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Estimating heritability of glycaemic response to
metformin using nationwide electronic health
records and population-sized pedigree
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Abstract

Background Variability of response to medication is a well-known phenomenon, determined
by both environmental and genetic factors. Understanding the heritable component of the
response to medication is of great interest but challenging due to several reasons, including
small study cohorts and computational limitations.

Methods Here, we study the heritability of variation in the glycaemic response to metformin,
first-line therapeutic agent for type 2 diabetes (T2D), by leveraging 18 years of electronic
health records (EHR) data from Israel's largest healthcare service provider, consisting of over
five million patients of diverse ethnicities and socio-economic background. Our cohort con-
sists of 80,788 T2D patients treated with metformin, with an accumulated number of
1,611,591 HbATC measurements and 4,581,097 metformin prescriptions. We estimate the
explained variance of glycated hemoglobin (HbA1c%) reduction due to inheritance by con-
structing a six-generation population-size pedigree from national registries and linking it to
medical health records.

Results Using Linear Mixed Model-based framework, a common-practice method for her-
itability estimation, we calculate a heritability measure of h* = 12.6% (95% Cl, 6.1% —19.1%)
for absolute reduction of HbA1c% after metformin treatment in the entire cohort, h* = 21.0%
(95% ClI, 7.8%—34.4%) for males and h* =22.9% (95% Cl, 10.0%—35.7%) in females.
Results remain unchanged after adjusting for pre-treatment HbA1c%, and in proportional
reduction of HbA1c%.

Conclusions To the best of our knowledge, our work is the first to estimate heritability of
drug response using solely EHR data combining a pedigree-based kinship matrix. We
demonstrate that while response to metformin treatment has a heritable component, most of
the variation is likely due to other factors, further motivating non-genetic analyses aimed at
unraveling metformin’s action mechanism.

125 Amir Gavrieli"4®, Smadar Shilo"?3, Hagai Rossman'?, Nitzan Shalom Artzi'?,

Plain language summary
Individuals in a population might
respond differently to the same
medication and this phenomenon is
commonly attributed to either genes
or the environment. Here, we studied
the familial aspects of the response
to metformin, a medication used in
the treatment of type 2 diabetes. We
combined information from 18 years
of medical records identifying newly
treated patients with type 2 diabetes
with information about how the trait
was inherited within their families.
We calculated a metric that tells us
how well differences in people's
genes account for differences in their
traits, and demonstrate that although
the difference in response to met-
formin is in part explained by the
genes people with type 2 diabetes
inherit, most of it is not explained by
genes. This finding contributes to a
better understanding of differences in
metformin response and might help
inform treatment in future.
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increase diabetes prevalence in the general population

(WHO), currently estimated to afflict one in every 16
adults!. Type 2 diabetes (T2D), which accounts for ~90% of the
total diabetic population, is a major cause of morbidity and is
among the top ten mortality causes in adults®>.

Metformin is the first-line oral agent for lowering blood sugar
levels in T2D patients. Through inhibition of hepatic glucose
production it reduces intestinal glucose absorption, and improves
both glucose uptake and its utilization*. The significant role of
metformin in T2D management is particularly remarkable since
its mechanism is still not fully understood®~7.

Glycaemic response to metformin is varied across patients®”,
and remains unexplained by individual features. Some variation
can be accounted for by personal characteristics including sex,
age, and BMI, as well as features describing treatment strategies
such as dosage and adherence®. In addition, a small fraction of the
response variability is attributed to genetic variants, providing
motivation to further explore heritable variance in metformin
response’.

Medication response variations are widely agreed upon to be
determined by the interplay of environmental and genetic
factors!®11. The effect of heritable factors has been suggested as
early as 1908!2. This notion led to the development of pharma-
cogenomics, which investigates genetic variants that account for
differential drug responses and personal responses to
treatments!3.

Traditionally heritability estimates are deciphered through
twins and family studies, however, those are difficult to construct
in the context of medication response. Drug response data, same
diagnosis, and similar treatment are rarely available in multiple
family members!41>. Moreover, because close relatives often
share environment and not only genetics, such studies have dif-
ficulties in separating the genetic and environmental effects.

Other types of studies estimating the effect of genetic variability
in drug responses rely on small cohorts undergoing costly genetic
tests and use genetic relatedness estimation methods!¢-1°. Some
of these studies employ methods such as genome-wide complex
trait analysis, which requires a large cohort, ideally greater than
10,000, however, most such cohorts are limited in their size
resulting in estimates with low statistical power and do not
represent the true distribution of the populationZ0-21,

In studies bypassing genetic tests, such as family-linkage stu-
dies, information is highly sparse, and determining the response
to medication by genetic and environmental factors is computa-
tionally challenging. Epigenetics may also play a role in the
response to medication making the task even harder?2.

Metformin’s effect is routinely measured through glycaemic
control assessments using either fasting glucose or HbA1c%?23.
The latter is an indicator of blood sugar levels over the course of
three months24, making it more reliable than the former, which is
a snapshot of a single time point. Moreover, fasting glucose is
affected by the strictness of fasting prior to the blood tests, an
unrecorded measure, making fasting glucose more prone to
mistakes.

In this study, we used Electronic Health Records (EHRs) from
the Clalit Healthcare database, Israel’s largest healthcare service
provider?®. This population-size EHR provides a real-world view
of the internal variability in healthcare systems, where patients,
diagnoses, and treatment plans vary considerably. In general,
EHRs can contain medical information on millions of patients,
however, data are sparse and noisy, and not cross-sectional?®.
Combined with pedigree information from Israel’s national
registries this unique data allowed us to include the family
medical history of first-order relatives and extended family
members alike.

