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Microbial gene expression analysis of healthy and cancerous
esophagus uncovers bacterial biomarkers of clinical outcomes
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Local microbiome shifts are implicated in the development and progression of gastrointestinal cancers, and in particular,
esophageal carcinoma (ESCA), which is among the most aggressive malignancies. Short-read RNA sequencing (RNAseq) is currently
the leading technology to study gene expression changes in cancer. However, using RNAseq to study microbial gene expression is
challenging. Here, we establish a new tool to efficiently detect viral and bacterial expression in human tissues through RNAseq. This
approach employs a neural network to predict reads of likely microbial origin, which are targeted for assembly into longer contigs,
improving identification of microbial species and genes. This approach is applied to perform a systematic comparison of bacterial
expression in ESCA and healthy esophagi. We uncover bacterial genera that are over or underabundant in ESCA vs healthy
esophagi both before and after correction for possible covariates, including patient metadata. However, we find that bacterial
taxonomies are not significantly associated with clinical outcomes. Strikingly, in contrast, dozens of microbial proteins were
significantly associated with poor patient outcomes and in particular, proteins that perform mitochondrial functions and iron-sulfur
coordination. We further demonstrate associations between these microbial proteins and dysregulated host pathways in ESCA
patients. Overall, these results suggest possible influences of bacteria on the development of ESCA and uncover new prognostic
biomarkers based on microbial genes. In addition, this study provides a framework for the analysis of other human malignancies
whose development may be driven by pathogens.
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BACKGROUND
Esophageal carcinoma (ESCA) is among the most common cancers,
with around 600,000 new cases diagnosed each year [1, 2]. The
five-year survival rate for esophageal cancer patients is low, with
estimates ranging across populations from 15% to 24%, and is
markedly lower than the survival rates of patients with other
common gastrointestinal cancers, such as stomach (21–33%) and
colon (59–71%) cancers [3]. While some lifestyle factors, such as
smoking, are known to contribute to the development of ESCA, the
causes and risk factors remain incompletely characterized [2]. Like
other organs of the gastrointestinal tract, the healthy esophagus
has a substantial resident bacterial population, principally mem-
bers of Streptococcus and a handful of other genera [4, 5]. Yet, shifts
in the esophageal microbiome have been associated with the
development of esophageal cancer and of a precursor condition
called Barrett’s esophagus [6]. Beyond microbiome shifts, several
bacterial species in the colon are thought to be oncogenic in
colorectal cancer, such as Streptococcus bovis, Bacteroides fragilis,
and Fusobacterium nucleatum [7, 8]. F. nucleatum is also a
pathogenic member of the oral microbiome, where it may
promote development of oral squamous cell carcinomas [8, 9]. It
is therefore possible that bacteria in the esophagus are oncogenic
or protective, and such bacteria will likely demonstrate cancer or
healthy tissue specific presence patterns.

The most accessible data for studying the tumor microenvir-
onment are short-read transcriptome (RNAseq) data. In addition
to studying the presence of organisms, these data can provide
insight into the complement of microbial proteins that are
expressed in an environment [10]. However, RNAseq reads are
typically very short, introducing several challenges to analysis of
diverse bacterial species [11]. For example, RNAseq reads in The
Cancer Genome Atlas (TCGA) are typically 48 or 75 nucleotides.
The length and abundance of microbial reads make de novo
assembly of longer coding sequences extremely challenging
[11, 12]. Methods for read identification without assembly, using
alignment [13] or other sequence search approaches, rely on
databases of sequenced organisms. However, the size of
microbial databases poses a computational challenge for such
approaches, which are limited in precision by the short length of
each sequence [11, 12].
Despite these limitations, screening large volumes of cancer

RNAseq reads, such as those included in TCGA, for sequences of
likely microbial origin has been used to identify varied and
complex bacterial populations of tumors [14–16]. Comparisons
between samples taken from tumors and nearby non-cancerous
tissue have shed further light on the differences between tumor
and adjacent microenvironments, revealing diverse microbial
species with shifted prevalence in cancer [17, 18]. In a comparative
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study of several cancer types, ESCA had a high abundance of
bacterial reads, consistent with other GI tract cancers, but among
the lowest prevalence of fungal reads [17]. These studies have
focused on data from only cancer patients in TCGA or similar
datasets; however, tumor-adjacent tissues are not necessarily
healthy [19], and may not capture the full range of variation
between healthy and cancer microbiota.
Here, we extend to bacterial sequences our approach for fast

