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Selectively enriched microbial consortia are potentially useful for the conversion of lignocellulose (LC) into biofuels and commodity
chemicals. Consortia are also of interest to elucidate the roles of individual microorganisms and the dynamics of enzymes involved
in LC deconstruction. Using metaproteomics, 16 S rRNA gene amplicon sequencing and multivariate discriminant analysis, we
revealed the temporal dynamics of microbial species and their proteins during anaerobic conversion of LC by microbial consortia
derived from cow rumen (RWS) and termite gut (TWS) microbiomes. Bacteroidetes (Bacteroidota), Firmicutes (Bacillota) and
Proteobacteria (Pseudomonadota) phyla were dominant, irrespective the inoculum origin, displaying functional complementarities.
We identified a large variety of carbohydrate-active enzymes, distributed in 94 CAZy families, involved in biomass deconstruction.
Additionally, proteins involved in short chain fatty acids biosynthesis were detected. Multivariate analysis clearly differentiates RWS
and TWS metaproteomes, with differences originating in the initial inoculates. Further supervised discriminant analysis of the
temporal succession of CAZymes revealed that both consortia consume easily accessible oligosaccharides during the early stage of
incubation, degrading more complex hemicellulose and cellulose fractions at later stages, an action that pursues throughout the
incubation period. Our results provide new insights regarding the functional roles and complementarities existing in
lignocellulolytic consortia and highlight their potential for biorefinery applications.
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INTRODUCTION
Lignocellulose (LC) is the major component of plant cell walls and
the primary source of renewable carbon on Earth available for a
sustainable production of biofuels and commodity chemicals.
However, biomass bioconversion is very challenging due to LC
recalcitrance [1]. Therefore, to improve the economic feasibility of
biomass biorefining, more effective strategies are required to
break down LC.
In natural ecosystems, LC decomposition is performed by

complex microbial communities producing large enzyme arsenals.
These communities includes the ones involved in the composting
processes [2, 3], cellulose and leaf-litter decomposition in soils
[4–6], and the digestive systems of herbivores [7] and termites
[8, 9]. In the case of herbivores, LC decomposition is the result of
the symbiosis between the animal host and its digestive
microbiome, the latter providing short-chain volatile fatty acids
(VFA) and microbial proteins to the host. Therefore, to improve the
economic feasibility of biomass biorefining, one strategy is to
develop Nature-inspired solutions by harnessing the power of
naturally occurring LC-degrading microbiomes. However, the

challenge is to deploy such microbial ecosystems in controlled
bioreactor environments.
LC deconstruction is a complex process that marshals a large

diversity of enzymes rarely produced by a single microbial species
[10]. The process involves carbohydrate-active enzymes
(CAZymes) that break down, modify or assemble glycans [11].
CAZymes are classified into 5 main categories, namely glycoside
hydrolases (GH), glycosyltransferases (GT), carbohydrate esterases
(CE), polysaccharide lyases (PL) and auxiliary activities (AA), and
their appended non-catalytic carbohydrate-binding modules
(CBM) [11]. Other non-catalytic protein domains include cohesins
(COH), dockerins (DOC) and S-layer homology (SLH) domains.
These are often appended to CAZymes and provide the means to
incorporate cellulosome complexes that link enzymes to the cell
surfaces [12]. Microorganisms present in LC degrading environ-
ments such as the digestive tract of termites or cow rumen
provide vast reservoirs of CAZymes, which are sources of new
potent lignocellulolytic enzymes for biomass deconstruction [13].
To better understand the biological mechanisms that underpin

LC degradation, meta-omics technologies are being used to
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investigate how microbial and enzymatic synergies contribute to
LC deconstruction [14]. 16 S rRNA gene amplicon sequencing and
shotgun metagenomics have provided information on both the
taxonomic and metabolic potential of various lignocellulolytic
microbial communities [7, 10, 15]. Moreover, they have shed light
on the synergies between the members of these communities
[2, 4, 16]. However, these approaches do not inform on the actual
metabolic activities of community members, nor do they provide
details of the effective role of genes in ecosystem functioning. For
this, metaproteomics is a precious tool since it provides
information on the entire protein component of microbial
communities, links proteins to specific microbial taxa and
correlates their presence with metabolic activity [17]. This power-
ful approach thus provides useful information on metabolic
networks and symbiotic microbial interactions.
Previous metaproteomics studies on rumen ecosystems have

shown that the most abundant proteins are affiliated to
Bacteroidetes (Bacteroidota), Firmicutes (Bacillota) and Proteobac-
teria (Pseudomonadota) [18], where LC degradation is associated
with high redundancy of key enzyme activities. Regarding the
termite gut microbiome, metaproteomics of Nasutitermes corniger
showed that among 197 identified proteins with known functions,
48 proteins are directly related to glycan hydrolysis [19]. However,
due to the high complexity of these natural ecosystems and the
limited number of proteins detected, these metaproteomic
studies neither revealed the specific roles of individual microbial
taxa, nor the temporal dynamics of proteins involved in LC
breakdown.
To gain insight into how lignocellulolytic ecosystems function,

selective ecosystem enrichment is often used to reduce microbial
complexity and hone community functions for use in bioprocesses
[20–23]. However, most previous metaproteomic studies per-
formed on simplified ecosystems only revealed a small number of
proteins [23–27]. They also fail to fully capture the temporal
dynamics of microbial species and CAZymes, although one
previous study has provided insight into the protein expression
dynamics of a subset of enzymes [28]. To further elucidate the
mechanisms employed by microbial consortia to decompose LC, it
is thus vital to fully capture the temporal dynamics of all active
species and expressed proteins. Using LC as the sole carbon
source, we postulate that inoculum-specific microbial species can