D uring the past three decades, there has been a twofold

Today, heritability estimation is typically performed using
genotyping-based methods such as LD Score Regression from
GWAS results?’. Such models consider a matrix of standardized
genotypes, estimating the heritability from the effects of the
genetic variates that are accounted for. An alternative method was
presented using Sparse Cholesky Factorization (Sci-LMM)
package?8, a statistical modeling framework for analyzing
population-size pedigrees. Sci-LMM replaces the genetic matrix
in a Linear Mixed Model (LMM:s)2? with a vector that is sampled
from the normal multi-dimensional distribution whose covar-
iance matrix is a kinship matrix. The kinship matrix, commonly
computed from genetic information, can be constructed from
pedigree relationships solely from EHR information, without
costly genetic testing. We estimated the heritability of absolute
HbA1c% reduction in response to metformin to be h* = 12.6%
(95% CI, 6.1-19.1%) for the entire cohort, h* = 21.0% (95% CI,
7.8-34.4%) for males and h* = 22.9% (95% CI, 10.0-35.7%) in
females of the total explained variability.

Methods

Data. We used EHRs of Clalit Health Services (Clalit), Israel’s
largest healthcare provider. Clalit’s data are heterogeneous in
terms of geography and socioeconomics, including more than five
million people (over half of Israel’s population) with longitudinal
measurements dating back to 2002. EHRs are reflective of the
members’ full clinical experience including diagnoses, lab test
results, and medication prescribed and dispensed. Patients’
information is combined with national registries to provide
demographics consisting of the date of birth, sex, parental
information, and county of birth, from which ethnicity is
inferred3?. The full-study protocol was approved by the Clalit
Helsinki Committee 0195-17-COM2, with exemption from
informed consent as the study, is observational and used de-
identified data.

Pedigree and kinship matrix construction. We obtained pedi-
gree information through demographics of past and present
patients as well as their parents, and then excluded cases where
parental relationships and sex contradicted (e.g., a female father).
We converted the entire pedigree to a directed graph using
NetworkX3!, where nodes and edges corresponded to individuals
and to parenthood respectively, and removed all edges of directed
cycles, as these are not feasible32.

Heritability estimates require a kinship matrix, also known as
an Additive Relationship Matrix (ARM)33, measuring the
proportion of identical alleles between pairs of individuals. We
approximated the ARM solely from pedigree information, under
the assumption that alleles distribute uniformly, meaning each
gene has an identical probability to be passed on>*. For every pair
of individuals and a unique shortest path between them through a
shared ancestor, we increased their similarity by 2~/ where [ is the
number of edges in the path (Supplementary Fig. la—c).

We decided against removing first-degree relatives in herit-
ability estimates. Although some studies suggest it reduces
estimation bias, we found it less relevant to our case®.

Identification of T2D patients. In Israel, T2D is diagnosed based
on plasma glucose criteria, in accordance with The American
Diabetes Association standard of care3¢. Meeting any of the fol-
lowing criteria is sufficient for T2D diagnosis: (1) random plasma
glucose =200 mg/dL; (2) HbA1c% =6.5%; (3) two separate test
samples of fasting plasma glucose =126 mg/dL following no
caloric intake for at least 8 h; (4) plasma glucose =200 mg/dL 2h
after oral glucose-tolerance test (OGTT).
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Note that although fasting glucose could be used in the
diagnosis of T2D, data is inaccurate as some non-fasting patients
take the test as well. Also, OGTT tests are not performed regularly
in clinics, making us disregard the corresponding criterion.

Due to the nature of the Israeli healthcare system, it is a
possibility that an individual was diagnosed with diabetes based
on tests unavailable in our database (e.g., in hospital). Therefore,
in addition to identifying T2D patients through test results, we
made use of diagnoses data. Including all patients diagnosed with
T2D according to the appropriate International Classification of
Diseases, Ninth Revision (ICD-9) codes®’ (Supplementary Table 1
and Supplementary Fig. 2).

Cohort definition. Our cohort constitutes T2D patients treated
for diabetes with metformin only after a diabetes diagnosis. We
identified those from drug prescriptions with the fifth level
Anatomical Therapeutic Chemical (ATC)38 code of “A10BA02”.
We defined the first metformin prescription date for every patient
as index date, yielding a single unique date per individual by
which all other dates were measured.

We identified faulty metformin prescriptions consisting of
more than three pills per day, and removed information from
these prescriptions. We removed from our cohort individuals
where the first metformin prescription was faulty.

To establish glycaemic response to metformin we used HbAlc
% blood concentration before and after metformin treatment
initiation (Supplementary Fig. 1d). We defined baseline (pre-
treatment) HbA1c% as the latest test occurring 90 days prior to
14 days post index date. This interval was chosen in order to
ensure a balance between measurements being within a red blood
cell life cycle and metformin’s onset of action, which is within
2 weeks?. To ensure stability of results, we estimate heritability
on several baseline time intervals for the entire cohort
(Supplementary Table 2). We define the on-treatment HbAlc%
as the closest test to the index date that is at least 90 days from
both index date and baseline HbA1c% date, indicating hemoglo-
bin turning rate. We discarded on-treatment HbA1c% tests later
than 180 days from index date, as those are confounded by
unmeasured variables. We defined the study participation period
as the time from index date or baseline measurement date,
whichever preceded, until the on-treatment measurement date.

We ensured measuring the effect of metformin and eliminated
cases of initial non-adherence by further screening patients who
were treated throughout the entire study participation period#0.
We removed all patients who stopped metformin treatment
before on-treatment HbAlc% test or who started taking
metformin before being diagnosed with T2D, the majority of
which were prescribed metformin while already diagnosed as pre-
diabetic. We also exclude all patients who are prescribed any
other anti-diabetic medication (ATC level 2 code of ‘A10’) apart
from metformin to ensure the effect on HbAlc% levels can be
attributed solely to metformin.

