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Abstract

Background Artificial intelligence can assist in interpreting chest X-ray radiography (CXR)

data, but large datasets require efficient image annotation. The purpose of this study is to

extract CXR labels from diagnostic reports based on natural language processing, train

convolutional neural networks (CNNs), and evaluate the classification performance of CNN

using CXR data from multiple centers

Methods We collected the CXR images and corresponding radiology reports of

74,082 subjects as the training dataset. The linguistic entities and relationships from

unstructured radiology reports were extracted by the bidirectional encoder representations

from transformers (BERT) model, and a knowledge graph was constructed to represent the

association between image labels of abnormal signs and the report text of CXR. Then, a 25-

label classification system were built to train and test the CNN models with weakly super-

vised labeling.

Results In three external test cohorts of 5,996 symptomatic patients, 2,130 screening

examinees, and 1,804 community clinic patients, the mean AUC of identifying 25 abnormal

signs by CNN reaches 0.866 ± 0.110, 0.891 ± 0.147, and 0.796 ± 0.157, respectively. In

symptomatic patients, CNN shows no significant difference with local radiologists in iden-

tifying 21 signs (p > 0.05), but is poorer for 4 signs (p < 0.05). In screening examinees, CNN

shows no significant difference for 17 signs (p > 0.05), but is poorer at classifying nodules

(p= 0.013). In community clinic patients, CNN shows no significant difference for 12 signs

(p > 0.05), but performs better for 6 signs (p < 0.001).

Conclusion We construct and validate an effective CXR interpretation system based on

natural language processing.
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Plain language summary
Chest X-rays are accompanied by a

report from the radiologist, which

contains valuable diagnostic infor-

mation in text format. Extracting and

interpreting information from these

reports, such as keywords, is time-

consuming, but artificial intelligence

(AI) can help with this. Here, we use

a type of AI known as natural lan-

guage processing to extract informa-

tion about abnormal signs seen on

chest X-rays from the corresponding

report. We develop and test natural

language processing models using

data from multiple hospitals and

clinics, and show that our models

achieve similar performance to inter-

pretation from the radiologists

themselves. Our findings suggest that

AI might help radiologists to speed

up interpretation of chest X-ray

reports, which could be useful not

only in patient triage and diagnosis

but also cataloguing and searching of

radiology datasets.
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Chest X-ray radiography (CXR) is one of the most fre-
quently used and easily accessed radiology examinations
for screening and diagnosing pulmonary and cardiac

diseases1. The interpretation of CXR mainly depends on the
observation and experience of radiologists. However, the growing
demand for CXR has brought a burden on medical staff which
limits the clinical application of CXR, especially in community
clinics or primary hospitals2.

Convolutional neural network (CNN), the representative
algorithm of artificial intelligence (AI), enables the computational
model composed of multiple processing layers to learn image
features for image classification and has been applied in many
medical fields3–5. With the advance of CNN in identifying dis-
eases on CXR, such as tuberculosis6, pneumothorax7, lung
nodule8, lung cancer9, and COVID-1910, radiologists may read
CXR with the assistance of AI. Several studies have reported that
CNN models showed radiologist-equivalent performance in
identifying multiple disorders on CXR11–13. However, there is still
a lack of large-scale clinical implementation of AI-assisted mul-
tidisease simultaneous reading on CXR. Studies have been con-
ducted to validate the performance and generalizability of
applying AI to read multiple diseases simultaneously. Rajpurkar
et al. validated a CNN model based on 420 CXR images from the
ChestX-ray8 dataset and found that it was comparable to radi-
ologists in identifying 11 pathologies14. Recently, Wu et al.
compared the reading results of an AI algorithm and five radi-
ology residents on 1998 CXR images of inpatients randomly
selected from the National Institutes of Health (NIH) dataset and
concluded that the algorithm may reach the level of third-year
radiology residents15. Most of the previous studies tested CNN
models on datasets from academic hospitals, which hardly
represented the distribution of abnormal signs in other popula-
tions, because the real-world distribution of thoracic diseases is
complex. The disease distribution is diverse in patients from
academic hospitals and community clinics and different in
symptomatic patients and screening examinees. As far as we
know, there is a lack of large-scale multicenter studies that
comprehensively verified the performance of CNN in identifying
multiple abnormal signs on CXR in various patient groups.

The traditional CNN medical image classification model
usually adopts a supervised training method based on expert
annotation. Although radiology reports of CXR images contain
valuable diagnostic information, they are usually composed of
unstructured natural texts, which cannot be processed directly by
conventional CNN. Natural language processing (NLP) provides
a method of extracting words from radiology reports, which is
suitable for finding keywords describing medical images, so as to
realize automatic annotation of a large number of CXR
images16, 17. Recently, the bidirectional encoder representations
from transformers (BERT) was developed for NLP18. The BERT
model has greatly improved the capability and performance of
NLP in semantic and context recognition and achieved higher
ExactMatch and F1-scores than human beings in the SQuAD 1.1,
the top-level text comprehension competition based on machine
learning19.

In this study, we first collected a large number of CXR images
and then trained CNN with weakly supervised labeling. This
process used the BERT model to extract linguistic entities and
relationships from unstructured radiology reports and con-
structed a knowledge graph to represent the association between
image labels of abnormal signs and the report text of CXR. We
evaluated the classification performance of CNN on three exter-
nal test datasets from an academic hospital (symptomatic patients
and asymptomatic screening examinees) and eight community
clinics, accessed the classification consistency between CNN and
radiologist consensus reading and compared the performance

between CNN and local radiologists. The research steps are
shown in Fig. 1. Finally, we established 25 labels representing 25
abnormal signs. In the three external test cohorts, the classifica-
tion performance of CNN was slightly lower than that of local
radiologists in an academic hospital but slightly higher than that
in community clinics.