assembly of microbial RNAseq reads into longer contigs [20] and
apply it to provide, for the first time, systematic comparison of
bacterial populations in esophageal cancer and in healthy
esophagus. We obtain RNAseq reads from ESCA samples in
TCGA [21] and esophagi of healthy individuals in the Genotype-
Tissue Expression (GTEx) dataset [22]. We train a new convolu-
tional neural network to discriminate bacterial, viral, and human
sequences to predict reads of likely bacterial origin, reducing the
burden for assembly. We then assemble putative microbial
sequences guided by those predictions, providing longer
sequences for more accurate identification of microbial species
and genes. We identify dozens of bacterial genera that are
significantly over- or underrepresented in cancer. In addition to
identifying bacterial taxa, we find several bacterial proteins
whose expression is associated with poor patients’ survival, and
study host gene expression patterns associated with these
proteins. These analyses give further insight into the striking
differences in the esophageal microbiome of healthy individuals
and cancer patients, and allow estimation of specific pathways
and mechanisms through which the altered expression of
bacterial proteins may be associated with oncogenesis.

METHODS
Model training
To classify reads, we trained a model to predict the origin of a 76-base pair
sequence from among human, viral, and bacterial. To simulate RNAseq
reads from each class, we segmented into 76-base sequences (1) the
human hg19 reference transcriptome, obtained from NCBI [23], 2) a
database of transcripts from diverse viruses of placental mammals,
obtained from the Virus Variation Resource [24], and (3) a database of
bacterial genomes containing one representative per genus, curated
previously [25]. To generate balanced data, sequences were segmented
with stride two for viral sequences, stride 26 for human sequences, and
stride 130 for bacterial sequences. Sequences were randomly divided
into training, validation, and testing sets; this split was done before
segmenting. Segments containing N’s were excluded. This yielded a
training set of size 21,005,972 (7,000,098 human, 6,996,574 viral, 7,009,300
bacterial), a validation set of size 4,503,578 (1500036, 1498065, 1505477),
and a testing set of size 5,628,298 (1873416, 1863322, 1891560). To predict
the likely origin of reads, we trained a small convolutional neural network,
with two convolutional layers and one fully-connected layer (Supplemen-
tary Text). We tuned most hyperparameters and selected the best-
performing model by one-versus all area under the precision-recall curve
(AUPRC) on the validation set. All models were trained using TensorFlow
2.8 [26].

Sequence assembly and identification
We obtained 75-base RNAseq reads from 170 esophageal carcinomas
through TCGA [21] and 76-base reads from 1565 healthy esophageal
samples from 742 unique individuals through GTEx [22]. These projects
used similar RNAseq protocols [27, 28]; briefly, total RNA was isolated,
polyadenylated RNAs were enriched (eukaryotic mRNAs are 3′ polyadeny-
lated), cDNA was synthesized from the RNA, amplified, and purified, and
reads were sequenced using the Illumina HiSeq 2000. We first removed
reads that map to the human genome using the hg19 reference. We then
obtained model scores assigned to each read, denoting the relative
likelihoods of human, viral or bacterial origins. For prediction and
assembly, we excluded all reads with more than one N (0.17% of
unmapped TCGA reads; 0.57% of unmapped GTEx reads). Overall, we
considered 2,656,993,271 TCGA reads and 631,388,801 GTEx reads. For
reads with one N (0.22% of unmapped TCGA reads; 3.74% of unmapped
GTEx reads), we replaced the N with a random nucleotide for prediction

only. We also padded TCGA reads, again for prediction only, with a random
3′ nucleotide to match the 76-base length expected by the model. On the
validation data, we found that replacing only one or two nucleotides with a
random replacement had only a small impact on model performance
(Supplementary Fig. S1).
Once human, bacterial, and viral model scores were assigned to each

read, we used those predictions to guide assembly of the reads into larger
sequences. We considered every read with a bacterial or viral score of at
least 0.46 to be a “seed” read (Supplementary Fig. S2). To prioritize
sequences that were (1) likely to be microbial and (2) likely to be bacterial,
we sorted the seed reads to first take likely bacterial seeds in descending
bacterial score order and then likely-viral seeds in descending viral score
order. For each seed, we attempted to assemble a longer sequence by
greedily extending the seed in each direction using a modification of the
assembly tool developed previously [20] (Supplementary Text). For
assembly, we considered an N to match any nucleotide and, when such
a match happened during extension, kept the non-N nucleotide.