We further removed all patients who were diagnosed with type
1 diabetes according to ICD-9 codes (Supplementary Table 3). In
addition, we excluded individuals with abnormal estimated
Glomerular Filtration Rate (eGFR) who should not be treated
according to medical guidelines*!. GFR is estimated using
creatinine blood tests and reflects renal clearance and total
clearance, which after oral administration of metformin decrease
approximately in proportion to it42 (Table 1).

Glycaemic response outcomes. We defined three phenotypes
commonly used in metformin pharmacogenetics studies for
measuring the response to metformin; absolute, proportional, and
adjusted reduction in HbA1c%!'6. These were induced from the

difference between the baseline and the on-treatment HbA1c%
tests. The absolute reduction was defined as the absolute differ-
ence between on-treatment and baseline HbA1c%, proportional
reduction was defined as the absolute reduction divided by the
baseline HbA1c%. We trained a linear model to predict absolute
reduction from pretreatment HbA1c% measurement, the number
of days between pretreatment and on-treatment HbA1c% mea-
surement dates and average metformin dose during the study (see
further explanation below). The adjusted reduction was defined as
the residuals from the linear model’s predicted phenotype to the
true absolute reduction values. Since Linear Mixed Models

assume  normal  distribution = we  performed  the
Kolmogorov-Smirnov goodness of fit test for all three
phenotypes#3-44,

Height outcome. Being that the heritability estimate of height is
well established and agreed upon in the literature; we used it as a
positive control to validate our methods and data. We gathered
height measurements recorded at adulthood (age =18 years). For
patients who had multiple measurements, we considered the
latest measurement only. We removed outlier measurements
where Z score>4.

Heritability estimation. We computed heritability with the Sci-
LMM Python package, which constructs and works with large-
scale relationships matrices and fits them to the corresponding
LMM within several hours. Our Identity By Descent (IBD) matrix
(an identity-by-descent relationships-based matrix) was the ARM
computed from the entire pedigree?8. We used Haseman-Elston
regression to compute the heritability measure h?, and we esti-
mate the standard error via the average information restricted
maximum likelihood (AI-REML) procedure*>4,

We constructed the following features used either as covariates
for our regression model or as means of subsampling the cohort:

1. Demographics:

Year of birth

Age at index date

Gender

BMLI: note that since is considered heritable we did not
use it as a covariate in our regression.

o O

2. Measurements’ metadata:

a. Baseline to index gap: number of days between baseline
date to index date

b. Index to on-treatment gap: number of days between
index date and on-treatment date

c. Baseline to on-treatment gap: number of months
between on-treatment date and baseline date. Note that
due to co-linearity with the two previous covariates, this
covariate was not in use.

d. Number of HbAlc% tests: the absolute number of
HbA1c% tests performed up until the on-treatment date

3. Lab test measurements:

a. Estimated glomerular filtration rate (eGFR): We used
MDRD GFR Equation:4” eGFR =
186 creatinine™!'>* x age™0? where value is multi-
plied by 0.742 for females.

b. Baseline HbAlc%

4. Treatment metadata:
a. Average dosage: weighted average of metformin doses

w;x p,/p; where w; is the number of pills per day
prescribed in prescription i, and p; is the number of pills
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Table 1 Inclusion exclusion criteria.

Inclusion

Exclusion

Type 2 diabetic treated with metformin only after diagnosis.

Baseline HbA1c% test exists 90 days prior to 30 days after first metformin
prescription

On-treatment HbA1c% test exists 90-180 days after first metformin
prescription

Abnormal estimated glomerular filtration rate (eGFR<30 mL/min/
1.73m32)
Treated for diabetes with non-metformin drugs (ATC2 is “A10")

Baseline HbA1c% and on-treatment HbA1c% tests <90 days apart

in prescription i.
accounted for.
Adherence: since adherence is not reported, we capture it
through four features representing the average number
of days on metformin in four equal consecutive time
intervals between index date and on-treatment date. We
assumed that all dispensed prescriptions were also
consumed by patients.

Only issued prescriptions were

In order to identify environmental variance, we computed the

explained variance from only the covariates. We trained a linear
regressor from covariates predicting absolute reduction. We had
then computed the Pearson’s correlation of predicted and true
reduction as well as the R* score.

Predicting outcome. We assessed the predictive potential family
history could give to treatments, we predicted responses to
metformin from both covariates and family information. We

C

onstructed family history features for each individual by com-

puting mean absolute reduction from relatives. We computed
four features considering either all relatives or only relatives from
the same gender as the individuals, and taking only first-degree
relatives or all available relatives. We predicted on-treatment
HbA1c% for the entire cohort with the above-mentioned cov-

a

riates, excluding adherence, as it is only available while on-

treatment. Predictions were performed using XGBoost regression
with 100-fold cross-validation and n_estimators=2048. We

C

omputed the mean squared error (MSE) on predicted outcome

for the entire cohort as well as for only individuals who have any
relatives within the cohort. We also predicted for these indivi-
duals the outcome using both covariates and family history
features.

Statistics and reproducibility. All statistics were performed using
Python 3.7 software. Statistical significance was determined by
mentioned unpaired tests using Scipy 1.3.1. Experiments are
reproducible with existing EHR records; however, this work was
performed on data from Clalit Health Services which is not
publicly available. Sample sizes are defined within the work.

Reporting summary. Further information on research design is

avaijlable in the Nature Research Reporting Summary linked to

this article.

Results

Cohort description. To estimate the heritability measure of
response to metformin we extracted 782,159 T2D patients from
the Clalit Healthcare EHR database (Fig. 1). Of these, we included
only patients who had at least two HbA1c% test measurements,
one before metformin treatment (baseline) and one after it (on-
treatment). We excluded subjects treated with non-metformin
diabetic drugs prior to the on-treatment date, and those treated
with metformin prior to T2D diagnosis, maintaining a total of
80,788 patients.