Methods
Population and study design. The cases as the training and tests
data were from the Chest Radiography at Diverse Institutes
(CRADI) dataset20. The population as the training dataset
(n= 74,082) was retrospectively and consecutively collected from
February 2014 to February 2018 in an academic hospital (Hos-
pital-1, Shanghai Sixth People Hospital). The CXR image and
corresponding diagnostic report of each subject were retrieved
from the picture archiving and communication system (PACS)
and radiology information system (RIS). The inclusion criteria
were as follows: adults ≥18 years old with symptoms such as
fever, cough, and chest pain, as indications for CXR. If a patient
had multiple CXR examinations, only the earliest one was
included. The exclusion criteria were: mobile CXR, insufficient
image quality, and incomplete reports without the confirmation
of a senior radiologist.

The cases in CRADI dataset as external test data came from
another academic hospital (Hospital-2, Shanghai General Hospi-
tal) (n= 7797) and eight community clinics (n= 1804). The
population was retrospectively and consecutively included from
January 2019 to March 2019. The subjects in Hospital-2 were
divided into symptomatic patients and screening examinee
groups. The inclusion and exclusion criteria were similar to
those of the training dataset, except that the screening examinees
were asymptomatic.

After training the CNN models with weakly supervised
labeling, we conducted a three-step external test on the CRADI
dataset. First, we tested the diagnostic performance of AI-derived
results using the radiologist consensus reading as a reference (see
below). The tests were conducted in three external cohorts:
symptomatic patients in Hospital-2, asymptomatic screening
examinees in Hospital-2, and symptomatic patients in eight
community clinics. Second, under the premise of using multi-
label CNN classification for diagnosing abnormal signs on CXR,
we evaluated the number of consistently classified labels between
CNN and radiologist consensus reading in the three test cohorts.
Third, the performance of CNN and local radiologists was
compared. The Institutional Review Board of Shanghai General
Hospital approved the use of the CRADI dataset in this
retrospective study and waived the requirement of written
informed consent.

CXR equipment. Five different types of digital radiography sys-
tems were used to take posteroanterior CXR in Hospital-1
(Digital Diagnost, Philips; GC85A, Samsung; RADspeed, Shi-
madzu; CXDI, Canon; and XR220, Optima), four types in
Hospital-2 (XR656, GE; Optima XR220, GE; Platinum 43, DMS;
and CXDI, Canon), and five types in the eight community clinics
(CXDI, Canon; DRX-Evolution, Carestream; uDR, United Ima-
ging; Fluorospot Compact FD, Siemens; and Digital Diagnost,
Philips). Supplementary Table 1 lists the DR equipments and
acquisition parameters.

Diagnostic reports. For each case of CXR in this study, a resident
drafted a diagnostic report, and an experienced radiologist
supervised to finalize it. In this way, 67 residents and 20 radi-
ologists completed the reports in Hospital-1, 27 residents and 28
radiologists in Hospital-2, and 15 residents and 18 radiologists in
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Fig. 1 Diagram of research steps. a Workflow of dataset preparation, model training, and external testing. The training dataset consists of chest X-ray
radiographs (CXR) and corresponding diagnostic reports. By using the bidirectional encoder representations from transformers (BERT) model to identify
language entities from the reports, we conducted an iterative process to build a knowledge graph with the semantic relationship between language entities
and finally established 25 labels representing 25 abnormal signs in CXR. After training the convolutional neural networks (CNNs) based on fivefold
stratified cross-validation and weakly supervised labeling, we conducted external tests in another hospital and eight community clinics. The tests included
the performance of CNN, the concordance between CNN and board reading, and the comparison between CNN and local radiologists. b Workflow of
image labeling based on the bidirectional encoder representations from transformers (BERT) natural language processing model with an expert
amendment. We used the BERT model to recognize linguistic entities, entity span, semantic type of entities, and semantic relationships between entities. In
an iterative process to establishing the knowledge graph with the semantic relationship between language entities, two radiologists examined the
established knowledge graph, amended the extracted linguistic entities, and clarified linguistic relationships based on their clinical experience. Finally, 25
labels representing 25 abnormal signs were established. CXR chest X-ray radiography, BERT the bidirectional encoder representations from transformers,
CNN convolutional neural network, PACS picture archiving and communication system, NLP natural language processing.
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the eight community clinics. Since the reports collected in this
study were obtained in the actual clinical environment, all resi-
dents and radiologists had access to patient information, medical
indications, and previous images.

Construction of a knowledge graph with BERT. We used the
BERT model18 to recognize linguistic entities, entity span,
semantic type of entities, and semantic relationships between
entities. BERT relies on a Transformer, an attention mechanism
for learning the contextual relationships between words in a text.
The BERT model is designed to pretrain the deep bidirectional
representation from unstructured text through the joint adjust-
ment of left and right contexts. Therefore, the pretrained BERT
model can be finetuned by an additional output layer to create
state-of-the-art models for various NLP tasks, such as learning
the semantic information of the text and outputting vectors of
semantic recognition which can be used for classification.