Mapping assembled microbial sequences to bacterial taxa
We identified the resulting putative microbial species present in each
sample by comparing them to several curated databases of microbial
nucleotide sequences using blastn [29]. For bacterial sequences, we used
the set of NCBI representative bacterial genomes (approximately one per
bacterial species). We additionally used two databases of viral RNA
sequences, one for ‘reference’ human viruses and the other for ‘novel’ or
non-human viruses, curated in our previous work [20]. We filtered hits with
e-value below 0.01 and assigned the sequence and species from the top
BLAST hit to each sequence. For characterizing the abundance of
organisms in cancer, we pooled all species at the genus level to reduce
the number of hypotheses and to reflect the possible inaccuracy of
identifying short sequences at the species level.

Over and under representation of microbial genera
We then compared the prevalence of bacterial genera in ESCA and healthy
esophagus. We computed the prevalence of each genus in each sample,
pooling all species in each genus. We also pooled occurrences in multiple
esophagus samples from the same patient. Overall, we identified at least
one bacterial transcript in all 161 ESCA cases and in healthy esophagus
samples from 742 distinct patients. We selected as genera of interest those
that occurred in at least 10% of ESCA or 10% of healthy samples. To
quantify bacterial over- or underabundance in cancer, we performed a
one-tailed binomial test, using the binom_test method from scipy 1.10
[30]. For each genus, we set the hypothesized probability to be the fraction
of healthy samples in which the genus was detected, except that we used
minimum and maximum probabilities of 0.0001 and 0.9999, as using
exactly 0 or 1 would always produce a p-value of 0. We then specified
the number of successes as the number of ESCA samples in which the
genus was detected, the number of trials as 161, and the hypothesis as
“less” or “greater” depending on whether the ESCA abundance was lower
or higher than the healthy abundance. We corrected the p-values using
Benjamini–Hochberg FDR correction [31].

Confounder corrected analysis for over and under
representation of microbial genera and proteins
In addition to the analysis described above, we performed a similar
analysis when correcting for possible confounders, such as clinical and
background differences between TCGA and GTEx cohorts. We therefore
used 715 individuals from GTEx and 122 cases from TCGA with complete
background information to perform the analysis (that is, with race, age, sex,
weight, and smoking information). We additionally included the sequen-
cing depth of each sample as a cofounder in the corrected analysis, using
the average sequencing depth for individuals with multiple samples. We
employed chi-squared test, which is appropriate for this large dataset with
hundreds of samples. To adjust for confounders, we first fitted a boosted
logistic regression model with confounders as covariates to estimate the
probabilities of being in the TCGA vs GTEx cohorts. The resulting AUC (area
under the curve) was 1.00, indicating substantial differences between the
cohorts based on these confounders. Then, we performed weighted Chi-
squared tests to evaluate bacterial under and over representation, where
the weights are the inverse of estimated probabilities of being in the TCGA
vs GTEx groups. In the weighted data, the covariates are balanced between
the TCGA and GTEx groups. Therefore, using the weighted chi-squared test
allows us to mitigate confounders in the evaluation of bacterial under and

D.E. Schäffer et al.

2

ISME Communications



over representation in TCGA vs GTEx groups. For this analysis, we
considered all bacterial genera with any abundance. We then used FDR
correction [31] to correct for multiple hypotheses.
We used an identical approach to perform a corrected analysis for the

over- or underprevalence of microbial protein families, which were identified
as described below.

Phylogenetic analysis
We created a tree of selected bacterial genera by obtaining 16S rRNA gene
sequences, one per genus, from GenBank, choosing a RefSeq sequence if
available. We then aligned these sequences using MUSCLE version 5.1
[32, 33] with default parameters, and constructed a tree using FastTree
version 2.1.11 [34] with default parameters. The tree was visualized using
iTOL [35].

