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Enzyme allocation (or synthesis) is a crucial microbial trait that mediates soil biogeochemical cycles and their responses to climate
change. However, few microbial ecological models address this trait, particularly concerning multiple enzyme functional groups
that regulate complex biogeochemical processes. Here, we aim to fill this gap by developing a COmpetitive Dynamic Enzyme
ALlocation (CODEAL) scheme for six enzyme groups that act as indicators of inorganic nitrogen (N) transformations in the Microbial-
ENzyme Decomposition (MEND) model. This allocation scheme employs time-variant allocation coefficients for each enzyme group,
fostering mutual competition among the multiple groups. We show that the principle of enzyme cost minimization is achieved by
using the substrate’s saturation level as the factor for enzyme allocation, resulting in an enzyme-efficient pathway with minimal
enzyme cost per unit metabolic flux. It suggests that the relative substrate availability affects the trade-off between enzyme
production and metabolic flux. Our research has the potential to give insights into the nuanced dynamics of the N cycle and inspire
the evolving landscape of enzyme-mediated biogeochemical processes in microbial ecological modeling, which is gaining
increasing attention.

ISME Communications; https://doi.org/10.1038/s43705-023-00331-8

Microorganisms play primary roles in soil carbon (C) and nutrient
cycling and exert a strong response to climate change [1]. Of
particular interest is how to explicitly integrate the diverse and
complex microbial communities and their functional traits into
ecosystem models [2]. Enzyme groups have been advocated as
proxies for soil functions in microbial ecological models [3, 4].
However, the internal mechanisms of the allocation (or synthesis)
of multiple enzyme functional groups remains poorly understood.
The soil nitrogen (N) cycling presents an ideal case for testing

these underlying mechanisms because the microbial processes
and their enzyme functional groups are relatively well known [5].
This cycling includes N fixation, nitrification, and sequential
denitrification processes, which are mediated by six respective
enzyme groups, i.e., nitrogenases, ammonia oxidases, nitrate
reductases, nitrite reductases, nitric oxide reductases, and nitrous
oxide reductases [6]. Since these intracellular N enzyme groups are
challenging to directly measure, their incorporation into microbial
ecological models has received limited attention. Hence, a
compelling and systematic allocation scheme for multiple enzyme
groups is imperative to advance microbial ecological modeling,
ensuring alignment with the rapid progress in microbial ecology
concerning N cycling.
To this end, we implemented C-N coupled modeling using the

Microbial-ENzyme Decomposition (MEND) model (Supplementary
Fig. S1), as it applies a COmpetitive Dynamic Enzyme ALlocation
(CODEAL) scheme to account for the synthesis of the aforemen-
tioned six N-enzyme groups [4]. Here, “dynamic” refers a time-
variant allocation (or synthesis) of each enzyme group, while

“competitive” means that multiple enzyme groups employ their
allocation coefficients linked to the corresponding substrate
availability, allowing them to compete with each other (Eq. S41).
These N-enzyme groups catalyze the transformation of six
inorganic N substrates: ammonium (NH4

+), nitrate (NO3
–), nitrite

(NO2
–), nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2).

Note that each N-enzyme group encompasses multiple enzymes
catalyzing the same reaction. We employ Michaelis-Menten
kinetics to describe these intracellular N enzymes-mediated
reactions in a “pseudo-mechanistic” rather than “truly-mechan-
istic” manner, as it offers a manageable approach to model the
intricate biological dynamics involved in inorganic N cycling [4].
More details on MEND model and its state variables, governing
equations, component fluxes and parameters are described in
Supplementary Section 1 and Tables S2–S6.
We investigated three distinct enzyme allocation scenarios,

namely A0, A1, and A2 (formulas in Supplementary Table S1), to
determine the allocation coefficients. The A0 scenario defines the
allocation coefficient as Ni=

P6
j¼1Nj (Eq. S1), representing the

proportion of an inorganic N substrate’s concentration
(Ni ; i ¼ 1; 2; � � � ; 6) to the total inorganic N substrates (

P6
j¼1Nj),

with the substrate concentration (Ni) as the weighting factor. In
the A1 scenario, the weighting factor of each enzyme group is
denoted by the saturation level of an inorganic substrate
(Ni=KsNi), resulting in the A1 allocation coefficient as
ðNi=KsNiÞ=

