (Fig. 4, II) contained seven patients who had
gradual declines in LDC score from 0 week to 6 months. Among
these seven patients, two were symptomatic at 6 months but
returned to usual state of health at 1 year (Fig. 4, P13 and P16),
while one Lyme seronegative patient diagnosed with clinical
PTLDS was negative by LDC testing at all three time points
(Fig. 4, P1).

Unfortunately, 6-month samples were not available for two
Lyme disease patients who met clinical criteria for PTLDS and
had a persistently positive LDC signature at 3 weeks (Fig. 3B, P4
and P9).

Discussion
Here we applied transcriptome profiling, targeted RNA-Seq, and
iterative ML-based analyses to construct a 31-gene LDC with 90%
sensitivity and 100% specificity in identifying clinical Lyme
patients at the time of initial presentation. A condensed diag-
nostic panel of 31 multiplexed gene targets makes it amenable to
implementation on commercial multiplexed nucleic acid testing
instruments34 or on targeted RNA next-generation sequencing
platforms, with the latter being used in 2020–2021 for clinical
SARS coronavirus 2 (SARS-CoV-2) testing under FDA Emer-
gency Use Authorization35. We also found that 77% of Lyme
disease patients with a positive LDC at initial presentation
remained positive for at least 3 weeks, consistent with earlier
work on the Lyme disease transcriptome20. This observation
indicates that an LDC classifier may be useful for Lyme disease
diagnosis during the approximately 3-week “window period”
prior to the generation of detectable antibody levels by two-tiered
testing23. Taken together, the LDC classifier meets four of the five
characteristics of an “ideal” Lyme disease diagnostic, as described
by Schutzer et al.8, including high sensitivity in early infection,
high specificity, ≤24 h turnaround time (if implemented on a
multiplexed nucleic acid testing platform), and testing from easily
collected samples such as blood. Thus, the LDC classifier may be
useful as a complementary diagnostic to serologic testing, which
exhibits high sensitivity (95–100%) in later stages of Lyme disease
(the sole remaining characteristic out of 5), but inadequate sen-
sitivity (29–77%) in early Lyme10,36.

As expected, most of the genes (74%, 23 of 31) in the LDC
classifier panel had previously been reported as related to Lyme
disease based on in vitro and in vivo investigations. However, the
LDC would have been near impossible to construct a priori given
that selection of an optimal set of genes would have been difficult
and that 8 of the 31 (25.8%) genes had not been previously
described in the literature. Notably, only 7 (22.5%) genes in the
panel were associated with immune cell signaling, of which 3
(9.7%) were related to interferon signaling, in contrast with prior
reports demonstrating strong immune and inflammatory
responses in early Lyme disease20,21,37,38. Unlike these previous
studies, here we incorporated controls from patients with acute
febrile infections from viruses (influenza) or other bacteria,
potentially explaining why only a minority of LDC genes were
associated with immune cell signaling. Instead, many of the
identified genes in the LDC were related to cell division and
proliferation, autophagy, and apoptosis. It has previously been
shown that PBMCs from patients with Lyme disease exhibit
proliferation in vitro to B. burgdorferi infection39. B. burgdorferi
has also been shown to induce autophagy in infected PBMCs
resulting in the production of cytokines such as interleukin-1β40.
In addition, phagocytosis of B. burgdorferi induces apoptosis in
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human monocytes41and also in neuronal cells of the dorsal root
ganglia42. Genes associated with these signaling pathways may be
more specific to Lyme disease and thus more useful as diagnostic
biomarkers than those focused solely on immune and inflam-
matory responses. Further research on the genes identified in the
LDC classifier to investigate their involvement in Borrelia
pathogenesis is warranted in future studies.

Prior studies have used gene expression to profile Lyme disease
patients from PBMCs20,37,38, although our study incorporates
larger numbers of Lyme disease cases and controls. The three
previously reported studies present similar findings showing an
increase in immune and inflammatory response genes, particu-
larly those interferon-regulated, in Lyme disease cases relative to
uninfected controls. The study by Clarke, et al.37 also reported the