Survival analyses
To evaluate the association between bacterial species and ESCA survival
we correlated the presence of each individual species (for which at least 5
positive and 5 negative ESCA samples were identified; excluding samples
with no clinical data) with overall and disease stable survival using the log-
rank test through Python lifeline package [36]. TCGA clinical information
was obtained through the TCGA Clinical Data Resource [37]. This (meta)
dataset includes, among other measures, both overall survival, which
measures time to the death of a patient, and disease-free survival, which
measures the time until cancer recurs after primary therapy. Log-rank
p-values estimating association between expression of different bacterial
genera and overall and disease-free survival were FDR-corrected for
multiple comparisons, where no significant association was found
(Supplementary Text). To evaluate the association between microbial
proteins and survival, we similarly compared overall and disease-free
survival for patients positive and negative for the expression of each
microbial protein (for which at least 5 positive and 5 negative ESCA
samples are identified). We identified several microbial proteins that were
significantly associated with survival after FDR correction for multiple
comparisons (Supplementary Text).

Mapping assembled contigs to microbial genes
We mapped the assembled contigs to microbial genes through RefSeq non-
redundant microbial sequence database, downloaded from NCBI through
the non-redundant proteins annotated on representative genomes. Contigs
were mapped using blastx, with e-value below 1e-5. Presence or absence of
each microbial gene in each sample considered were used for further
analysis. For these analyses, we considered 155 of the 170 ESCA samples with
available clinical information. Where healthy esophagus contigs were used,
we considered all 1565 samples.

Host gene expression analyses
To evaluate host correlates of microbial iron-related (Fe) genes, we
analyzed human gene expression data of TCGA ESCA samples. RNAseq
RSEM values for ESCA samples were downloaded from cBioportal [38, 39].
We compared the expression of all human genes between samples
positive vs those negative for microbial Fe proteins that were found
significantly associated with poor outcomes (accessions WP_006680945.1,
WP_002532908.1 and WP_131625607.1) using a rank-sum test. None of
the genes were significantly associated with microbial Fe-gene presence
after FDR correction for multiple comparisons. To evaluate the processes
that were upregulated in these samples, we extracted human genes
assigned with unadjusted p-value < 0.05, and where the median z-score
for Fe-positive samples was above 0.2, and that for Fe-negative samples
was below 0. We used KEGG enrichment [40] to identify host (human)
pathways enriched with genes upregulated in microbial Fe-positive ESCA
samples.

Genome scale metabolic modeling
To compare oxygen consumption and ATP production rates between ESCA
samples that are positive or negative for microbial genes associated with
poor survival, we used genome scale metabolic modeling (GSMM). We
used the GIMME algorithm [41] to constrain each metabolic model by the
gene expression values in each ESCA sample, and applied Flux Balance
Analysis (FBA) [42] to generate a predicted metabolic flux for each sample.
We used the Recon1 human metabolic model [43] and the COBRA Toolbox
v.3.0 implementation of GSMM functions [44].

RESULTS
To allow alignment free prediction of viruses and bacteria from
short-read RNAseq data, we first trained a convolutional neural
network to classify 76-base nucleotide sequence as having human,
viral, or bacterial origins (Fig. 1A). To simulate RNAseq reads
for training, we used segmented sequences from the human
transcriptome, viral transcriptomes, and bacterial genomes
(“Methods”). We trained dozens of convolutional neural networks
with varying hyperparameters and selected the model with the
best performance on a held-out validation set. We then evaluated
our final model on a separate test set of held-out human, viral, and
bacterial sequences (Fig. 1B–D). It demonstrated one-versus-all
Area Under the Precision-Recall Curve (AUPRC) of 0.89 for human
sequences, 0.91 for bacterial sequences, and 0.80 for viral
sequences. The best possible AUPRC is 1.0, corresponding to a
perfect classifier, while the AUPRC of a random classifier is equal to
the fraction of positive examples, which is about 0.33 in the
balanced three-class case. The model further demonstrated Area
Under the Receiver-Operating Curve (AUROC) of 0.95 for human
sequences, 0.94 for bacterial sequences, and 0.89 for viral
sequences. The best possible AUROC is 1.0, corresponding to a
perfect classifier, while the AUROC of a random classifier is 0.5.
The model serves as the first step of the pipeline to identify

bacterial and viral pathogens from RNAseq data. Starting with
unmapped RNAseq reads, predictions from the model are used to
guide assembly into longer putative-pathogenic contigs. Then,
these contigs are aligned to broad databases of viral and bacterial
genomes to detect those that are expressed in each sample. We
applied this pipeline to study the prevalence of viruses and
bacteria in esophageal cancer, using RNAseq data from cancer
patients (obtained via TCGA) as well as from a larger population of
healthy control esophagi (obtained via GTEx). Using the labeled
contigs produced by the pipeline, we first searched for bacterial
genera that are under or overrepresented in cancer.
Overall, we attributed sequences from 161 ESCA cases and