In this study, linguistic entities refer to words or phrases that
describe anatomical region (such as lung, aorta, and hilum), the
location of lesions on posteroanterior CXR (such as left, bilateral,
and upper), image feature name (such as nodule and consolida-
tion), and image feature adjective (such as blur and large).
Relationship refers to the semantic and logic connections between
linguistic entities, such as left-large-consolidation and bilateral-
sharp-costophrenic angle. Two radiologists with 21 and 31 years
of experience examined and amended the extracted linguistic
entities according to the Fleischner Society’s glossary21 and a
traditional radiology textbook22, and examined the linguistic
relationships based on their experience. According to the
anatomical region, the linguistic entities describing abnormal
signs on CXR were divided into four categories: pleura, lung
parenchyma, mediastinum, and thoracic wall. The representative
linguistic entities and relationships from unstructured radiology
reports are shown in Supplementary Fig. 1.

A knowledge graph23, also known as a semantic network,
represents a network of real-world entities and illustrates the
relationship between them. In building a knowledge graph, the
pipeline method was used to extract linguistic entities and then
analyze the relationship among candidate entity pairs. We defined
and restricted the potential relationships through rules. For
example, it is reasonable to have a direct semantic relationship
between the anatomical region and image feature name, but the
relationship between the anatomical region and image feature
adjective is meaningless. The edges between two linguistic entities
are also weighted to indicate whether the relationship is positive
or negative. The extracted terms or phrases were classified as
negative (e.g., “no abnormal sign”), positive (e.g., “consolidation
in the inferior lobe of the right lung”), or positive with
uncertainty (e.g., “possible” or “not excluded”). The tuples in
the constructed knowledge graph imply rich semantic relations
between different pairs of entities. For example, one tuple may
show whether there is consolidation in the inferior lobe of the
right lung or not.

In this study, the natural language data from different doctors
were used to build image labels. When describing chest disorders,
their language in free-text radiology reports has a hierarchical
relationship. In order to understand the hierarchical relationship,
we built the “anatomical position”—“disorder” relationship to
help entity recognition and relation extraction. For example, for
the two connections of “pleural thickening” and “pleural
abnormality”, thickening is a subclass of abnormality. Building
a knowledge graph helps us to understand the paths between
different entities, form labels at different levels, and merge a large
number of synonyms in the free-text reports. In the meanwhile,
we can count the number and frequency of different entities, so as

to reclassify the entities with a lower frequency to the upper level.
For example, there were descriptions of “aortic arch calcification”
and “aortic knob calcification” in the training dataset, both of
which were less than their upper-level label “aortic arteriosclero-
sis”. Therefore, we can combine “aortic arch calcification” and
“aortic knob calcification” into the label of “aortic arteriosclero-
sis” to train the models.

Finally, with the help of the constructed knowledge graph, we
can configure complex query items to search target information.
Keywords, terms, or other hand-designed conditions make it
more accurate to determine labels of CXR images from the
unstructured reports.

Image labeling in the training dataset. CXR images in the
training dataset were annotated according to the linguistic clus-
ters extracted from radiology reports by the BERT model. Initi-
ally, from the perspective of the anatomical region, linguistic
clusters consisted of four categories, including pleura, pulmonary
parenchyma, mediastinum, and chest wall.

First, the BERT model mined all radiology reports in the
training dataset, to extract all the terms with close entity span to
construct linguistic clusters. The image descriptions and conclu-
sions in radiology reports were combined into one source and
then split into multiple sentences. The BERT model automatically
segmented and extracted terms or phrases from these sentences,
and clustered them according to semantic distance24. This
process provided more than 40 linguistic clusters of synonyms
or parasynonyms about abnormal signs on CXR, to identify the
meaningful and frequent terms describing the abnormal signs.

Next, the two abovementioned experienced radiologists and
one NLP engineer reviewed the linguistic clusters to determine
whether the terms in them correctly described the image findings
on CXR. They decided by consensus whether a term or phrase
belongs to a linguistic cluster according to its clinical meaning
and dependence. They also iteratively ruled out wrong terms and
fixed conflicting terms in this cluster, and merged clusters with
similar clinical meaning. In this way, a linguistic cluster and its
affiliated terms were updated. This process was iterated several
times to optimize the knowledge graph until all the extracted
terms or phrases were correctly categorized and associated. In the
process of iterative error correction, if a linguistic cluster came
from more than 50 subjects in the training dataset (except for
cavity, which is rare but clinically important), then the cluster and
its affiliated terms were regarded as a category of abnormal sign
in the knowledge graph, and then used as a label to train CNN
model, because the number of positive cases for training the AI
model should not be too small. Finally, a knowledge graph of 25
abnormal signs was established (Fig. 2), which contained
synonyms or parasynonyms, or phrases that may appear in
natural reports. Then, a 25-label classification system were built
to train and test the CNN model.

Image labeling in the test datasets. Because the original natural
language reports in the test cohorts cannot be directly used as a
reference to compare with the results of CNN, we used the BERT
model to extract the description of abnormal signs from the
original reports. On the basis of the knowledge graph derived
from the training dataset, the image labels of abnormal signs in
the three test cohorts were extracted from the original reports.
One radiologist with 10 years of thoracic imaging experience
recorded and checked the BERT-extracted labels to ensure that
they were consistent with the description of the radiology reports.