4

In total, our cohort was balanced between genders, with 49%
males. When comparing feature distribution between genders we
found they all differ significantly, with the exception of eGFR and
adherence on the second time interval (e.g., average ages were
59.90 for males and 61.65 for females) (Table 2). We see therefore
that although the two populations differ on every parameter, they
receive similar treatments. Since they are all T2D patients, our
cohort diverts from the general population by risk factors
characteristics. In addition to being older and having, an obese
BMI on average, patients had a baseline HbAlc% of 7.73% for
males and 7.34% for females, ~1% over diabetic threshold HbAlc
% value (6.5%). We identified that 33.7% T2D patients had at
least one first-degree relative diagnosed with T2D. These patients
had 1.88 first-degree relatives on average also diagnosed with
T2D.

Height heritability estimation. We first set out to validate our
framework through estimation of height heritability, as it is a
well-documented heritable measure®”. Such validation indicates
whether the constructed pedigree could be used for heritability
estimation, and whether Clalit’s EHR population is representative
of the general population. Our estimation took into account two
covariates, sex and year of birth, both of which are highly cor-
related with height regardless of heritable effects®0.

We extracted height measurements of 11,466,686 adults from
5,275162 families with the largest family consisting of 4,157,673
adults. A Kolmogorov-Smirnov test indicated that height
followed a normal distribution (Supplementary Table 4) with a
mean of 1.68 m and a standard deviation of 0.10 m (Table 3). We
estimated the heritability measure of the height to be h* = 80.0%
(95% CI 79.2-80.8%), a value that is consistent with the
literature®®, thus validating both our approach and our dataset.

Metformin response characteristics. We computed three out-
comes of response to newly metformin-treated T2D patients from
HbA1c% reduction: absolute, adjusted, and proportional. We find
that the mean absolute HbAlc% reduction is 0.85%, which
concurs with known reductions after first-time metformin
treatment®l. It is important to note that response depends on
treatment policy, as individuals with higher baseline HbAlc%
receive higher doses of metformin which in turn result in larger
HbA1c% reductions.

When observing the different phenotypes, we find that they all
differ significantly between males and females (Table 3). We have
also found all phenotypes to have statistically significant different
variances (Supplementary Table 5). This led us to compute
heritability estimates for each sex independently. Furthermore, we
decided to compute estimates for additional subgroups within the
population to better understand their independent heritable effect
on metformin response.

Heritability of response to metformin. We computed the her-
itability of HbA1c% reduction phenotypes on the cohorts of
39,335 male patients and 41,453 female patients. For our
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(640,312 patients)

Lab tests Diagnoses
3,878,900,580 901,073,892
(5,300,009 patients) (5,507,580 patients)
HbA1c tests Plasma glucose tests
14,729,456 62,753,283
(2,046,431 patients) (4,591,746 patients)
HbA1c tests " Plasma glucose tests 5
value > 6.5% value > 200 T2P1 c#:gr;%s; 2
6,988,858 2,863,328 o

(585,760 patients) (433,185 patients)

Diabetic patients
782,159

Fig. 1 T2D patients' selection. Patients were determined by fulfilling at least one of three criteria: (1) HbA1c% lab test value>6.5%; (2) plasma glucose lab
test value>200 mg/dL; (3) T2D diagnosis. Green applies to lab test results, red to diagnoses, and yellow to patients. In total, 782,159 T2D patients were

identified.

Table 2 Baseline characteristics of the study cohort.

Gender Mean STD Median FDR-corrected P value* Availability, %
Demographics
Age, years F 61.65 12.38 62 2E-89 100
M 59.9 12.38 60 100
BMI, Kg/m?2 F 32.41 7.02 31.54 <1E-350 82.95
M 30.36 6.04 29.65 83.17
Gender (is male) Joint 0.49 0.5 0 100
Year of birth F 1948.78 13.15 1949 1E-106 100
M 1950.82 13.18 1951 100
Lab tests measurements
Baseline HbA1c% F 7.34 1.34 7 4E-290 100
M 7.73 1.64 7.2 100
eGFR** Joint 93.54 24.5 90.95 87.47
Measurements' metadata
Number of HbA1c% measurements F 6.01 4.54 5 2E-27 100
M 5.67 4.39 4 100
Base to index gap, days F 18.93 21.55 n 1E-42 100
M 16.89 20.69 9 100
Base to on-treatment gap, days F 150.09 34.69 147 1E-29 100
M 147.33 34.25 145 100
Index to on-treatment gap, days F 131.16 26.53 129 0.0002 100
M 130.45 26.56 128 100
Treatment metadata
Adherence 1, % F 92.84 12.06 100 0.002 100
M 93.M 11.92 100 100
Adherence 2, % Joint 58.24 38.84 70.73 0.02 100
Adherence 3, % F 55.69 40.4 69.05 100
M 55.01 40.29 66.67 100
Adherence 4, % F 53.9 40.56 65.52 0.0002 100
M 52.8 40.42 62.5 100
Average dose, Mg F 132 0.52 1 2E-107 100
M 14 0.56 1 100

*P value for in ttest comparing male and female distributions. Appears only when the difference in distributions is significant.
**eGFR is in units defined in the formula above.
Availability of “Average dose while taking” and “Adherence” was calculated through the percent of available prescriptions, which were used to generate these features.
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calculations, we used covariates of personal measures as well as
treatment strategy measures (see “Methods”). We found that the
heritability measure of absolute HbA1c% reduction is h* = 12.6%
(95% CI, 6.1-19.1%) for the entire cohort, K2 = 21.0% (95% CI,
7.8-34.3%) for males and h* = 22.9% (95% CI, 10.0-35.7%) for
females (Table 4).