be maintained, although we expect that time-dependent enzyme
profiles to vary depending as a function of substrate modifications
occurring during the degradation process. Nevertheless, we also
expect all enzyme profiles will display genericity, regardless of the
source of the inoculum.
In previous studies, we reported the selective enrichment of

two anaerobic lignocellulolytic microbial consortia derived from
cow rumen (RWS) and from the termite gut microbiome of
Nasutitermes ephratae (TWS) [20, 21]. These naturally-occurring
anaerobic microbiomes present significant and contrasting levels
of diversity, and display great potential for LC degradation
[7, 8, 13]. The enrichment of these microbiomes by a sequential
batch reactor process, using wheat straw as sole carbon source,
resulted in consortia displaying high LC-degradation activity and
good ability to produce carboxylates (mainly VFAs with acetate,
butyrate and propionate as main products). These products are
valuable chemicals for producing bioplastics and liquid biofuels
[29, 30]. The kinetic characteristics of these enriched consortia
were determined by measuring LC-degradation rate, xylanase
activity and carboxylate production. Herein, we expand on
previous work, performing shotgun metaproteomic analysis over
the reaction period of wheat straw hydrolysis by RWS and TWS
consortia.

MATERIALS AND METHODS
Lignocellulose degradation by RWS and TWS microbial
consortia
The kinetic behaviors of the enriched lignocellulolytic microbial consortia
derived from cow rumen (RWS) and termite gut (TWS), summarized in
Table 1 and Figure S1, have been described previously [20, 21]. For each
consortium, two identical anaerobic bioreactors were carried out, using a
mineral medium containing wheat straw as the sole carbon source
(20 g.L−1). Bioreactors were operated for 15 days at 35 °C under stirring
(400 rpm) and pH control (6.15), as detailed in Supplementary Material and
Methods.
The temporal dynamics of species and expressed proteins in RWS and

TWS along LC degradation were assessed by 16 S rRNA gene sequencing
and shotgun metaproteomics performed on four time points for each
bioreactor. Time point selection was based on wheat straw degradation,
VFA production and xylanase activity profiles (Table 1). The first point (T1)
corresponds to an early phase where xylanase activity and lignocellulose

Table 1. RWS and TWS sample characteristics

Dry matter degradation (%) VFA (mgC/L) Acetate:Propionate:Butyrate (C molar ratio) Xylanase (mUA/L)

RWS-1a T1 7.6 ± 7.1 552.20 ± 23.1 57:24:18 174.6 ± 22.8

RWS-2a T1 10.1 ± 3.2 569.4 ± 42.0 58:25:17 158.4 ± 17.3

RWS-1 T2 14.2 ± 0.5 828.4 ± 56.7 55:25:20 543.0 ± 18.1

RWS-2 T2 20.5 ± 5.4 862.7 ± 20.1 62:24:14 369.8 ± 19.1

RWS-1 T3 33.2 ± 3.1 1408.3 ± 64.4 53:23:24 852.3 ± 48.3

RWS-2 T3 30.5 ± 0.4 1254.6 ± 130.9 64:23:13 865.4 ± 17.9

RWS-1 T4 40.7 ± 1.5 1842.8 ± 46.5 54:23:22 879.6 ± 40.9

RWS-2 T4 45.6 ± 3.8 2174.6 ± 67.4 65:21:14 937.5 ± 58.0

TWS-1 T1 11.3 ± 4.5 344.7 ± 10.4 62:16:22 297.9 ± 167.4

TWS-2 T1 16.3 ± 4.4 359.3 ± 6.3 61:13:26 327.9 ± 56.7

TWS-1 T2 30.7 ± 3.5 1896.1 ± 18.0 36:21:42 2561.4 ± 292.3

TWS-2 T2 31.1 ± 6.5 1455.3 ± 22.7 41:23:36 2955.7 ± 355.0

TWS-1 T3 34.6 ± 3.3 1901.5 ± 8.3 41:22:38 2467.8 ± 251.2

TWS-2 T3 38.9 ± 5.2 1887.3 ± 8.3 45:23:33 2177.5 ± 204.3

TWS-1 T4 46.2 ± 3.1 2131.6 ± 110.3 44:21:35 2070.5 ± 187.6

TWS-2 T4 45.0 ± 3.1 2075.3 ± 14.7 46:22:32 1477.8 ± 129.5
a1 and 2 indicate the biological replicate bioreactors. Data are means ± SD.
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degradation are low. Time points 2 and 3 (T2 and T3) correspond with the
start and end of maximal xylanase activity and peak lignocellulose
degradation rate. The fourth time point (T4) captures the final phase, when
wheat straw degradation, VFA production and xylanase activity stagnate.

Microbial diversity analysis
Total DNA/RNA were extracted from the pellet fraction of 1.5 mL samples
(13,000 x g, 5 min, 4 °C) using the PowerMicrobiome isolation kit (Qiagen,
Courtaboeuf, France) according to the manufacturer’s instructions. After
DNA purification (AllPrep DNA/RNA MiniKit, Qiagen), the hypervariable V3-
V4 region of the 16 S rRNA gene was amplified by Illumina MiSeq
sequencing (GenoToul Genomics and Transcriptomics platform, Toulouse,
France) using the conditions and primers previously described [31].
Sequencing data was analyzed using Find Rapidly OTUs with Galaxy
solution (FROGS) pipeline [32], as detailed in Supplementary Information. R
CRAN software (v4.0.0) was used for further analysis. Diversity metrics were
obtained using R’s Phyloseq package v1.32.0 [33]. Sequencing data were
deposited to the Sequence Read Archive (SRA) under accession number
PRJNA729464.