Radiologist consensus reading. Because the original CXR reading
was performed by medical staff with the various extent of expertise in
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different institutes, we applied an expert consensus reading to
reclassified CXR images in the test datasets, in order to allow a high-
standard and homogeneous reference standard. Two radiologists
with 21 and 31 years of experience independently accessed the CXR
images and BERT-extracted labels in the above step. They made
necessary corrections to the label according to their clinical experi-
ence and resolved the inconsistency by consensus.

Visualization of data distribution and CNN activation. We used
the t-SNE algorithm to visualize the distribution of labels in the
training and test datasets25. It successfully reveals the hidden struc-
tures, natural clusters, and smooth nonlinear variations along the
dimensions in data. In the pooling layer of CNN architecture, all
parameters are extracted and converted into a joint probability to
minimize the Kullback–Leibler divergence between the original
embedding and the low-dimensional embedding. The traditional
t-SNE algorithm can only visualize one target26. However, a subject
may not have or have one or multiple abnormal signs on CXR as the
target of t-SNE. To visualize the natural clustering of abnormal signs,
the signs of each subject were converted into a color index as the
target of t-SNE, as follows: CI=Yth × 8+Yme × 4+Ylp × 2+Ypl ×
1, where CI is the color index, and Yth, Yme, Ylp, and Ypl represent the
one-hot representation of thoracic wall, mediastinum, lung par-
enchyma, and pleura, respectively. This one-hot representation can
be taken as binary code, which can give each subject a color index.
Thus, the normal subjects were coded as 0; the subjects with one

abnormal sign in the thoracic wall, mediastinum, lung parenchyma,
and pleura were coded as 8, 4, 2, and 1, respectively. A subject with
multiple abnormal signs was coded as the sum of four independent
codes. For example, a subject with abnormal mediastinal and lung
parenchymal signs was coded as 6, with an abnormal thoracic wall,
mediastinal, and lung parenchymal signs were coded as 14.

A class activation map (CAM)27 was generated to indicate the
image regions that play a decisive role in CNN classification
results. The active region for CNN classification was calculated by
summing the weights associated with the feature maps in the final
convolutional layer of CNN.

Training algorithm and environment. The training model of
this study was based on the inception-v4 CNN architecture28,
which was pretrained on the ImageNet dataset. In the last fully
connected layer of the inception-v4 architecture, the original 1000
classes were replaced by 25 classes, representing 25 abnormal
signs on CXR. Because of the uneven distribution of positive and
negative subjects under some labels in the training dataset, a
customized weighted binary cross-entropy loss function was used
to place greater weight on the infrequent input data.

We performed fivefold stratified cross-validation. Stratified cross-
validation splits the data into multiple folds to ensure that each fold
has the same observation ratio29. This method provides more
information than one training-validation fitting model. In the five
deep learning procedures, the entire training dataset was divided into

Fig. 2 Diagram of 25 labels of abnormal signs extracted from the radiology reports by the bidirectional encoder representations from transformers
(BERT) model. According to the anatomical region, the linguistic entities describing abnormal signs on chest X-ray radiographs were divided into four
categories: pleura, lung parenchyma, mediastinum, and thoracic wall. The words in white color refer to anatomical regions or general categories. The words
in black color represent labels of abnormal signs.
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80% for training and 20% for internal validation. Then, in each cross-
validation, 25 two-way CNN classification models were established to
identify the 25 labels. Each model was trained for 24 epochs. The
mean prediction probability of the five inception-v4 models was
taken as the final prediction value. This mean value was then used to
determine the threshold between positive and negative results by
obtaining the maximum F1-score for each label. This threshold was
then used to calculate sensitivity and specificity.

The code of study is available at https://zenodo.org/record/
533591430. We used an open-source tool for deep learning
(PyTorch, http://pytorch.org/), and also used a computer vision
library (opencv, http://opencv.org/), and a data analysis library
(scikit-learn, http://scikit-learn.org/). The program runs on a
Linux platform (Ubuntu 16.04, Canonical Ltd.) with four
graphics processing units (GTX 1080Ti, Nvidia) in parallel with
a total of 44 GB graphical random-access memory.

Statistical analysis. The data following normal distribution are
expressed as mean ± standard deviation. We employed five per-
formance metrics to evaluate the results of the proposed CNN,
namely area under the curve (AUC), accuracy, sensitivity, spe-
cificity, and F1-score. The 95% confidence intervals of these
metrics were calculated by bootstrapping with 100 iterations to
estimate the uncertainty of results31. In this way, the original data
was resampled 100 times. Each time, 95% of the data were ran-
domly selected and used to calculate the statistics of interest. The
comparison between AUCs was conducted using DeLong’s test32.
A two-sided P < 0.05 was considered statistically significant. A
statistical software package (MedCalc v18, MedCalc Software)
was used for statistical analysis.

Results
Study population and datasets. The data collection included two
steps. First, the CXR images and radiology reports of
74,082 subjects (mean age 50.0 ± 17.1 years) from an academic
hospital (Hospital-1) were retrospectively collected as a training
dataset. Using the BERT model to extract the linguistic entities
and relationships from the unstructured radiology reports, a
knowledge graph was constructed to represent the relationship
between CXR labels and report content, which laid the founda-
tion for training CNN with weakly supervised labeling.