We examined whether our heritability estimates remain similar
between different metformin response phenotypes. We found
that the heritability estimates for the adjusted HbAlc% reduc-
tions are identical for all groups. This result is expected, as the
adjusted reduction values are the residuals from a model that is
based on covariates. We find that the estimates for proportional
HbA1c% reduction are also relatively similar and are h* = 13.8%
(95% CI, 7.3-20.3%) for the entire cohort, h* = 23.2% (95% CI,
9.9-36.4%) for males and h* = 22.3% (95% CI, 9.4-35.1%) for
females. We note that across the three phenotypes the 95%
intervals of estimates overlap, demonstrating that the estimates
are relatively similar.

We estimated the explained variance of the covariates alone
without family information to identify the explained variance of
environmental factors. We computed the explained variance of
absolute reduction in HbA1lc% as 66.6%.

We estimated the heritability of responses to additional
subgroups of the cohort, in order to search for affecting factors.
We split our cohort by age (binning them by decades), and by
absolute HbA1c% response values as well as by ethnicity, and
found no meaningful results most likely due to the small sizes of
those subgroups (Supplementary Table 6).

Predicted response to metformin. We predicted the on-
treatment HbAlc% with on the entire cohort of 80,788 indivi-
duals reaching an MSE of 1.2. We found a total of 8,075 indi-
viduals with relatives within the cohort. The MSE of the
prediction on said individuals was 1.6. When predicting from

Table 3 Cohort Phenotypes Statistics.
Gender Mean Standard Median FDR-
deviation corrected
P value
Height, m F 1.62 0.07 1.62  <E-350
M 175 0.07 175
Joint 1.68 0.10 1.68
HbA1c% F 0.67 120 0.40 7E-308
absolute M 1.04 157 0.60
reduction Joint 0.85 140 0.50
HbA1c% F -0.16 0.92 -0.21 5E-121
adjusted M 0.01 112 -0.09
reduction Joint —0.08 103 —-0.15
HbA1c% F 0.08 0.12 0.06  1E-303
proportional M 011 0.5 0.08
reduction Joint 0.09 014 0.07

both covariates and family history features, we computed an MSE
of 1.4.

Discussion

In this work, we estimated the heritability of response to met-
formin treatment in patients with T2D. Our cohort consists of
782,159 patients with T2D, 80,788 of whom begin metformin
treatment while already recorded in the EHRs. In combination
with pedigree information from national registries, we con-
structed a kinship matrix yielding genetic similarities between all
patients. From it we estimated the heritable component of
absolute reduction in HbAlc% following metformin in newly
treated patients to be h* = 12.6% (95% CI, 6.1-19.1%) for both
genders, K =21.0% (95% CI, 7.8-34.3%) for males and h* =
22.9% (95% CI, 10.0-35.7%) for females. This value remained
unchanged when adjusting the response for pretreatment perso-
nal covariates and for proportional HbA1c% reduction compared
to baseline HbA1c%. The similarity of results is most likely due to
the correlation between proportional and absolute reductions r =
0.97 (P value<6E — 310) (Supplementary Fig. 3).

In metformin-based studies, EHR data are usually leveraged to
explore its repurposing to other diseases, or to estimate its indi-
vidualized treatment effect?®>2. Common approaches for esti-
mating drug response heritability compute genetic similarities
through genetic tests!®33-3>. Collecting genetic information leads
to small cohorts and requires international collaborations. Our
study obtained inherited similarities between individuals from
national registries, these hold promise due to their tremendous
size, and have been previously employed to estimate heritability
measures of longevity, autism, and others28:°2,

To the best of our knowledge, our study is the first to assess the
heritability of variation to drug response by fitting an LMM solely
from EHR data combined with a pedigree-based IBD matrix, as
the model’s kinship matrix. We validated the proposed method
by estimating the heritability of adult height, finding the measure
to be h? = 80.0% (95% CI 79.2-80.8%). This result agrees well
with the widely accepted heritability of height of 80%°°, thus
strengthening our belief that our use of pedigrees in heritability
estimates is robust to non-biological noise as well as to possible
inaccuracies in the EHR pedigree (either wrong or missing
information). This conclusion, that heritability estimation from
EHR is a valid methodology is consistent with the previous
studies®”. Furthermore, it does not require patient recruitment as
well as costly genetic tests. We estimated the heritability of
metformin responses to be in the range of 10-20%, suggesting
that while genetics likely contribute to variation in metformin
glycaemic response for T2D patients, most of the variation is
likely due to other environmental factors.

Estimated metformin responses heritability measures are
within the parameters of previous genetic-based estimations,
however with smaller confidence intervals!®. The increased sta-
tistical power is a direct result of our relatively large cohort size

Table 4 Heritability estimates of metformin responses.

Cut HbA1c absolute reduction HbA1c-adjusted reduction HbA1c proportional Number of patients
reduction
h2 cl h2 cl h2 cl
All cohort 0.126 [0.061, 0.191] 0.126 [0.061, 0.191] 0.138 [0.073, 0.203] 80,788
Male 0.21 [0.078, 0.343] 0.21 [0.078, 0.343] 0.232 [0.099, 0.364] 39,335
Female 0.229 [0.1, 0.357] 0.229 [0.1, 0.357] 0.223 [0.094, 0.351] 41,453

h? estimates and their confidence intervals of our cohort including different subgroups.
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compared with previous works that commonly consist of up to
several thousand patients!®->4>,

Distinguishing between genetic and environmental effects is
often difficult and not impossible. For example, when prescribing
metformin, physicians also commonly advise lifestyle changes.
These changes, if followed, can have a positive effect on the
reduction of HbAlc levels, which in our study are attributed
solely to metformin. We note that most individuals in our cohort
were prescribed metformin at an older age (average age at index
date is 60), and since our analyses show a gradual increase in
HbA1lc we presume that most individuals were advised to make
lifestyle changes prior to their first metformin prescription.
Nevertheless, in our case, pedigree data encompasses more than
just genetic information, as it provides some underlying infor-
mation of environmental factors, especially in the case of first-
degree relatives. Although this makes results more difficult to
decipher, the accurate results of our positive and negative controls
provide confidence in our method. We, therefore, believe that the
included covariates capture the majority of the environmental
variance and hence, prevent their effect on our h* estimates. In
spite of our efforts, we believe that it is still possible that some
passed environmental information remains in our heritability
estimates.