Metaproteomics analysis
Protein extraction, peptides digestion and mass spectrometry analysis.
Protein extraction was carried out on 3 technical replicates per sample
(3mL), using a phenol buffer following the procedure for complex
sediment samples [34] and separated by SDS-PAGE. After trypsin
proteolysis (Promega, Fitchburg, WI, USA) and purification of peptides
(ZipTips, C18, Merck, Millipore, Billerica, MA, USA), the dried samples were
stored at −20 °C.
Mass spectrometry (MS) was performed on a Q Exactive HF MS (Thermo

Fisher Scientific, Waltham, MA, USA) with a TriVersa NanoMate (Advion,
Ltd., Harlow, UK) source in liquid chromatography chip coupling mode.
Peptide separation settings were as in procedures previously described
[35]. MS data have been deposited into the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the proteomics identi-
fication (PRIDE) partner repository [36]. Peptide identification was
performed with the Thermo Proteome Discoverer software (v1.4; Thermo
Fisher Scientific, Waltham, MA, USA) using Sequest HT against bacterial
sequences only (plant and eukaryotic sequences excluded) of Uniprot-
TrEMBL database (release date of 6th April 2016) [37]. Peptide identification
considered a false discovery rate (FDR) below 1% calculated by Percolator
[38], a minimum length of six amino acids, and a peptide rank of one.
Protein matches were only accepted if they were identified by a minimum
of one unique peptide and a high confidence. “Protein Groups” (hereafter
referred to as proteins) were form with strict parsimony and using the
highest scoring protein in the group as the confident master candidate
protein. The detailed protocol is included in Supplementary Material and
Methods.

Protein abundance, taxonomic and functional annotations. PROPHANE
pipeline (www.prophane.de) [39] was used for protein identification and
taxonomic annotation using, respectively, the highest sequence similarity
to the UniProtKB/TrEMBL database and BlastP considering Bacteria
proteins only. Fungal proteins were not included as no anaerobic fungi
were detected by qPCR in RWS (data not shown) and no fungi are present
in the gut of higher termites [40]. Functional predictions of cluster of
orthologous groups proteins (COGs) and Pfam (Protein families) domains
were obtained with, respectively, RPS-BLAST algorithm and the COG
collection (release 22.03.2003) [41], considering the first hit for each
protein (e-value ≤ 0.01), and the Hidden Markov Model profiles with
HMMER3 algorithm, considering the first hit for each protein (gathering
cut-off) [42]. Only identified proteins were retained for further analysis. For
each sample, PROPHANE estimated protein abundance based on the
normalized spectral abundance factor (NSAF) [43]. Replicate-to-replicate
variation was assessed by Pearson correlation analysis using the cor R
function, accepting a minimum value of 0.7. Proteins present in only one
technical replicate were discarded; remaining proteins were expressed as
mean values. Computational assignment of protein functions were
carefully checked, completed, and manually curated.

CAZymes annotation. The identified proteins were assigned to CAZyme
families following the day-to-day updates procedure of the CAZy database
(accessed March 30, 2018) as described previously [44, 45]. Briefly, protein
sequences were compared to the full-length sequence of previously
annotated proteins, stored internally in the CAZy database, using BlastP

(version 2.3.0+ ). All remaining sequences with no hit were compared with
BlastP to a library of individual modules (catalytic or ancillary) and a
HMMER3 search against a collection of hidden Markov models based on
each CAZy family [45]. Presence of signal peptides in CAZymes was predicted
by SignalP 6.0 (https://services.healthtech.dtu.dk/services/SignalP-6.0/).

Data analysis and visualization. Hierarchical clustering (Ward method
with Euclidean distance) was used to group the samples with dist and
hclust R functions. Plots were constructed using ggplot2 package v3.3.2.
Relative abundances of bacterial OTUs or proteins were aggregated at a
target taxonomic level for stacked bar plot representation. Low abundance
taxa (<1% Phylum and <2% Genus level), were gathered as “Other”. A
unique protein affiliated to Chitinispirillum, was excluded from the analysis.
Statistical significance of differences was determined using Wilcoxon

tests with Benjamini-Hochberg p-value correction for pairwise compar-
isons [46]. For multivariate analysis, centered log-ratio (CLR) transformation
of variables [47] was performed to take into account the compositional
properties of our data. A correction factor equivalent to 70% of the lowest
value of each variable was applied to eliminate zero values observed in the
dataset [48, 49]. Microbial species and CAZymes that best discriminate
consortia and incubation time were investigated by principal component
analysis (PCA) and identified by multivariate integrative partial least
squares discriminant analysis (MINT-PLS-DA) performed with factoextra
v1.0.7 and mixOmics v6.12.2 packages [50, 51]. Discriminant factors were
validated with permutational multivariate analysis of variance (PERMA-
NOVA), using R’s vegan package v2.5–6 to test the statistical significant
differences [52].

RESULTS
Data overview
16 S rRNA gene sequencing of the lignocellulolytic consortia RWS
and TWS generated 800,329 high quality reads (Supp. data 1);
rarefying of samples to 15,000 sequences captured most of the
microbial diversity (Fig. S2). Metaproteomic analysis yielded a total
of 10,342 proteins (Supp. data 1), with high similarity between
technical replicates (Pearson correlation >0.7; Table S1) and similar
coverage, with an average of 2,792 proteins per sample (Table S2).
33.7% of total proteins were identified in both RWS and TWS
consortia (proteins with same accession numbers), while 35.4%
and 30.9% of proteins were specific to RWS and TWS, respectively.
Hierarchical clustering of overall proteins of RWS and TWS
revealed consortia-specific profiles (Fig. S3), evolving as a function
of LC degradation.