742 healthy esophagi to 6,961 unique bacterial species (Fig. 2A,
Supplementary Data S1, S2). Considering 145 genera that are
sufficiently represented in the data (Methods, Fig. 2B), and
applying a permissive threshold for presence of one contig, we
found 32 genera that were significantly overprevalent in cancer
and 90 that were significantly under-prevalent in cancer (pFDR
< 0.05; Fig. 2B, C, Supplementary Fig. S3, Supplementary Data S3).
We additionally performed this analysis controlling for possible
confounders and differences between the cohorts, including
the sequencing depth of each sample (“Methods”; Supplementary
Data S4). The cancer underabundant bacterial genera are
particularly notable, as the read depth and number of species
found were both lower for the GTEx samples compared to TCGA
samples, despite lower sequencing depth (Fig. 2B). Because of the
sample size, even small absolute differences in abundances can be
significant (Fig. 2B).
We note the genera with the largest absolute differences as

best distinguishing the cancer and healthy conditions. Among the
90 underabundant genera, four occur in at least 50 percentage
points fewer ESCA samples than healthy: Cutibacterium, Sphigo-
monas, Fictibacillus, and Corynebacterium (Fig. 2B, C). The family
Sphingomonadaceae, which includes Sphigomonas, was previously
suggested to be protective against breast cancer [45]. The
highlighted bacterium in that study was a member of the genus
Sphingobium, which we find in 18.3% of healthy esophagi but only
a single ESCA sample (Fig. 2B, C). Additionally, Corynebacterium
parvum was first reported to promote an immune response and
survival in cancer more than 40 years ago [46, 47].
Among the 32 overabundant genera, nine occur in at least 50

percentage points more ESCA samples than healthy: Bacillus,
Gluconacetobacter, Peribacillus, Candidimonas, Burkholderia, Delfita,
Halopseodomonas, Methylophilus, and Larkinella (Fig. 2B, C). Most
of these genera occur in a very small fraction of healthy esophagi
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and a bit more than half of ESCA samples. However, most striking
is the common genus Bacillus, which was detected in all but one
ESCA sample for which any bacterial sequences were detected,
but only 21% of healthy esophagi. Aside from the closely-related
Bacillus and Peribacillus, as well as the unique Larkinella, the other
genera six genera represent Alpha-, Beta-, or Gamma-Proteobac-
teria. Interestingly, increased Proteobacteria abundance was
previously reported in pancreatic and breast cancers [48, 49],
and was previously reported in nine cancer types from TCGA [50].
At the genus and clade level, these increases of common taxa may
represent an overall increase in bacterial load in ESCA, or may be
linked to tissue and microenvironment differences between the
cohorts. On the other hand, members of the small genus Larkinella
(class Cytophagales), which have been isolated from diverse
environments, principally soil [51–55], were identified by one
study in bladder cancer, reporting an association between
Larkinella and recurrence [56].
Interestingly, we found very low levels of Helicobacter (including

H. pylori) in both GTEx samples (0.1%) and TCGA samples (0.6%).

This supports the specificity of H. pylori as an oncogenic agent
in stomach cancer only, and is consistent with previous studies
and meta-analyses finding either no or a weak negative
(protective) association between overall H. pylori infection and
ESCA [57, 58].
In addition to bacteria, we also examined the presence of viral

clades in with ESCA and healthy tissues. Overall, we found matches
to 691 unique viral strains in 61 ESCA samples and 503 healthy
esophagi (Supplementary Data S5–S7). The most common clade
observed is herpesviruses, which were detected in 32 ESCA samples
and 162 healthy esophagi. Strikingly, we observed a Geobacillus
bacteriophage in 192 healthy esophagi, where 181 were positive for
type E2 and 98 were positive for type E3. Interestingly, however,
Geobacillus bacteriophage was not detected a single ESCA sample.
Surprisingly, we directly detected Geobacillus in only 17 esophagi,
and detected both Geobacillus and a Geobacillus phage in only four
esophagi. This could be explained by a possible different host of this
bacteriophage, or enhanced expression of the bacteriophage
compared to the bacterial host. Of additional note is a virus of the
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genus Vientovirus, DNA viruses that infect Entamoeba gingivalis [59]
and are found in the human mouth and respiratory tract [60], found
in two ESCA samples.
Previous studies have suggested that the presence of specific