To ensure that we only account for the effect of metformin, we
excluded from our cohort patients treated with other anti-diabetic
drugs. However, we did not include covariates of other drugs that
may interact with metformin and alter its effect. In addition, we
performed our analysis on dispensed metformin prescriptions
with the underlying assumption that to an extent, it is an indi-
cator for adherence. Although eliminating cases of initial non-
adherence to the best of our ability, we assume some level of non-
adherence to affect our results and cause biases in our estima-
tions. We note that the vast majority of individuals in our study
were prescribed at least three different prescriptions of 30 pills
each in the course of 90 days, suggesting they are likely to have
consumed the metformin. This is one of the limitations of
working with EHR data compared to the much more controlled
setting of randomized clinical trials. On the other hand, our
analysis depicts real-world scenarios and may thus provide more
relevant estimates for the true underlying effect.

Our results show differences in the heritability of metformin
responses when estimated on the entire population or separated
by gender, with higher heritability measures for the split model.
The joint model, by design, assumes a different mean between
genders (encompassed in the gender covariate). On the other
hand, the separated models make no assumption on the rela-
tionships between the responses of females and males. We show
that most covariates differ between the genders, moreover, we
also show that all outcomes have statistically significant variances,
consistent with results from other countries®®. These results show
that the shared model is prone to higher noise caused by the
differences between the two genders. We believe that the inability
of the joint estimate to model these differences cause the estimate
to be significantly lower. Our analyses also included various
stratifications such as age, and baseline HbAlc measurements, for
which we found no significant difference in the h* estimate or did
not have a sufficient amount of data. However, we acknowledge
that while we assume in this study that T2D is a homogenous
disease, individuals in our cohort likely suffer from a variety of
diseases all grouped under the term T2D and resulting in dif-
ferent metabolic defects. In spite variation, our data are limited to
the ICD-9 diagnosis codes and does not contain this information,
but it is likely that the heritability of glycemic response for
metformin varies across individuals suffering from such diseases.

Creating a personalized tailored treatment to T2D patients
holds great potential, such treatments could be based on both
environmental and genetic factors, and help to faster divert non-
responding patients to second-line treatments with less dete-
rioration. Several predictors for second-line treatments already
exist, but most do not yield personalized recommendations®®-¢1.
We show that with the use of a tree model predictions can be
performed with an MSE of 1.2 in predicting on-treatment HbAlc
%, and that for individuals with family history information MSE
improves from 1.6 to 1.4 upon addition of family information
features. Our work suggests that future works aiming to estimate
metformin effects should probably include family medical history,
yet be based mostly on environmental factors. In general,
knowledge of drug response heritability like the one presented in
this study is a first step in allocating efforts of personalizing
treatments, giving an upper bound to the possible effect of family
history information.

Overall, our results indicate that while genetics likely con-
tribute to variation in metformin glycaemic response for T2D
patients, environmental factors likely have a larger effect. Such
findings are in line with prior evaluations of associations between
single-nucleotide polymorphisms and the reduction in HbA1c%
after introduction to metformin!®, Our results emphasize the
need for personalized treatment regimens of metformin. More
generally, our work shows the utility of carrying out pharmaco-
genetic studies using EHRs, which may yield valuable insights
without the burden and cost of genetic tests.

Data availability

The data that support the findings of this study originate from Clalit Healthcare Services.
All data analyses were conducted on a secured, de-identified dedicated server within the
Clalit Healthcare environment. Requests for access to all of parts of the Clalit datasets

should be addressed to Clalit Healthcare Services, via the Clalit Research Institute.

Code availability

The code that supports the findings of this study is tailored to the EHR data in the Clalit
Health Services database and is thus not provided since it is of no use as a standalone
without access to the data per se. Requests for software modules as a basis for adaptation
to other EHR environments or usage of the software on Clalit data following Clalit
approval should be addressed to the authors after data access is approved by the Clalit
Data Access committee. All analyses used the following open-source publicly available
Python (3.7) code packages: Scipy (version 1.3.1), Numpy (version 1.17.0), Pandas
(version 0.24.2), Dask (version 2.9.1), Sci-LMM (version 0.1.1).

Received: 1 March 2021; Accepted: 9 November 2021;
Published online: 01 December 2021

References

1. World Health Organization. Global Report on Diabetes. Vol. 86 (World Health
Organization, 2016).

2. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and
projections for 2030 and 2045: Results from the International Diabetes
Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843
(2019).

3. Emerging Risk Factors Collaboration. et al. Diabetes mellitus, fasting blood
glucose concentration, and risk of vascular disease: a collaborative meta-
analysis of 102 prospective studies. Lancet 375, 2215-2222 (2010).

4. Gong, L., Goswami, S., Giacomini, K. M., Altman, R. B. & Klein, T. E.
Metformin pathways: pharmacokinetics and pharmacodynamics.
Pharmacogenet. Genomics 22, 820-827 (2012).

5. Florez, J. C. The pharmacogenetics of metformin. Diabetologia 60, 1648-1655
(2017).

6. Song, R. Mechanism of metformin: a tale of two sites. Diabetes Care 39,
187-189 (2016).

7. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of
metformin. Diabetologia 60, 1577-1585 (2017).