Taxonomic and functional profiles of RWS and TWS
throughout wheat straw degradation
Taxonomy deduced from 16 S rRNA gene sequencing data
showed that TWS displayed a lower richness and Shannon
diversity index. However, the Shannon diversity estimated from
metaproteomics data [53] were very close for both consortia
(Table S2). Indeed, a similar taxonomic composition for the two
consortia was revealed by the taxonomic affiliation derived from
both approaches, with a dominance of Bacteroidetes (Bacter-
oidota)(> 60%), Firmicutes (Bacillota) (about 20%) and Proteobac-
teria (Pseudomonadota) (about 10%) phyla (Fig. S4). A minor
fraction of both communities belonged to Spirochaetes, while
Fibrobacteres (Bacillota) was exclusively found in RWS.
Affiliation of proteins at the genus level revealed that the active

populations, contributing most to protein production, belonged to
Bacteroides in all samples of both consortia (Fig. 1A), these
remaining abundant throughout the experiment. In second place
was Clostridium, but its abundance decreased over time. Multi-
variate PCA analysis of the abundance of all taxa-affiliated
proteins, clearly differentiated RWS and TWS communities (Fig. 1B).
This difference was confirmed by a Wilcoxon test (Fig. S5) showing
a higher abundance of proteins belonging to Dysgonomomas,
Fibrobacter and Enterococcus in RWS while TWS showed a stronger
abundance of proteins affiliated to Clostridium, Lachnoclostridium
and Bacteroides, and to minor genera belonging to Firmicutes-
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Others and Proteobacteria-Others. The temporal dynamics of the
main taxa of both consortia was evidenced by MINT-PLS-DA
analysis, using the incubation time as the discriminant factor. This
revealed three clusters formed by T1, T2/T3 and T4 samples
(Fig. 1C). T1 samples showed higher abundance of proteins
affiliated to Clostridium, Shigella, Enterococcus and Proteobacteria-

Others (Fig. 1D) whose abundances decreased with incubation
time. Samples T2/T3 showed higher abundances of proteins
affiliated to Lachnoclostridium, Prevotella and Firmicutes-Others
while in samples T4, proteins affiliated to Sphaerochaeta and
Spirochaetes showed higher abundance, which increased over the
incubation period. Proteins affiliated to Ruminococcus and

Fig. 1 Community composition of RWS and TWS and its temporal dynamics. A Taxonomic community composition at genus level deduced
from the identified proteins (metaproteomics data) for RWS (top graphs) and TWS (bottom graphs) (1 and 2 indicate the biological duplicates).
Relative abundance of proteins based on NSAFs (normalized spectral abundance factors) was aggregated at the genus level for stacked bar
plot representation. The group “Others” gather phyla with relative abundance less than 1% in the dataset. Within major phyla, the group
“Others” gathers genera with relative abundance less than 2% in the dataset or unclassified genera. Proteins belonging to the same bacterial
phylum were represented with the same color palette: Bacteroidetes (Bacteroidota) (blue), Firmicutes (Bacillota) (red); Proteobacteria
(Pseudomonadota) (green), Spirochaetes (Spirochaetota) (purple), Fibrobacteres (Fibrobacterota) (orange). B Impact of the inoculum origin
evidenced by Principal components analysis (PCA) ordination; PCA component 1 and 2 explained respectively 46% and 25.4% of the total
variance and C. Impact of the incubation time in the community dynamic of RWS and TWS metaproteomes, assessed by Multivariate
Integrative Partial Least Square Discriminant Analysis (MINT-PLS-DA) based on the abundance of taxa deduced from proteins (genus level,
CLR-transformed data). MINT-PLS-DA component 1 and 2 explained 59% and 24% of the total variance. Ellipses at 95% confidence.
D Clustered Image Map (CIM) represented the most discriminant genera of the different sampling times for RWS and TWS. CIM was built using
the genera contributing the most to the two first MINT-PLS-DA dimensions. Hierarchical clustering was derived using the Euclidean distance
and Ward methodology. Genera are represented in columns and samples in rows. The boxes on the left highlights the clusters discriminating
the sampling points (yellow, gray, purple and dark-red). The abundance of proteins affiliated to each genus is indicated by the white-to-red
color gradient (increasing values).
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Butyrivibrio were also abundant in T4 samples, but also in T2 and
T3 samples. PERMANOVA analysis (Table S3) confirmed that
inoculum source (R-squared value 0.6214) and incubation time (R-
squared value 0.2022) were the key factors explaining the protein-
taxonomic composition and dynamics for both consortia.
The status of lignocellulose-related functions of RWS and TWS,

revealed by COGs prediction from the protein dataset, revealed
that the cellular function “metabolism” was highly represented
(about 45%) (Fig. S6A), with a strong representation of the subrole
“carbohydrate transport and metabolism” (about 15%), irrespec-
tive of the sampling time and consortia. Bacteroidetes (Bacter-
oidota) made the greatest contribution to proteins involved in this
function (Fig. S6B), while Firmicutes (Bacillota) and Proteobacteria
(Pseudomonadota) provided a lesser contribution to this function.
Nevertheless, the normalization of proteins abundance at the
phylum level, revealed that the specific COG profile of Firmicutes
(Bacillota) and Proteobacteria (Pseudomonadota) members was
particularly focused on the “carbohydrate transport and metabo-
lism” function (Fig. S6C), whereas Bacteroidetes (Bacteroidota)
species were involved in a wider range of functions.