P6
j¼1 Nj=KsNj

� �
(Eq. S2), where KsNi is the half-

saturation constant of an inorganic N substrate as quantified in
Zhu et al. [7]. Finally, the A2 scenario utilizes the inverse weighting
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factor of A1, i.e., KsNi=Ni , which indicates the allocation coefficient
of ðKsNi=NiÞ=

P6
j¼1 KsNj=Nj

� �
(Eq. S3). We base the A2 scenario on

an evolutionarily stable strategy, implying an optimal growth rate
for a specific habitat [8]. Consequently, microbes may adjust their
metabolic activities to achieve optimal growth and ensure
balanced flux across multiple processes within a given condition.
This scenario attempts to apply biochemical kinetics to represent a
potential mechanism that governs the distribution of cellular
resources over processes to maintain a stable flux [9]. The A0 and
A1 scenarios imply that a higher amount of enzymes will be
produced to consume the corresponding substrate under a higher
substrate concentration or saturation level. On the contrary, A2 is
expected to produce fewer enzymes to maintain a stable flux,
given a lower weighting factor of KsNi=Ni . This corresponds to a
higher substrate saturation level, as expressed by Ni=ðNi þ KsNiÞ in
the Michaelis-Menten (M-M) kinetics [10, 11].
We hypothesized that an optimal allocation strategy for

multiple enzyme groups is to utilize the relative saturation level
of a substrate as the competitive dynamic allocation coefficient
(i.e., the A1 scenario), which enables the establishment of enzyme-
efficient metabolic pathways while minimizing enzyme costs.
Following the recent study by Wang et al. [4] that comprehen-
sively calibrated diverse soil C-N fluxes from a 12-year CO2×N
grassland experiment (BioCON), we conducted the three alloca-
tion scenarios through fitting the observed inorganic N pools

(NH4
+ and NO3

–+ NO2
–) and fluxes (biological N fixation (BNF),

net N mineralization, nitrification, and plant N uptake) (Supple-
mentary Table S7).
The A1 scenario outperforms both A0 and A2, particularly for

the BNF flux (Fig. 1a) and the plant N uptake flux (Fig. 1b). All three
scenarios simulate the observed N pools (NH4

+ and NO3
–+ NO2

–)
and the other two N fluxes (net N mineralization and nitrification)
well, similar to the results in Wang et al. [4] (Table S7). Among
these scenarios, A1 emerges as the optimal choice, producing the
maximum total inorganic N flux (Fig. 1c) with the minimum
amount of enzyme (Fig. 1d), which embodies the theory of
enzyme cost minimization [12]. This principle has been studied
empirically on ecoenzyme production and activity [13, 14] or
theoretically based on metabolic flux and kinetic models [12].
However, very few studies have adopted this principle within
microbial ecological modeling. Natural selection has been shown
to favor the production of enzymes that balance the costs and
benefits [13]. Here, A1 effectively maximizes benefits with enzyme
cost minimization, which is more likely to be selected. Continuous
efforts have been devoted to the theoretical analysis of enzyme
allocation schemes [15–17]. These analyses underscore the
importance of enzyme allocation in relation to metabolic
requirements and substrate availability, which must be considered
in the context of soil C and nutrient dynamics [18]. However, there
is currently a gap in understanding and modeling the allocation
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Fig. 1 Three enzyme allocation scenarios (A0, A1, and A2) to produce six enzyme groups catalyzing inorganic nitrogen (N)
transformations in the Microbial-ENzyme Decomposition (MEND) model. a, b Comparison among simulated (A0, A1, and A2) and observed
(OBS) biological N fixation flux and plant N uptake flux, respectively. c, d Total inorganic N flux (Flux-Ninorg) and total production of enzymes
operating on inorganic N (Enz-Ninorg) as per the three scenarios. Flux-Ninorg is the sum of the fluxes of biological N fixation, nitrification and
denitrification processes. Enz-Ninorg includes six enzyme groups catalyzing inorganic N cycling, i.e., nitrogenases, ammonia oxidases, nitrate
reductases, nitrite reductases, nitric oxide reductases, and nitrous oxide reductases. Different letters (a, b, and c) denote significant difference
(p-value < 0.001) by the Wilcoxon signed rank test. Error bars in a, b are standard deviations (n= 24). Percentage labeled in red denotes the
percent bias between simulated and observed average values.
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strategy for multiple enzyme groups, particularly those involving
more than three enzyme groups. Furthermore, few microbial
ecological models explicitly address this microbial trait, i.e.,
enzyme allocation, in complex N transformation processes. N
availability significantly affects microbial growth and biogeochem-
ical cycles [6]. This study marks an initial endeavor to propose an
effective enzyme allocation strategy, in alignment with the
enzyme cost minimization theory, for multiple enzyme groups
within C-N coupled ecological models.
These enzymes that operate on inorganic N are either