development of a diagnostic classifier of 20 genes for early Lyme
disease, but the performance was not evaluated with an inde-
pendent test set. The study by Petzke, et al.38 reported two kinds
of classifiers for discriminating between Lyme disease cases and
controls and between Lyme disease cases that resolve after
treatment and those that progress to having persistent symptoms.
All these classifiers are limited by the absence of controls from
other viral and bacterial infections to exclude overlapping
immune and inflammatory response genes. In fact, only two
genes in our LDC classifier, TYMS, a DNA replication and repair
gene, and GRN, a cell proliferation gene, are shared with these
prior classifiers37,38. Other “omics” technologies have been used
to develop classifiers for Lyme disease. For example, a previous
study reported a metabolomic signature with 88% sensitivity and
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Fig. 3 Longitudinal testing of clinical Lyme patients using the Lyme disease classifier. A comparison between the LDC score and results from two-tiered
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95% specificity for the identification of seropositive Lyme43,
although the controls in that study were different (infectious
mononucleosis, fibromyalgia, severe periodontitis, and syphilis).

One limitation of the current study is the absence of controls
from other, less common tick-borne (e.g., babesiosis, anaplas-
mosis, ehrlichiosis, rickettsiosis, and Powassan virus infection)
and spirochetal (e.g., syphilis, leptospirosis) infections. However,
nearly all of these other tick-borne and spirochetal infections can
be diagnosed by conventional microbiological molecular and/or
serologic testing44. In addition, we previously reported more
overlap in the transcriptomic signature of Lyme disease with viral
(influenza) infection than with bacterial infection20. This suggests
that the human host response to Lyme disease is likely different
from other tick-borne and spirochetal infections. The finding of
23 of 31 genes in the classifier being related to Borrelia infection
also supports the contention that the LDC is specific to Lyme
disease. Another limitation is the small size of longitudinally
collected samples at 3 weeks (n= 17) and 6 months (n= 10).
Here we focused on a classifier for early Lyme disease based on
host gene expression. Further investigation will be needed to
investigate its potential role in the evaluation of Lyme disease
patients with chronic symptoms and/or PTLDS. Finally, it can be
challenging to develop and clinically validate an RNA expression-
based assay for 31 genes simultaneously, However, it may be
feasible to decrease the number of genes on the panel without
unduly sacrificing performance (Fig. 2A), and FDA authorization

of targeted omics-based tests for COVID-1935 suggests a potential
regulatory pathway for the deployment of a multiplexed Lyme
diagnostic in the near future.

As ~86% of samples from patients persistently seronegative at
0 and 3 weeks were correctly classified as Lyme, our LDC clas-
sifier may allow more accurate stratification of presumptive Lyme
patients testing negative by serology. In the absence of “gold-
standard” testing, it cannot be proven that these seronegative
patients were infected by B. burgdorferi. Nevertheless, doc-
umentation of EM rash in all Lyme patients in this study, even in
those who tested seronegative, concurrent “flu-like” symptoms,
and enrollment during tick season in a region highly endemic for
Lyme disease suggest that this may indeed be the case. Evidence
in support of infection is also provided by the finding that three of
the four LDC-positive, seronegative patients exhibited borderline
serologic responses just outside of formal CDC criteria for ser-
opositivity. Conversely, the remaining seronegative Lyme patient,
who was also negative by LDC testing (Figs. 3 and 4, P1), appears
to be a likely bona fide Lyme-negative case, despite being inci-
dentally diagnosed with PTLDS. More accurate discrimination of
Lyme patients using the LDC may be clinically useful by
prompting diagnostic workup for a different tick-borne disease or
other acute illness. The identification of a subgroup of three
patients (out of ten) with a persistently positive LDC signature at
6 months, two of whom had ≥6 months of persistent symptoms,
warrants further study on the potential utility of the LDC for
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diagnosis and monitoring of Lyme disease patients with chronic
symptoms.

Data availability
All data in this study were submitted to the National Institutes of Health (NIH) database
of Genotypes and Phenotypes (dbGaP) (read count tables, raw FASTQ files for
transcriptome sets 1 and 2 accession number phs002794.v1.p1). Public summary
phenotype data are available at the dbGaP study report web page: https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002793.v1.p1. Individual-level data,
including transcriptomic sequencing data, are available for download by authorized
investigators via https://view.ncbi.nlm.nih.gov/dbgap-controlled. The sequencing data
are only available via restricted access as patients did not consent for the public release of
their data and to protect patient confidentiality. Metadata for the 263 clinical samples
included in this study are provided in Supplementary Data 1. Source data used to
generate the main figures are provided in Supplementary Data 4.

Code availability
Code used to reproduce the ML analysis for LDC model prediction and feature selection
has been deposited in a Zenodo repository (doi: 10.5281/zenodo.5987532)45.
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