Carbohydrate-active enzymes in RWS and TWS consortia
RWS and TWS expressed a large diversity of CAZymes involved in
plant cell wall degradation, with 423 proteins containing at least
one CAZyme domain (Supp. data 2). In silico prediction of signal
peptides showed 222 CAZymes with a signal peptide (Supple-
mentary data 1). 174 CAZymes (41%), distributed in 69 families,
where common to both consortia (Fig. S7A), accounting for about
80% of the CAZymes abundance while 127 and 122 proteins and
15 and 10 CAZy families were exclusively found in RWS or TWS,
respectively. Most of these proteins contained GH domains,
representing more than 70% of the CAZyme domains detected,
followed by CE domains (12–20%), CBMs (9.5–12.5%), GT domains
(5–8%) and PL domains (about 2%). These CAZyme domains
showed a higher average abundance in TWS than in RWS
(Fig. S7B). The main purveyor of CAZymes in both consortia were
Bacteroidetes (Bacteroidota) members, producing 236 proteins
corresponding to about 80% of the CAZyme abundance (Fig. S7C)
followed by Firmicutes (Bacillota) (138 proteins, average 15%)
while Proteobacteria (Pseudomonadota) expressed a minor
fraction of them (24 proteins, <1.5%).
The most highly represented CAZymes are typically active on

hemicellulose and mainly affiliated to Bacteroidetes (Bacteroidota)
(Fig. 2A), except those classified GH11. These proteins are putative
hemicellulases with endo-β−1,4-xylanase (GH8, GH10, GH11) and β-
mannanase (GH26) activities (Supplementary data 2). Hemicellulose-
oligosaccharide-degrading enzymes, with mainly β-xylosidase or α-
L-arabinofuranosidase functions (GH43), and hemicellulose-
debranching enzymes with α-L-arabinofuranosidase (GH51) and
xylan α−1,2-glucuronidase (GH67, GH115) activities were also
abundant. Cellulose-degrading enzymes were mainly annotated as
β-glucosidases (GH3) of Bacteroidetes (Bacteroidota) origin, while
those with endoglucanase activity mainly belonged to Firmicutes
(Bacillota)(GH5, GH9, GH48) (Fig. 2A). Some of these proteins, were
appended to CBMs or cellulosome (COH and DOC) domains. Among
the most prevalent proteins in both consortia were Bacteroidetes
(Bacteroidota)- and Firmicutes (Bacillota)- affiliated proteins related
to starch degradation and including α-galactosidase, 1,4-α-glucan
branching enzyme, α-glucosidase and α-amylase activities. Accord-
ing to our data, Proteobacteria (Pseudomonadota) were only minor
CAZymes contributors, being mostly sources of acetyl-xylan esterase
activity (CE1; Fig. 2B). Non-catalytic carbohydrate binding modules
(CBM), SLH, COH and DOC (i.e., cellulosome components) were
mainly Firmicutes (Bacillota) origin (Fig. 2B).

CAZymes involved in lignocellulose degradation
Multivariate statistical analyses were used to investigate how both
the inoculum origin and progression of LC degradation influenced

the expressed CAZyme profile. The PCA clearly separated RWS and
TWS samples in function of the inoculum (Fig. S8A, first
component) while the initial time points (T1) were clearly
separated from the others (Fig. S8B, second component).
PERMANOVA analysis (Table S4) confirmed that the inoculum
source and incubation time (R-square values of 0.253 and 0.284,
respectively) were the key parameters determining the CAZyme
expression profiles. The importance of incubation time was
confirmed by Multigroup Supervised Partial Least Squares
Discriminant Analysis (MINT-PLS-DA), using the incubation time
as the discriminant factor. This analysis separated the initial point
(T1) from the subsequent sampling points (T2/T3) and from the
final point (T4) (Fig. 3A). T1 samples (Fig. 3B, dark blue box)
clustered CAZymes with oligosaccharide-degrading activities
linked to cellulose (GH1) and hemicelluloses (GH43), pectin
methylesterase (CE8), and α-glucan degradation (GH4, GH13,
GH31); they also included starch-specific CBMs (CBM20, CBM25,
CBM26). Other CAZymes with hemicellulose-oligosaccharide
degradation (GH2 and GH29) or polysaccharide lyase (PL9)
activities, were also found in T1 samples (Fig. 3B, light-blue box).
However, this enzyme cluster was also present (at a lower
abundance) at the end of the incubation period (T4). The cluster
formed by the sampling points T2 and T3 (Fig. 3B, purple box),
where most of the LC degradation occurred, was characterized by
high abundance of endoglucanases (GH5, GH9 and GH48) and a
large panel of hemicellulolytic CAZymes, including endo-
hemicellulases (GH11), deacetylating (CE1, CE11) and debranching
(GH67, GH115) enzymes and enzymes active on hemicellulose-
oligosaccharides (GH30, GH27). CAZymes related to pectin-
oligosaccharide degradation (GH105) were also found, as well as
xylan- or amorphous cellulose-specific CBMs (CBM3, CBM4,
CBM13, CBM22, CBM36), dockerins typical of cellulosome struc-
tures, and glucosyl/galactosyltransferases (GT4, GT5). This cluster
of CAZymes was also highly abundant at the latter stage of LC
degradation (T4; Fig. 3B, dark-green box) along with a range of
enzymes including endo-hemicellulases (GH10) and xylan deace-
tylating (CE6) or hemicellulose-oligosaccharides degrading
enzymes (GH36, GH125) (Fig.3B, light-green box). CBMs specific
for cellulose (CBM30), hemicellulose (CBM11) and starch (CBM48),
and starch phosphorylases (GT20, GT28) completing this cluster.
Similar results were observed when the analysis was performed
for CAZymes with predicted signal peptide only (Fig. S9).