COMMUNICATIONS MEDICINE | (2021)1:55 | https://doi.org/10.1038/s43856-021-00058-4 | www.nature.com/commsmed 7


www.nature.com/commsmed
www.nature.com/commsmed

ARTICLE

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-021-00058-4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Donnelly, L. A,, Doney, A. S. F., Hattersley, A. T., Morris, A. D. & Pearson, E.
R. The effect of obesity on glycaemic response to metformin or sulphonylureas
in Type 2 diabetes. Diabet. Med. 23, 128-133 (2006).

Brunetti, A., Chiefari, E. & Foti, D. P. Pharmacogenetics in type 2 diabetes: still a
conundrum in clinical practice. Expert Rev. Endocrinol. Metab. 12, 155-158 (2017).
Becker, M. L. et al. Genetic variation in the organic cation transporter 1 is
associated with metformin response in patients with diabetes mellitus.
Pharmacogenomics J. 9, 242-247 (2009).

Hundal, R. S. et al. Mechanism by which metformin reduces glucose
production in type 2 diabetes. Diabetes 49, 2063-2069 (2000).

Scriver, C. R. Garrod’s Croonian Lectures (1908) and the charter “Inborn
Errors of Metabolism”: albinism, alkaptonuria, cystinuria, and pentosuria at
age 100 in 2008. J. Inherit. Metab. Dis. 31, 580-598 (2008).

Roden, D. M., Wilke, R. A., Kroemer, H. K. & Stein, C. M.
Pharmacogenomics: the genetics of variable drug responses. Circulation 123,
1661-1670 (2011).

Maitland-van der Zee, A. H., de Boer, A. & Leufkens, H. G. The interface
between pharmacoepidemiology and pharmacogenetics. Eur. J. Pharmacol.
410, 121-130 (2000).

Kleyn, P. W. & Vesell, E. S. Genetic variation as a guide to drug development.
Science 281, 1820-1821 (1998).

Zhou, K. et al. Heritability of variation in glycaemic response to metformin: a
genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2, 481-487
(2014).

Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for
association studies. Nat. Genet. 44, 821-824 (2012).

Yang, J. et al. Genome partitioning of genetic variation for complex traits
using common SNPs. Nat. Genet. 43, 519-525 (2011).

So, H.-C,, Li, M. & Sham, P. C. Uncovering the total heritability explained by
all true susceptibility variants in a genome-wide association study. Genet.
Epidemiol. 35, 447-456 (2011).

Plomin, R,, DeFries, J. C., Craig, . W. & McGuffin, P. In Behavioral Genetics
in the Postgenomic Era. (eds Plomin, R. et al.) 3-15 (American Psychological
Association, 2003).

Biau, D. J., Kernéis, S. & Porcher, R. Statistics in brief: the importance of
sample size in the planning and interpretation of medical research. Clin.
Orthop. Relat. Res. 466, 2282-2288 (2008).

Environmental Control of Gene Expression | Learn Science at Scitable. https://
www.nature.com/scitable/topicpage/environment-controls-gene-expression-
sex-determination-and-982/.

World Health Organization Use of Glycated Haemoglobin (hbalc) in the
Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation.
(World Health Organization, 2011).

Colagiuri, S. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes
mellitus-practical implications. Diabetes Res. Clin. Pract. 93, 312-313 (2011).
Rayan-Gharra, N., Tadmor, B., Balicer, R. D. & Shadmi, E. Multicultural
transitions: caregiver presence and language-concordance at discharge. Int. J.
Integr. Care 18, 9 (2018).

Shilo, S., Rossman, H. & Segal, E. Axes of a revolution: challenges and
promises of big data in healthcare. Nat. Med. 26, 29-38 (2020).
Bulik-Sullivan, B. et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291-295 (2015).
Shor, T., Kalka, I., Geiger, D., Erlich, Y. & Weissbrod, O. Estimating variance
components in population scale family trees. PLoS Genet. 15, 1008124
(2019).

Yang, J. et al. Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 42, 565-569 (2010).

Artzi, N. S. et al. Prediction of gestational diabetes based on nationwide
electronic health records. Nat. Med. 26, 71-76 (2020).

Hagberg, A., Swart, P. & Chult, D. S. Exploring network structure, dynamics,
and function using NetworkX. Exploring network structure, dynamics, and
function using NetworkX (Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008).

Kaplanis, J. et al. Quantitative analysis of population-scale family trees with
millions of relatives. Science 360, 171-175 (2018).

Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330-338
(1922).

Wright, S. Systems of mating. I. the biometric relations between parent and
offspring. Genetics 6, 111-123 (1921).

Ruby, J. G. et al. Estimates of the heritability of human longevity are substantially
inflated due to assortative mating. Genetics 210, 1109-1124 (2018).

American Diabetes Association. 2. Classification and diagnosis of diabetes:
standards of medical care in diabetes-2019. Diabetes Care 42, S13-S28 (2019).
Slee, V. N. The International Classification of Diseases: ninth revision (ICD-
9). Ann. Intern. Med. 88, 424-426 (1978).

WHO Collaborating Centre for Drug Statistics Methodology, ATC classification
index with DDDs, https://www.whocc.no/atc_ddd_index_and_guidelines/
atc_ddd_index/ 2021. Oslo, Norway 2020.

39. Hong, Y. et al. Population exposure-response modeling of metformin in
patients with type 2 diabetes mellitus. J. Clin. Pharmacol. 48, 696-707 (2008).

40. Nichols, G. A., Conner, C. & Brown, J. B. Initial nonadherence, primary failure
and therapeutic success of metformin monotherapy in clinical practice. Curr.
Med. Res. Opin. 26, 2127-2135 (2010).

41. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann.
Intern. Med. 150, 604-612 (2009).