bacteria in several tumors is correlated with survival [61–63]. Given
the number of cancer overabundant genera, we hypothesized that
the same might be true for ESCA. We therefore searched for
bacterial species whose presence or absence in tumor RNAseq is
correlated with the survival of ESCA patients (see “Methods”).
However, no significant associations were found.
We reasoned that instead of the presence of a specific bacterial

taxon, microbial processes executed by different bacteria may be
associated with oncogenesis and therefore correlated with
outcomes. This would be consistent with the large number of
overabundant bacterial clades yet lack of species correlated with
patient survival. We therefore turned to identifying specific
microbial proteins that are expressed in ESCA and evaluating
whether any such proteins correlate with outcomes.
To that end, we mapped each microbial contig against a

database of representative microbial proteins. Among all
samples, we identified transcripts of 16,261 bacterial proteins,
including transcription products of several notable gene families
from diverse bacteria in both healthy and cancerous samples
(Fig. 3A, B, Supplementary Data S8). As expected, the large

majority (87.6%, N= 14248) had little difference in prevalence
between cancer and healthy (at most a 5-percentage-point
difference in ESCA and healthy occurrences). However, some
protein families did show considerable differences in prevalence.
Only 21 were substantially more present in healthy esophagus
(healthy frequency – ESCA frequency > 25%). The top five
include translation elongation factor EF-1 alpha, ferritin, NADH-
quinone oxidoreductase subunit H, and two unnamed protein
products comprising nucleotide-binding domains. The healthy-
abundant proteins also include a zincin-like metallopeptidase
protein and DNA topoisomerase III, which are present in only
1.3% and 0.6% of ESCA samples, respectively, and several
transposases. In contrast, 697 proteins were comparably over-
represented in the cancer samples (ESCA frequency – healthy
frequency > 25%). This asymmetry may be explained in part by
the greater sequencing depth of ESCA samples – the average
protein is present in 2.7% more ESCA samples than healthy
esophagi. Most strikingly, phage replicative proteins are
consistently more abundant in cancers (Fig. 3A, B), and the
top overpresent proteins in ESCA (occurring in 80 percentage
points more ESCA samples, N= 66) include at least 37 phage
protein families. While many of these hits may be redundant, at
least 7 phage components are represented in the top proteins.
Other top cancer-abundant proteins include an acyl-CoA
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dehydrogenase, an LLM-class flavin dependent oxidoreductase,
ABC transporter components, multiple peptidases including the
S49 family, and multiple phosphatases (Fig. 3A, B, Supplemen-
tary Data S8). We additionally found that, overall, more than
2000 protein families are significantly (q < 0.05) differentially

present after controlling for possible confounders and differ-
ences between the cohorts, including the sequencing depth of
each sample (Methods; Supplementary Data S9).
Among the bacterial gene families found expressed in cancer

samples, several are significantly associated with overall and disease
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stable survival of patients (Fig. 3C, Supplementary Data S10). In
particular, there are 34 families whose presence in the sample is
significantly negatively associated with survival, although several
were phage, ribosomal, or unlabeled proteins (Supplementary
Data S10). Among the remainder, MFS transporters, of which
we found hits to three representatives among the 34 families,
comprise a diverse and ubiquitous class of multi-substrate
membrane transport proteins [64, 65]. While MFS transporters have
a clinically-important role in antibiotic resistance [65, 66], their
possible role in human cancers has not been elucidated. Specifically,
removal of chemotherapy agents in drug-resistant cancers is
generally performed by ABC transporters rather than human MFS
homologs [66]. Lysozyme is a small antibacterial protein that
principally targets bacterial cell walls, especially those of Gram-
positive bacteria [67, 68]. While it is primarily known as a
multifunctional component of animal immunity [67], lysozyme is
produced by many organisms, including bacteria [68], for microbial
defense and competition.
Among the microbial proteins that are significantly associated

with survival, several are linked with mitochondrial functions, such
as pyruvate dehydrogenase, succinate dehydrogenase and
aconitase. This implies a possible metabolic shift in cancers
expressing these microbial proteins, linked with enhanced
complex II respiration and oxidative stress. Indeed, examining
host gene expression, oxidative phosphorylation gene expression
is elevated in samples positive for these microbial proteins