Enzymes related to volatile fatty acid production in RWS and
TWS consortia
Lignocellulose degradation by RWS and TWS, like in other
microbial consortia, is associated with VFA production [40, 54].
RWS and TWS produced mainly acetate, propionate and butyrate
with a higher proportion of the latter in TWS (Table 1; average
molar ratio of acetate:propionate:butyrate of 59:23:18 for RWS and
47:20:33 for TWS). Based on previous COG assignments
[16, 55, 56], metaproteomic data revealed that the key enzymes
involved in VFA biosynthesis constituted 2.8 ± 0.4% and 3.5 ± 0.2%
of total protein abundance in RWS and TWS, respectively.
According to the higher butyrate production measured in TWS,
proteins related to butyrate biosynthesis (219 proteins) were more
abundant in this consortium (Figure S8). In both consortia, this
function was associated with a large variety of enzymes (numbers
of proteins indicated in parenthesis): acetyl/propionyl CoA
carboxylase (3), butyrate kinase (7), 3-hydroxyacyl-CoA dehydro-
genase (26), enoyl-CoA hydratase (17), acetyl-CoA acetyltransfer-
ase (52), alcohol dehydrogenases YqhD (8) and class IV (67), short-
chain alcohol dehydrogenase (38) and Zn-dependent alcohol
dehydrogenase (1). Most of them were affiliated to Firmicutes
(Bacillota) (138 proteins) and Bacteroidetes (Bacteroidota) (23
proteins), but with abundance levels similar for both phyla (Fig. 4).
At the initial phase of incubation (T1), Clostridium species were the
major contributors of butyrate biosynthesis enzymes in both
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Fig. 2 Distribution of CAZyme families in the main phyla found in RWS and TWS. A Relative abundance of glycoside hydrolases (GH) in
Bacteroidetes (Bacteroidota), Firmicutes (Bacillota) and Proteobacteria (Pseudomonadota) phyla of RWS and TWS metaproteomes.
Abundances were normalized to total CAZymes expression. Only GH targeting cellulose, hemicelluloses, starch and pectin fractions are
showed. Error bars represent the standard deviation. B Relative abundance of carbohydrate esterases (CE), glycosyl transferases (GT),
polysaccharide lyases (PL), carbohydrate-binding modules (CBM) and cellulosomes domains (S-layer homology (SLH), dockerins (DOC),
cohesins (COH)) present in Bacteroidetes (Bacteroidota), Firmicutes (Bacillota) and Proteobacteria (Pseudomonadota) phyla in RWS and TWS
metaproteomes. Abundances were normalized to total CAZymes expression. Error bars represent the standard deviation.
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consortia (67 proteins, about 30% abundance), but subsequently
the abundance of proteins affiliated to Bacteroides (16 proteins)
increased, with higher levels of expression being reached in the
latter phase of biomass bioconversion.
Propionate production was similar in both consortia (Table 1)

and appeared to be associated with the presence of 66 propionate
biosynthesis-related proteins with three main functions: acetyl/
propionyl-CoA carboxylase (34 proteins), methylmalonyl-CoA
mutase (23 proteins) and epimerase (9 proteins), revealing that
propionate was formed via the succinate pathway in both
consortia. These proteins were mainly affiliated to Bacteroidetes
(Bacteroidota), particularly to Bacteroides (37 from 66 proteins)

(Fig. 4), while in Firmicutes (Bacillota), Phascolarctobacterium was
the main contributor to this activity, providing about 20% of the
relevant enzymes.
Surprisingly, for both consortia and irrespective of the sampling

time, proteins involved in acetate biosynthesis were the least
abundant among the VFA-biosynthesis enzymes (61 proteins
accounting for about 0.3% of the total protein abundance;
Fig. S10). The presence of acetate kinases (26 proteins), phosphate
acetyltransferases (22 proteins), and aldehyde dehydrogenases (13
proteins), expressed by all phyla (Fig. 4), suggests that acetate
production in the consortia occurrs via the Wood-Ljungdahl
pathway. Seven of these proteins affiliated to Bacteroides formed

Fig. 3 Temporal dynamics of CAZymes in RWS and TWS metaproteomes. A Impact of the incubation time in the CAZyme dynamics of RWS
and TWS metaproteomes, assessed by Multivariate Integrative Partial Least Square Discriminant Analysis (MINT-PLS-DA) based on CAZyme
abundances (family level, CLR-transformed data). MINT-PLS-DA component 1 and 2 explained 30% and 16% of the total variance. Ellipses at
95% confidence. B Clustered Image Map (CIM) represented the most discriminant CAZyme families of the different sampling times in RWS and
TWS. CIM was built using the main CAZyme families explaining the first two MINT-PLS-DA dimensions. Hierarchical clustering (Euclidean
distance and Ward method) represents CAZymes in columns and samples (T1–T4) in rows. The boxes on the left highlights the clusters
discriminating the sampling points (yellow, gray, purple and dark-red). The abundance of CAZy families is indicated by the white-to-red color
gradient (increasing values).
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the most abundant group, representing 39.3% and 49.3% of
enzymes involved in acetate biosynthesis in RWS and TWS
metaproteomes, respectively, while those belonging to Clostridium
accounted for about 20% (Fig. 4). A low abundance of proteins
involved in carboxylate biosynthesis and belonging to Proteo-
bacteria (Pseudomonadota) was also detected, in particular for
acetate and butyrate production, at early stages of incubation.