42. Graham, G. G. et al. Clinical pharmacokinetics of metformin. Clin
Pharmacokinet 50, 81-98 (2011).

43. Kolmogorov-Smirnov, A. N., Kolmogorov, A. & Kolmogorov, M. Sulla
determinazione emprica di uma legge di distribuzione. Giornale dellIstituto
Italiano degli Attuari. 4, 1-11 (1933).

44. Smirnov, N. Table for estimating the goodness of fit of empirical distributions.
Ann. Math. Statist. 19, 279-281 (1948).

45, Xu, X, Weiss, S., Xu, X. & Wei, L. J. A unified Haseman-Elston method for
testing linkage with quantitative traits. Am. J. Hum. Genet. 67, 1025-1028 (2000).

46. Gilmour, A. R,, Thompson, R. & Cullis, B. R. Average information REML: an
efficient algorithm for variance parameter estimation in linear mixed models.
Biometrics 51, 1440 (1995).

47. Levey, A. S. et al. A more accurate method to estimate glomerular filtration
rate from serum creatinine: a new prediction equation. Modification of Diet in
Renal Disease Study Group. Ann. Intern. Med. 130, 461-470 (1999).

48. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 785-794 NY, USA. https://doi.org/10.1145/
2939672.2939785 (ACM Press, 2016).

49. Visscher, P. M. Sizing up human height variation. Nat. Genet. 40, 489-490
(2008).

50. Hirschhorn, J. N. et al. Genomewide linkage analysis of stature in multiple
populations reveals several regions with evidence of linkage to adult height.
Am. J. Hum. Genet. 69, 106-116 (2001).

51. King, P., Peacock, I. & Donnelly, R. The UK prospective diabetes study
(UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin.
Pharmacol. 48, 643-648 (1999).

52. Bai, D. et al. Association of genetic and environmental factors with autism in a
5-country cohort. JAMA Psychiatry 76, 1035-1043 (2019).

53. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).

54. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group. et al.
Common variants near ATM are associated with glycemic response to
metformin in type 2 diabetes. Nat. Genet. 43, 117-120 (2011).

55. Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated
with glycemic response to metformin. Nat. Genet. 48, 1055-1059 (2016).

56. Wainschtein, P. et al. Recovery of trait heritability from whole genome
sequence data. Preprint at BioRxiv https://doi.org/10.1101/588020 (2019).

57. Polubriaginof, F. C. G. et al. Disease heritability inferred from familial
relationships reported in medical records. Cell 173, 1692-1704.e11 (2018).

58. Kautzky-Willer, A., Harreiter, J. & Pacini, G. Sex and gender differences in
risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr.
Rev. 37, 278-316 (2016).

59. Lim, S. et al. Factors predicting therapeutic efficacy of combination treatment
with sitagliptin and metformin in type 2 diabetic patients: the COSMETIC
study. Clin. Endocrinol. 77, 215-223 (2012).

60. Nagaraj, S. B, Sidorenkov, G., van Boven, J. F. M. & Denig, P. Predicting
short- and long-term glycated haemoglobin response after insulin initiation in
patients with type 2 diabetes mellitus using machine-learning algorithms.
Diabetes Obes. Metab. 21, 2704-2711 (2019).

61. Gottlieb, A., Yanover, C., Cahan, A. & Goldschmidt, Y. Estimating the effects
of second-line therapy for type 2 diabetes mellitus: retrospective cohort study.
BM] Open Diabetes Res. Care 5, 000435 (2017).

Acknowledgements

We thank Dr. E. Barkan, Dr. T. Vogl, and members of the Segal group for useful
discussions. E.S. is supported by the Crown Human Genome Center; Larson Charitable
Foundation New Scientist Fund; Else Kroener Fresenius Foundation; White Rose
International Foundation; Ben B. and Joyce E. Eisenberg Foundation; Nissenbaum
Family; Marcos Pinheiro de Andrade and Vanessa Buchheim; Lady Michelle Michels;
Aliza Moussaieff; and grants funded by the Minerva foundation with funding from the
Federal German Ministry for Education and Research and by the European Research
Council and the Israel Science Foundation.

Author contributions

LK. and A.G. conceived the project, designed and conducted the analyses, interpreted the
results and wrote the manuscript, and are listed in random order. S.S. interpreted the
results. HR,, N.S.A., and N.S.Y. contributed analysis tools. E.S. conceived and directed
the project and analyses, designed the analyses, interpreted the results, wrote the
manuscript, and supervised the project.

COMMUNICATIONS MEDICINE| (2021)1:55 | https://doi.org/10.1038/543856-021-00058-4 | www.nature.com/commsmed


https://www.nature.com/scitable/topicpage/environment-controls-gene-expression-sex-determination-and-982/
https://www.nature.com/scitable/topicpage/environment-controls-gene-expression-sex-determination-and-982/
https://www.nature.com/scitable/topicpage/environment-controls-gene-expression-sex-determination-and-982/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://www.whocc.no/atc_ddd_index_and_guidelines/atc_ddd_index/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1101/588020
www.nature.com/commsmed

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-021-00058-4

ARTICLE

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/543856-021-00058-4.

Correspondence and requests for materials should be addressed to Eran Segal.

Peer review information Communications Medicine thanks the anonymous reviewers
for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
32

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS MEDICINE| (2021)1:55 | https://doi.org/10.1038/543856-021-00058-4 | www.nature.com/commsmed 9


https://doi.org/10.1038/s43856-021-00058-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmed
www.nature.com/commsmed

	Estimating heritability of glycaemic response to metformin using nationwide electronic health records and population-sized pedigree
	Methods
	Data
	Pedigree and kinship matrix construction
	Identification of T2D patients
	Cohort definition
	Glycaemic response outcomes
	Height outcome
	Heritability estimation
	Predicting outcome
	Statistics and reproducibility
	Reporting summary

	Results
	Cohort description
	Height heritability estimation
	Metformin response characteristics
	Heritability of response to metformin
	Predicted response to metformin

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