Second, to determine the classification performance of CNN
for multiple abnormal signs on CXR, and compare with local
radiologists in a multicenter clinical setting, we used the test
cohorts of the CRADI dataset from another academic hospital
(Hospital-2, Shanghai General Hospital) and eight community
clinics, including 5996 symptomatic patients (aged 52.6 ± 16.7
years) and 2130 asymptomatic screening examinees (34.5 ± 13.6)
from Hospital-2, and 1804 symptomatic patients (69.1 ± 14.0)
from eight community clinics. Due to the low incidence of
abnormal signs on CXR in real-world practice, a large number of
subjects were included to test the performance of the CNN model.

Using the BERT model for NLP, we extracted information from
the radiology reports in the test cohorts of the CRADI dataset to
represent the results of local radiologists. Because most CXR cases
lack the gold standard of pathology, in order to establish a solid
and unified reference standard to determine the performance of
the CNN model, we conducted an expert consensus reading on
the whole test cohorts. Table 1 shows the population character-
istics of the training and test datasets.

Establishment of a knowledge graph and CXR labels. After
extracting linguistic entities and relationships from the radiology
reports using the BERT model (Supplementary Fig. 1), we con-
structed a knowledge graph containing 25 abnormal signs found
in the radiology reports. Each abnormal sign included synonyms,
parasynonyms, and descriptive phrases that may appear in nat-
ural language reports. The linguistic entities contained in each
abnormal sign were summarized as a label for training CNN; thus
a total of 25 labels were defined for 25 abnormal signs (Fig. 2).
The abnormal signs were mainly located in the lung parenchyma,
mediastinum, pleura, and chest wall. The 12 labels of lung par-
enchyma included consolidation, small consolidation, patchy
consolidation, nodule, calcification, mass, interstitial disease,
cavity, hilar adenopathy, emphysema, pulmonary edema, and
thickened bronchovascular markings. The four labels of medias-
tinum included cardiomegaly, abnormal aorta, aortic unfolding,
and aortic arteriosclerosis. The six pleural labels consisted of
pneumothorax, pleural effusion, abnormal pleura, pleural thick-
ening, pleural adhesion, and pleural calcification, and the three
thoracic wall labels comprised scoliosis, peripherally inserted
central catheter (PICC) implant, and pacemaker implant.

T-distributed stochastic neighbor embedding (t-SNE) algo-
rithm reduced the dimension of abnormal signs of four
anatomical locations into a two-dimensional plane. In the
training and three test cohorts (patients and screening examinees
in Hospital-2 and patients from eight community clinics), t-SNE
visualizes the distribution of disease labels extracted through the
BERT model and shows the aggregation of abnormal cases
(Supplementary Fig. 2 and Data 1).

Training dataset. In the training cohort (n= 74,082), 33,339
(45.0%) cases were normal, 10,706 (14.5%), 5789 (7.8%), 5977
(8.1%), 4031 (5.4%), 4954 (6.7%), and 9286 (12.5%) cases had
one, two, three, four, five, and more than five abnormal signs,
respectively. The most common abnormal signs were thickened
bronchovascular markings (n= 37,954), abnormal pleura
(n= 13,085), pleural thickening (n= 12,789), nodule
(n= 12,192), and consolidation (n= 9701).

The CNN classified 25 abnormal signs, and the AUCs of these
abnormal signs ranged from 0.880 (95% CI: 0.878–0.883) to 1.000
(Supplementary Data 2). The mean AUC, accuracy, sensitivity,
specificity, and F1-score of 25 signs were 0.958 ± 0.027,
0.943 ± 0.063, 0.607 ± 0.252, 0.958 ± 0.078, and 0.703 ± 0.192,

Table 1 Study population characteristics of the chest radiograph at diverse institutes (CRADI) dataset.

Training cohort Test cohorts

Hospital-1 Hospital-2 (symptomatic
patients)

Hospital-2 (screening
examinees)

Eight community clinics (symptomatic
patients)

Total number 74,082 5996 2130 1804
Male 34,828 (47.0%) 2964 (49.4%) 817 (38.3%) 673 (37.3%)
Female 39,254 (53.0%) 3032 (50.6%) 1313 (61.7%) 1131 (62.7%)
Mean age, years 50.0 ± 17.1 52.6 ± 16.7 34.5 ± 13.6 69.1 ± 14.0
Age range, years 18 to 102 18 to 102 18 to 92 21 to 101
Positive case 40,743 (55.0%) 2686 (44.8%) 206 (9.7%) 802 (44.5%)
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respectively. In particular, the AUC of common signs such as
consolidation, nodule, mass, pneumothorax, and pleural effusion
were 0.940 (0.939–0.943), 0.880 (0.878–0.883), 0.985
(0.976–0.993), 0.971 (0.967–0.975), and 0.986 (0.985–0.987),
respectively. The corresponding accuracies were 0.912
(0.910–0.914), 0.870 (0.868–0.872), 0.998 (0.997–0.999), 0.972
(0.971–0.973), and 0.986 (0.985–0.987), respectively.

Symptomatic patients from an academic hospital. The con-
sensus reading of experienced radiologists was used as a reference
for testing CNN’s classification performance. Fig. 3 (Supple-
mentary Data 3) shows the receiver operating characteristic
(ROC) curves for the three test cohorts. Because the number of
correctly classified labels of CNN determines its ability to inter-
pret CXR, we further evaluated the number of consistent labels
between CNN and consensus reading (Fig. 4 and Supplementary
Data 4). Figure 5 displays several example CXR cases with AI
classification.