DISCUSSION
To gain new knowledge pertaining to LC-degradation process
mediated by microbial consortia, we studied two lignocellulolytic
consortia, RWS and TWS, derived from the complex microbiomes
of the cow rumen and termite gut, respectively. Compared to
previous investigations, metaproteomic analysis of these consortia
enabled the detection of a high number of non-redundant
proteins (10,342) [23, 25, 28, 57], providing a complete repertoire
of enzymes involved in LC degradation and VFA production.
Although RWS and TWS are derived from contrasting parental

microbiomes, the taxonomic community composition deduced
from 16 S rRNA gene sequencing and metaproteomic data
showed that the active communities of both consortia were
rather similar. They displayed a prevalence of Bacteroidetes
(Bacteroidota)- and Firmicutes (Bacillota)-affiliated proteins, with
the genera Bacteroides and Clostridium being the main

representatives of these phyla, respectively. This similarity is
probably the result of the selective pressure exerted by the wheat
straw substrate during the enrichment process, as reported in
previous studies [58–60]. Bacteroides and Clostridium are key
players in LC degradation in the digestive microbiomes of
herbivores, where they break down complex carbohydrates
particularly cellulose, xylan and starch [61, 62]. 16 S rRNA and
metaproteomic data confirmed that the most abundant genera
were also the major source of plant cell wall degrading enzymes in
RWS and TWS consortia, in agreement with previous observations
[18]. This nevertheless contrasts with previous metatranscrip-
tomics studies on the termite gut [63] and studies performed on
enriched microbial consortium able to degrade rice and wheat
straw [27], sugar cane bagasse [23] and a corn-stover degrading
consortium [28]. Our findings reveal that the relationship between
the abundance of microbial phyla and their functional impact on
the community activity is not a simple one, and highlights the
importance of metaproteomics to assign functional roles to
different phyla.
The metabolic functions of RWS and TWS, assessed by COG

analysis, revealed that proteins related to “translation, ribosomal
structure and biogenesis”, “carbohydrate transport and metabo-
lism” and “energy production and conversion” were dominant in
both communities, as reported in previous studies [16, 28, 57].
These COG functions were expressed by the three main phyla

Fig. 4 Temporal profiles of major producers of enzymes involved in VFAs production. Relative abundance and phylogenetic origin of
bacterial enzymes involved in butyrate, propionate and acetate production in the metaproteomes of RWS and TWS (1 and 2 indicate the
biological duplicates). Taxonomic affiliation of proteins at the genus level. Proteins belonging to the same bacterial phylum were represented
with the same color palette: Bacteroidetes (Bacteroidota) (blue), Firmicutes (Bacillota)(red) and Proteobacteria (Pseudomonadota) (green). For
butyrate biosynthesis: COG4770 (acetyl/propionyl-CoA carboxylase), COG3426 (butyrate kinase), COG1250 (3-hydroxyacyl-CoA dehydrogen-
ase), COG1024 (enoyl-CoA hydratase), COG0183 (acetyl/butyryl-CoA acetyltransferase), COG1979 (alcohol dehydrogenase YqhD), COG1454
(alcohol dehydrogenase, class IV), COG1028 (short-chain alcohol dehydrogenase), COG1064 (Zn-dependent alcohol dehydrogenase). For
propionate biosynthesis: COG4799/0777 (acetyl/propionyl-CoA carboxylase), COG2185/COG1884 (methylmalonyl-CoA mutase), COG0346
(methylmalonyl-CoA epimerase). For acetate production: COG1012 (NAD-dependent aldehyde dehydrogenase), COG0282 (acetate kinase).
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found in RWS and TWS, Bacteroidetes (Bacteroidota), Firmicutes
(Bacillota) and Proteobacteria (Pseudomonadota), but phylum-
normalized data showed that protein expression by the two latter
was strongly directed towards carbohydrate metabolisms, while
the former (the major phylum Bacteroidetes - Bacteroidota) was
associated with larger spectrum of functions.
A large diversity of CAZymes related to LC degradation,

including cellulases, hemicellulases and CBMs were detected in
RWS and TWS metaproteomes. They belong to 94 families,
illustrating the relative richness of these consortia when compared
to the whole CAZy database (n= 472). CAZymes in RWS and TWS
accounted for about 4% of total proteins expressed. Although
most previous studies report the number of non-redundant
CAZymes, rather than their abundance [16, 18, 28], the abundance
reported here is comparable to that measured (3.5% and 5.9%) for
other lignocellulolytic consortia [27]. This implies that dedicating
less than 5% of their expressed proteins to LC degradation, RWS
and TWS achieved high (>45% in our study) biomass degradation
levels.
Taxonomic affiliation of CAZymes revealed that LC degradation

by RWS and TWS results from the combined action of proteins
affiliated to Bacteroidetes (Bacteroidota), the main purveyors of
CAZymes, followed by Firmicutes (Bacillota). A closer inspection
revealed that the Bacteroidetes (Bacteroidota) members mainly
produce hemicellulose-debranching and oligosaccharide-
degrading enzymes as well as enzymes involved in starch
degradation. In contrast, Firmicutes (Bacillota) members produced
enzymes specific for β-glucan and β-xylan (cellulases and
hemicellulases). This differential expression of CAZymes offers
interesting prospects for engineering synergy. Moreover, it
earmarks these two phyla as the key players in wheat straw
degradation. It is noteworthy that other studies do not system-
atically identify these phyla as the dominant purveyors of
CAZymes, particularly when considering the termite gut micro-
biome [64]. To rationalize this observation, we suggest that our
results are the consequence of the combined contributions of the
original microbial consortium and the specific process conditions
employed [23, 26–28]. The substrate, the enrichment process and
the availability of oxygen all determine the relative development
of obligate aerobes, facultative aerobes and strict anaerobes.
Although RWS and TWS consortia displayed taxonomic