(Supplementary Fig. S4A). Furthermore, using genome scale
metabolic modeling (“Methods”) we find that oxygen consump-
tion rates and ATP production are elevated in ESCA samples
expressing these microbial proteins, supporting the notion that
mitochondrial shift may be underlying the link between these
proteins and poor patients’ outcomes (Supplementary Fig. S4B, C).
Three protein families that are significantly associated with

poor survival are microbial iron-sulfur cluster proteins: aconitase,
succinate dehydrogenase iron-sulfur, and iron-sulfur cluster
assembly SufB. Indeed, iron is required for bacterial proliferation
[69, 70]. Therefore, we investigated whether the presence of
these genes was correlated with changes in the human tumor
transcriptome.
We identified a large number of upregulated host genes in ESCA

samples expressing microbial iron proteins, across four key
upregulated pathways: bacterial infection response, endocytosis,
oxidative phosphorylation, and ferroptosis (Fig. 4A, B; Supplemen-
tary Data S11). Ferroptosis, in particular, is a recently-characterized
cell death pathway, with relevance to cancer progression [71].
Previous research has also identified differential expression of
ferroptosis-pathway genes in ESCA, although the exact set of genes
identified differs [72]. As observed with the individual gene families,
presence of bacterial Fe-genes overall is negatively associated with
survival (Figs. 3C and 4C). Further, high expression of distinct host
ferroptosis genes is itself associated with worse survival, in contrast
to the three other pathways (Fig. 4D, Methods). These genes include
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SAT1, SAT2, FTL, MAP11C3B2, MAP1lC3B, and VDAC2. Increased SAT1
expression, including by the p53 tumor suppressor, promotes the
ferroptosis cell death pathway [73]. SAT1 and SAT2 regulate
polyamine metabolism, a process which has long been implicated
in cancer [73, 74]. Indeed, higher expression of the FTL ferroptosis
regulator, is associated with a poorer prognosis in hepatocellular
carcinoma [75]. Further, expression of the voltage-gated channel
VDAC2 is also associated with increased risk in some cancers. VDAC2
is also a target of erastin, a small-molecule promotor of ferroptosis
in cancer cells [76, 77]. However, interestingly, expression of SAT1 as
well as SAT2 has been linked to improved outcomes in several
adenocarcinomas [78–81]. We therefore evaluated the association
of SAT1 and SAT2 with survival individually, but found that lower
expressions of SAT1 and SAT2 individually do not correlate with
survival (Supplementary Text).

DISCUSSION
Several lines of emerging evidence point to a substantial role of
tumor and resident microbes in cancer development and
progression [82–84]. Bulk tumor RNA sequencing can be utilized
to study both intratumor and tumor-microenvironment micro-
bial expression. However, existing short-read RNA sequencing
datasets, which represent the largest source of cancer sequence
information, are ill-suited for researching microbiomes. In
particular, short nucleotide reads are very challenging to map
accurately to individual microbial species or specific proteins.
The naïve alternative to direct read mapping is an exhaustive
assembly of sequencing reads to produce longer putative
contigs, but this is computationally infeasible for all but the
smallest sequencing datasets. Further, knowledge of a cancer
microbiome has very limited diagnostic or prognostic value
without comparison to a suitable non-cancerous control. While
paired comparisons between cancer and nearby non-cancerous
tissue are the most straightforward, microbiome disruptions that
precede cancer may occur in nearby non-cancerous tissue as
well. For example, canonical oncogenic viruses generally lead to
cancer only after a persistent, often decades-long infection of
the tissue of origin [85–87], which is likely to be widespread
relative to the cancer cell of origin.
Here, we developed a new method based on the rationale of

our previous approach for virus identification, viRNAtrap [20], to
overcome many of these challenges in the characterization of
bacterial populations from RNAseq. We then applied it to compare
bacterial species and proteins in esophageal carcinoma (ESCA)
and the healthy esophagus. To overcome the limitations of both
direct mapping and naïve assembly, our approach first employs a
deep learning model to identify RNAseq reads with likely bacterial
or viral origin. We then used those as seeds in a targeted seed-
and-extend assembly pipeline to produce longer candidate
microbial contigs. These contigs were then mapped to curated
databases of bacterial and viral nucleotide sequences, as well as
bacterial protein families. To understand patterns in the ESCA
microbiome at the population level, we used comparable RNAseq
samples from hundreds of healthy esophagi as a robust non-
cancerous control.
We found substantial differences in the complements of bacterial