In the symptomatic patients (n= 5996) from Hospital-2, all 25
abnormal signs were present. The mean AUC, accuracy,
sensitivity, specificity, and F1-score of CNN reached
0.866 ± 0.110, 0.907 ± 0.081, 0.631 ± 0.245, 0.919 ± 0.079, and
0.716 ± 0.189, respectively (Supplementary Data 5). The AUCs
of major abnormal signs, i.e., consolidation, nodule, mass,

pneumothorax, and pleural effusion, were 0.900 (95% CI:
0.849–0.943), 0.698 (0.581–0.806), 0.977 (0.965–0.988), 0.963
(0.925–0.991), and 0.988 (0.980–0.994), respectively. The accura-
cies of these signs were 0.935 (0.908–0.955), 0.930 (0.903–0.951),
0.974 (0.955–0.986), 0.970 (0.949–0.982), and 0.970
(0.949–0.982), respectively.

In this cohort, 2092 patients (34.8%) showed consistency on
25 signs between CNN and the consensus reading, and 1121
(18.7%), 1049 (17.5%), and 881 (14.7%) patients showed
consistency on 24, 23, and 22 signs, respectively. Overall, CNN
correctly classified ≥22 (88%) abnormal signs in 5142 patients
(85.8%).

The AUC was not significantly different in identifying 21
abnormal signs between CNN and the local radiologists in an
academic hospital (Delong’s p > 0.05). But the AUC of CNN was
lower than that of radiologists in determining small consolidation
(p= 0.002), nodule (p < 0.001), calcification (p < 0.001), and
PICC implant (p < 0.001).

Screening examinees from an academic hospital. In the
asymptomatic screening examinees (n= 2130) from Hospital-2,
18 abnormal signs were present, while the other seven were
absent, including mass, cavity, edema, pneumothorax, pleural
effusion, PICC implant, and pacemaker implant. The mean AUC,

Fig. 3 Receiver operating characteristic (ROC) curves of 25 abnormal signs on CXR in the three external test cohorts. a In the cohort of symptomatic
patients in the academic hospital, the mean AUC was 0.866 ± 0.110. The AUCs of major abnormal signs, i.e., consolidation, nodule, mass, pneumothorax,
and pleural effusion, were 0.900 (95% CI: 0.849–0.943), 0.698 (0.581–0.806), 0.977 (0.965–0.988), 0.963 (0.925–0.991), and 0.988 (0.980–0.994),
respectively. b In the cohort of asymptomatic screening examinees in the academic hospital, the mean AUC was 0.891 ± 0.147. The AUCs of common
signs, i.e., consolidation and nodule, were 0.876 (0.817–0.920) and 0.796 (0.725–0.838), respectively. c In the cohort of symptomatic patients in eight
community clinics, the mean AUC was 0.796 ± 0.157. The AUCs of major signs, i.e., consolidation, nodule, and mass, were 0.873 (95% CI: 0.815–0.926),
0.698 (0.619–0.771), and 1.000 (0.991–1.000), respectively.
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accuracy, sensitivity, specificity, and F1-score of CNN were
0.891 ± 0.147, 0.925 ± 0.040, 0.523 ± 0.259, 0.984 ± 0.006, and
0.640 ± 0.248, respectively (Supplementary Data 6). The AUCs of
common signs, i.e., consolidation and nodule, were 0.876
(0.817–0.920) and 0.796 (0.725–0.838), respectively. The accura-
cies were 0.976 (0.969–0.982) and 0.977 (0.970–0.983),
respectively.

In this cohort, 1010 (47.4%), 456 (21.4%), 366 (17.2%), and 198
(9.3%) patients showed consistency on 25, 24, 23, and 22 signs
between CNN and the consensus reading (the absent signs were
compared according to the negative results), respectively. Overall,
CNN correctly classified ≥22 signs in 2030 (95.3%) patients.

The AUC was not significantly different in determining 17
abnormal signs between CNN and local radiologists (all p > 0.05).
But the AUC of CNN was lower than that of radiologists in
determining nodule (p= 0.013).

Patients from eight community clinics. In the symptomatic
patients (n= 1804) from eight community clinics, 21 abnormal signs
were present. The other four were absent, including cavity, edema,

pneumothorax, and PICC implant. The mean AUC, accuracy, sen-
sitivity, specificity, and F1-score of CNN were 0.796 ± 0.157,
0.861 ± 0.106, 0.609 ± 0.297, 0.866 ± 0.189, and 0.674 ± 0.228,
respectively (Supplementary Data 7). The AUCs of major signs, i.e.,
consolidation, nodule, and mass, were 0.873 (95% CI: 0.815–0.926),
0.698 (0.619–0.771), and 1.000 (0.991–1.000), respectively. The
accuracies were 0.916 (0.881–0.941), 0.672 (0.624–0.720), and 1.000
(0.991–1.000), respectively.

In this cohort, 566 (31.4%), 474 (26.3%), 350 (19.4%), and 245
(13.6%) patients showed consistency between CNN and the
consensus reading on 25, 24, 23, and 22 labels, respectively.
Overall, CNN correctly classified ≥22 (88%) abnormal signs in
1636 (90.7%) patients. The absent signs were compared according
to the negative results.

The AUC was not significantly different in identifying 12
abnormal signs between CNN and the local radiologists in
community clinics (all p > 0.05). The AUC of CNN was higher
than that of local radiologists in identifying hilar adenopathy,
thickened bronchovascular markings, cardiomegaly, abnormal
aorta, aortic unfolding, and abnormal pleura (all p < 0.001), but
lower in identifying calcification (p < 0.001).