similarities, only a third of proteins were common to both
consortia. Multivariate analysis highlighted the taxa and proteins
linked to the parental inoculum source. Indeed, some features can
be attributed to the initial cow rumen and termite gut
microbiome. For example, the larger diversity of CAZymes and
the ruminococcal and clostridial cellulosome components char-
acteristic of RWS are also characteristic of the cow microbiome [65,
66]. Similarly, the high abundance of GH10, GH43, CE1 and
especially GH11, typical of TWS, is also a feature of termite gut
microbiome [67, 68].
Despite differences between RWS and TWS, multi-group MINT-

PLS-DA supervised analysis highlighted in both consortia Bacter-
oidetes (Bacteroidota)- and Firmicutes (Bacillota)-affiliated
enzymes, particularly ones produced by Bacteroides, Clostridium
and Enterococcus genera, were marshalled. According to annota-
tion, these enzymes target the minor starch fraction and
holocellulose-derived oligosaccharides, meaning that the afore-
mentioned genera forage ready available resources and in doing
so facilitate further breakdown of holocellulose polymers.
Similarly, in both consortia the occurrence of Lachnoclostridium,
Prevotella and Other-Firmicute members was associated with the
principal LC biomass degradation phase, which was also related
with an increase in the abundance of CAZy families related to
cellulose hydrolysis, deacetylation and cleavage of hemicelluloses
and pectin depolymerization. In addition, during the last incuba-
tion stage, several CAZymes hydrolyzing and deconstructing
hemicellulose and hemicellulose-oligosaccharides also increased,

as well as various CBMs binding cellulose, hemicellulose and
starch. Therefore, further biochemical characterization of these
enzymes could be of interest to elucidate their specific role in LC-
biomass degradation, in particular to identify enzymes able to
degrade the most recalcitrant components.
Concerning VFA biosynthesis, our data showed that acetate

biosynthesis was the result of Wood-Ljungdahl pathway in both
our consortia, and highlighted the major role of acetogenic
bacteria belonging to Bacteroidetes (Bacteroidota) and Firmicutes
(Bacillota) phyla. Propionate production in RWS and TWS mostly
resulted from the succinate pathway as evidenced by the
detection of methylmalonyl CoA mutases and epimerases [69],
with Bacteroides and Phascolarctobacterium species as the key
propionate producers. This is consistent with previous data that
showed that the succinate pathway is the main route reported for
rumen [70]. Butyrate biosynthesis resulted either from the
conversion of butyryl-CoA into butyrate, using butyrate kinase
(synthesizes butyryl-phosphate) and phosphotransbutyrylase, or
the transfer of coenzyme A (catalyzed by butyryl-CoA:acetate-CoA
transferase) between acetate and butyrate. Although both routes
are exploited by Firmicutes (Bacillota) species, the second one was
strongly enhanced in both consortia. This observation is consistent
with previous studies on the cow rumen and human gut
microbiota that revealed that Bacteroidetes (Bacteroidota) are
responsible for the majority of acetate and propionate production,
while butyrate biosynthesis is mainly handled by Firmicutes
(Bacillota) species [16, 71]. LC-hydrolysis remains the limiting step
and thus VFA-biosynthesis cannot be used to improve LC
conversion into VFA, but could be of interest to drive VFA
production towards specific products (e.g. butyrate).
A remarkable finding in this work is that no lignin-specific

enzymes (CAZyme AA class) were found, suggesting that
ligninolysis did not occur under the anaerobic culture conditions
used. This concurs with previous lignin measurements performed
on RWS and TWS [20, 21]. Nevertheless, the fact that no lignin-
degrading enzymes were evidenced does not imply that these
were absent, because shotgun metaproteomics procures an
incomplete image of expressed proteins. Ultimately, to assert that
no lignin degradation had occurred in our experiments, it would
be necessary to perform a thorough physicochemical and
structural analysis of the substrate before and after microbial
treatment.
The CAZy classification database has been growing at a fast rate

in recent years, with new sequences being added daily and new
families being regularly defined. A comparison of the collection of
GHs detected in our study with those detected in previous omics
studies (metatranscriptomics, metaproteomics, metagenomics)
performed on bovine rumen and termite-gut microbiomes
(Table S5 [65, 72–79]) revealed that this study unmasked greater
diversity of cell wall degrading CAZymes. Moreover, the compar-
ison revealed that our study captured most CAZy families
degrading the plant cell wall, whereas the previous studies were
less successful in this regard. To a large extent, the greater
coverage of GH families in our study can be correlated with the
growth of the CAZy database and its date of access [11] and
ongoing improvements to the experimental techniques and
bioinformatics pipelines used. However, we believe it is also
attributable to the fact that RWS and TWS are enriched consortia
whose functions are highly adapted for the degradation of raw
lignocellulosic biomass. Undoubtedly, future studies benefitting
from further progress in metaproteomics and the further
expansion of the CAZy database will surpass our study. Hopefully,
these will provide an even deeper understanding of lignocellu-
lolytic functions in microbial ecosystems and provide the means
to identify proteins that are currently unclassified. Furthermore,
our data showed that RWS and TWS consortia represent excellent
simplified models to study the mechanisms governing the
complex lignocellulose degradation process and to better
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understand and exploit multispecies lignocellulolytic enzyme
systems for biotechnological applications.
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