taxa and bacterial protein products between ESCA samples and the
healthy population. Most genera with nontrivial prevalence in one
population were present at significantly different rates, with the
majority more abundant in healthy esophagi. Yet, surprisingly,
we did not identify genera whose presence is significantly
correlated with outcome among the ESCA patients. In contrast,
most bacterial protein families with a significant difference in
prevalence were more commonly detected in cancers, although this
might be attributable to variations in sequencing depth enabling
the detection of proteins with a lower level of expression in the
ESCA samples.

Surprisingly, about half of the top bacterial proteins that we
identify as overexpressed in cancer are derived from phages.
While the role of the bacteriophages encoding these proteins is
unclear, bacteriophages may alter microbiomes by disproportion-
ally infecting certain bacterial species and by facilitating gene
transfer [88]. It is therefore plausible that certain combinations of
phages could favor cancer-associated bacteria. We identified
several bacterial protein families whose presence is also asso-
ciated with outcomes in ESCA patients. We further found that
bacterial expression of iron-sulfur proteins in ESCA was associated
with altered expression of host genes. The affected human genes
included several in the ferroptosis pathway, an alternate cell death
pathway, that was independently associated with poor outcomes.
One possible mechanism to link ferroptosis dysregulation with
poor patient outcomes is through iron excess and ferroptosis
resistance, supported by upregulation of FTL, which stores iron
and is upregulated in ferroptosis resistant cells [89]. Excess iron
beyond iron storage capacity allows for redox-active iron and
oxidative stress [90]. Indeed, several microbial genes associated
with ESCA outcomes confer mitochondrial functions and were
linked with host oxidative phosphorylation. Importantly, mito-
chondrial oxidative phosphorylation is increasingly recognized as
a key mechanism for metabolic reprogramming in cancer [91, 92].
Collectively, these findings suggest that methods to study cancer
microbiomes that produce only a species identification, such as
16S rRNA sequencing, are insufficient for completely under-
standing potential microbial contribution to cancer and for
development of microbial biomarkers.
While we observe multiple significant association both with the

cancer state and clinical outcomes, it is important to note that
causal role in oncogenesis may not be inferred through such
correlative analysis. Local microenvironment conditions and other
clinical or behavioral factors can modulate both microbiome and
esophageal cancer, and therefore underlie the observed differences.
Comparison between unrelated cancer and healthy populations
eliminates pre-cancer infections in the control samples. However,
possible differences between the populations and experimental
contaminants may affect the observed patterns in such comparison.
The successes of the prediction and assembly steps are somewhat
variable, and also depend in part on the read lengths. While in many
cases we can extend model-selected reads to form longer contigs,
the assembly does not always produce a longer contig, and
correspondingly better species and protein identifications. Espe-
cially, this approach is less likely to capture lowly expressed
microbial elements. The direct tradeoff of this approach is that, in
exchange for selecting reads and obtaining longer contigs, we are
unable to obtain a reliable measure of expression levels for
the microbial species or proteins identified. While we can still use
the underlying RNAseq dataset to perform quantitative analyses
of the host transcriptome, we are now constrained to binary
(presence vs absence) analyses of the microbial transcriptome. Yet,
our approach can be easily adjusted to rapidly estimate total
bacterial and viral load from RNAseq.
As with any sequencing data, there is a possibility of microbial

contamination during the sequencing process. To reduce this risk,
we screen out a list of known, common contaminants (Supple-
mentary Text). There is also a possibility that the microbial reads
recovered by the RNA sequencing performed for GTEx and TCGA
are not representative of the overall sample microbiome, both
because of general sequencing biases and because the sequen-
cing pipelines used were optimized for eukaryotic mRNAs rather
than bacterial or viral RNAs. Additionally, while our extended
approach covers both bacteria and viruses, it currently does not
handle other components of the cancer microbiome. Principally,
these are likely to include fungal and other eukaryotic pathogens,
some of which have been implicated in cancers [17]. Despite these
limitations, we are still able to identify with both high throughput
and high precision microbial genes in existing RNAseq datasets.
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