Fig. 4 Number and percentage of concordant labels between the convolutional neural network (CNN) and expert consensus reading in the three test
cohorts. a In the cohort of symptomatic patients in the academic hospital, 2092 patients (34.8%) showed consistency on 25 signs between CNN and the
consensus reading, and 1121 (18.7%), 1049 (17.5%), and 881 (14.7%) patients showed consistency on 24, 23, and 22 signs, respectively. Overall, CNN
correctly classified ≥22 (88%) abnormal signs in 5142 patients (85.8%). b In the cohort of asymptomatic screening examinees in the academic hospital,
1010 (47.4%), 456 (21.4%), 366 (17.2%), and 198 (9.3%) patients showed consistency on 25, 24, 23, and 22 signs between CNN and the consensus
reading, respectively. Overall, CNN correctly classified ≥22 signs in 2030 (95.3%) patients. c In the cohort of symptomatic patients in eight community
clinics, 566 (31.4%), 474 (26.3%), 350 (19.4%), and 245 (13.6%) patients showed consistency between CNN and the consensus reading on 25, 24, 23,
and 22 labels, respectively. Overall, CNN correctly classified ≥22 (88%) abnormal signs in 1636 (90.7%) patients.
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Discussion
In this study, we used the BERT model to extract linguistic
entities and relationships from unstructured radiology reports,
and established 25 labels representing 25 abnormal signs found
on CXR, so as to train CNN with weakly supervised labeling. In
the three external test cohorts of symptomatic patients, screening

examinees, and community clinic patients, the mean AUC of
CNN for the 25 labels reached 0.866, 0.891, and 0.796, respec-
tively. In particular, the mean specificity was as high as 0.919,
0.974, and 0.866, indicating a very low false-positive rate that is
potentially helpful to screen out patients with abnormal signs on
CXR. The classification performance of CNN was slightly lower
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than that of local radiologists in an academic hospital but slightly
higher than that in community clinics.

Multiple AI studies aimed at disease detection and classifica-
tion on CXR. Classifying lesions on CXR has been widely
explored, the size of publicly released datasets is increasing33, 34.
Recently, two large datasets have been made publicly available.
The Open-I dataset contains 7470 CXR cases with 3955 radiology
reports, but the images were not explicitly annotated by disease
category35. The ChestX-ray14 dataset consists of 112,120 frontal-
view CXR images from 30,805 patients36. The developer of the
ChestX-ray14 dataset proposed a 14-label classification system,
using traditional NLP technology to extract keywords from
radiology reports to classify chest diseases14, 36. Thereafter, NLP
technology has shown the advantage of automatically labeling a
large number of CXR images, greatly reducing the difficulty and
workload of image annotation. The BERT model has made
remarkable achievements in processing common language, such
as for the credibility analysis of information on social media37, 38.
In this study, this model proved its ability to process medical
terms in radiology reports, thus laying the foundation for estab-
lishing a 25-label classification system on CXR.

After extracting linguistic entities and relationships from
unstructured radiology reports, we established 25 labels of
abnormal signs, which reflected the distribution of common
abnormal signs in 74,082 patients. Of the 25 labels, seven were
frequently used in previous studies, i.e., consolidation, nodule,
mass, edema, effusion, emphysema, and pneumothorax; the other
18 were not commonly used as labels in AI research but were
frequently used in diagnostic reports, such as hilar adenopathy,
thickened bronchovascular markings, interstitial disease, abnor-
mal aorta, abnormal pleura, scoliosis, and pacemaker implant.
Although other studies have applied more labels13, 15, this com-
prehensive labeling system can reflect the abnormal signs in
actual diagnostic reports.

We conducted a comprehensive external test on two levels of
medical institutes (academic hospital vs. community clinics) and
two types of patients (symptomatic patients vs. screening exam-
inees). Most of the datasets of previous AI studies on CXR came
from academic hospitals, such as the ChestX-ray14 dataset
released by the National Institutes of Health Clinical Center39. A
recent study on the classification of abnormal CXR used the
Rhode Island Hospital chest radiograph (RIH-CXR) database40,
from an academic hospital, but the cases in this database were
only marked as normal or abnormal. Due to the different dis-
tribution of chest diseases in academic hospitals and community
clinics, it is reasonable to separate the investigation of academic
hospitals and community clinics. Our results have suggested that
CNN performed well in detecting abnormal signs on CXR in
these two levels of medical institutions. In addition, we conducted
a test on the screening population. The positive rate of abnormal
signs on CXR in asymptomatic screening examinees was sig-
nificantly lower than that of symptomatic patients (9.7% vs.
44.8%), and the types of diseases were less. In this screening
scenario, the average AUC and accuracy of CNN were 0.891 and

0.925, respectively. As far as we know, no other study has verified
the performance of CNN for identifying multiple disorders on
CXR in symptomatic patients and asymptomatic screening
examinees. Our methods and results are more in line with the
need of applying AI approach to different types of patients in
practice.

Interestingly, CNN’s performance was only slightly lower than
that of local radiologists in an academic hospital, but marginally
higher than that in community clinics. This difference may be
that the radiologists in community clinics usually have less
experience than those in academic hospitals2. In addition, we
found that CNN had more than 22 correct classifications out of
25 for 86% of patients in academic hospitals and 91% of patients
in community clinics. These results indicate that CNN can
identify most of the common diseases found on CXR, which
provides a prospect for clinical application.