membrane-bound or located in the cell cytoplasm and periplasm
[19, 20]. Intracellular enzyme activity is likely to more immediately
respond to substrate availability than that of extracellular
enzymes [21]. Based on the empirical relationships, the three
allocation scenarios establish distinct linkages between them. The
comparison between A0 and A1 highlights that incorporating
enzymatic kinetic parameter (half-saturation constant, Ks) fosters
a more efficient metabolic pathway. However, A2 notably
underperforms, particularly in the significant underestimation of
the BNF flux (Fig. 1a), as indicated by the percent bias (see
Eq. S58), which represents the relative error as a percentage
between the simulated and observed mean values. Dinitrogen
(N2) is the largest freely available N reservoir within terrestrial
ecosystems [22]. This translates to a notable decrease in
nitrogenases production in A2, while A0 and A1 exhibit elevated
enzyme level (Fig. 1a). Additionally, the BNF flux is inhibited by a
higher soil ammonium availability (i.e., the saturation level of
NH4

+) within the MEND model [4, 23] (Eq. S46). We observed a
consistent rise in NH4

+ availability within A2 (Supplementary
Fig. S3c), exacerbating the decline of the BNF flux to extremely
low levels. This further suppresses the amount of ammonia
oxidases and sequential products, favoring increased
N-reductases allocation (Fig. 1d). To better understand the
variation in outcomes of the three allocation scenarios, we
quantified the uncertainty in modeling the N-dynamics compo-
nent, specifically the total inorganic N flux (Flux-Ninorg) and the
total production of N-related enzymes (Enz-Ninorg), in response
to variations in N-relevant model parameters (see methods in
Supplementary Section 3.2). The relative uncertainty (ReUn =
Width90%CI/Mean, see Eq. S62 and ref. [24]) of Flux-Ninorg in A1
has a mean value of 10% (range: 4–14%), which is much lower
than the ReUn in A0 (25% with a range of 5–38%) and A2 (36%
with range of 9–64%) (Supplementary Fig. S4a). Enz-Ninorg also
exhibits the lowest ReUn in A1 (5%) compared to that of A0 (8%)
and A2 (18%) (Fig. S4b). These results indicate that, in addition to
its enzyme-efficient behavior, A1 could achieve more robust
results than A0 and A2. We acknowledge that microbial
physiology in the real world is likely more intricate than what
modeling can capture [16, 25]. For example, microbial commu-
nities may possess the specific ability to regulate excessive or
insufficient enzyme production and sustain flux equilibrium [9].
The A2 scenario described here may not be physically realistic in
achieving this goal.
In summary, we introduce the CODEAL, an innovative enzyme

allocation scheme for governing multiple enzyme groups under
dynamic substrate concentrations in microbial ecological model-
ing. CODEAL has been robustly tested within the MEND model,
designed for modeling microbial-enzyme-driven C-N coupled
dynamics. We advocate using relative substrate availability as
the weighting factor for enzyme allocation, as it yields an enzyme-
efficient pathway that maximizes returns on investment (enzyme
production). Our findings highlight the significant influence of
relative substrate availability on the trade-off between enzyme
production and metabolic flux, a crucial consideration in simula-
tions of enzyme-mediated biogeochemical processes. Further-
more, these results may illuminate the intricate mechanisms that
govern diverse N cycling processes carried out by metabolically
versatile soil microorganisms.

DATA AVAILABILITY
The data described in this article are openly available from: https://zenodo.org/
records/10050714.
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