The World Health Organization emphasized the potential
clinical value of CXR in screening and diagnosing pulmonary and
cardiac diseases, and pointed out the lack of diagnostic expertise
in primary hospitals41. Even experienced radiologists have lim-
itations in their ability, such as cognitive and perceptual biases
and fatigue, all of which can lead to diagnostic errors42. CNN
approach can at least be used as an auxiliary tool for radiologists,
which could help to reduce misinterpretation. Khosravan et al.
showed that a collaborative computer-aided diagnosis system can
help radiologists reduce diagnostic errors43. Kundel et al. showed
that perceptual biases and diagnostic errors can be decreased by
giving feedback about abnormal signs on CXR to radiologists44.
This clinical strategy fits well with our proposed CNN approach.
AI assistant system can screen abnormal signs on CXR, as a
prereading tool for radiologists to evaluate CXR, to improve
reading efficiency and accuracy. Our research allows the diagnosis
of 25 abnormal signs on CXR, which is essential in large academic
hospitals with heavy workloads, and community clinics with
relatively inexperienced medical staff.

Although CT screening is recommended and widely used in
the present medical environments, CXR retains an important
screening role in many countries. Furthermore, in some cases,
lung cancer was detected by chest CT but was retrospectively
identified as a missed finding on prior CXR45. The population
without CT examination mainly relies on CXR to screen and
diagnose chest and cardiac diseases. The AI-based system can
improve the workflow, especially for screening units with many
subjects but a low true-positive rate.

This study has some limitations. First, we only trained CNN on
posteroanterior-view CXR. A previous study reported that lateral-
view CXR improved the diagnostic accuracy in 15% of cases1. Sec-
ond, in completing the radiology reports, radiologists observe CXR
images, patient characteristics, and medical history, but CNN only
views the images based on the image labels extracted from radiology
reports. Additional analysis of patient characteristics and medical
history will improve AI’s ability to interpret CXR cases, especially for
some special diseases46. Third, there may be errors in radiology
reports and label extraction. Although we have iteratively corrected

Fig. 5 Representative chest radiographs overlaid with class activation maps (CAM) showing the active area of convolutional neural network (CNN). a
The inferior lung field of the left lung is overlaid by CAM, which reveals a patchy density (white arrow). The CNN noted that this case had a “patchy
consolidation” sign, while the other 24 abnormal signs were absent. b The middle and lower fields of the left lung are overlaid by CAM, which reveals a
pulmonary nodule (white arrow). The CNN indicated that this case had a “nodule” sign, while the other 24 abnormal signs were absent. c The upper right
lung is overlaid by CAM. The CNN indicated that this case has a “pneumothorax” label. The radiologists confirmed this finding and found visible visceral
pleural margins (white arrow), but there was no lung texture outside this line. The other 24 abnormal signs were absent. d The lower right lung is overlaid
by CAM. The CNN indicated that this case has a “hydrothorax” sign. The radiologists confirmed this finding and identified an air-fluid level (white arrow). e
The upper field and lower field of the left lung are overlaid by CAMs. The CNN indicated that this case had “patchy consolidation” and “pleural effusion”
signs. The other 23 abnormal signs were absent. The radiologists confirmed CNN’s findings (white arrows).
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them through knowledge graphs and expert panel discussions, it is
necessary to conduct a prospective study to evaluate the influence of
errors on reporting. Fourth, the positive rate of some abnormal signs
was low, so the imbalance of training data may affect the perfor-
mance of CNN. Some rare diseases or infrequent abnormal signs,
such as edema and cavity, may not be fully learned by CNN. Pro-
viding a balanced dataset for each disease label will improve the
robustness and generalizability of CNN47. Finally, the current study
was conducted in one country. The performance of CNN needs to be
further validated in other populations.

In this study, we developed and validated an AI approach to
interpret CXR based on the BERT NLP model to extract linguistic
entities and relationships from radiology reports to establish a 25-
label system of abnormal signs on CXR. In a multicenter external
test setting of different populations, the CNN method achieved
high AUC and specificity in identifying abnormal signs on CXR,
and its classification performance was slightly lower than that of
local radiologists in an academic hospital but marginally higher
than those in community clinics. The CNN-derived classification
of most abnormal signs was consistent with expert consensus
reading. Thus, AI-assisted interpretation of CXR images may
enhance the diagnostic capability and efficiency of doctors for
common disorders, especially for primary hospitals short of
radiologists or academic medical centers with heavy workloads.
This study suggests the possibility of using NLP to construct an
effective CXR report annotation system, which improves the
annotation efficiency of large-sample images and then inspires
the use of NLP in other medical image annotations.

Reporting Summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
Source data for the main figures in the manuscript can be accessed as Supplementary
Data 1, 3, and 4. The test data of CRADI datasets (raw data) are available only for
scientific purposes at https://zenodo.org/record/5493595#.YTmMPBniuUk/20 The
training dataset is not publicly available to protect patient privacy, since this dataset
contains patient-identifiable information. If any researcher wants to use the training
dataset for scientific purposes, please contact the corresponding author and apply for
ethical approval from the data provider.

Code availability
Codes and demo data for this study are available at https://zenodo.org/record/533591430.
The code and model of the bidirectional encoder representations from transformers
(BERT) are at https://github.com/google-research/bert/. We performed this study with
open-source tools, including a deep learning library (PyTorch 0.4.0, http://pytorch.org/),
a computer vision library (opencv, http://opencv.org/), and a data analysis library (scikit-
learn, http://scikit-learn.org/).
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