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Tomato growth stage modulates bacterial communities across
different soil aggregate sizes and disease levels
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Soil aggregates contain distinct physio-chemical properties across different size classes. These differences in micro-habitats support
varied microbial communities and modulate the effect of plant on microbiome, which affect soil functions such as disease
suppression. However, little is known about how the residents of different soil aggregate size classes are impacted by plants
throughout their growth stages. Here, we examined how tomato plants impact soil aggregation and bacterial communities within
different soil aggregate size classes. Moreover, we investigated whether aggregate size impacts the distribution of soil pathogen
and their potential inhibitors. We collected samples from different tomato growth stages: before-planting, seedling, flowering, and
fruiting stage. We measured bacterial density, community composition, and pathogen abundance using qPCR and 16 S rRNA gene
sequencing. We found the development of tomato growth stages negatively impacted root-adhering soil aggregation, with a
gradual decrease of large macro-aggregates (1–2mm) and an increase of micro-aggregates (<0.25 mm). Additionally, changes in
bacterial density and community composition varied across soil aggregate size classes. Furthermore, the pathogen exhibited a
preference to micro-aggregates, while macro-aggregates hold a higher abundance of potential pathogen-inhibiting taxa and
predicted antibiotic-associated genes. Our results indicate that the impacts of tomatoes on soil differ for different soil aggregate
size classes throughout different plant growth stages, and plant pathogens and their potential inhibitors have different habitats
within soil aggregate size classes. These findings highlight the importance of fine-scale heterogeneity of soil aggregate size classes
in research on microbial ecology and agricultural sustainability, further research focuses on soil aggregates level could help identify
candidate tax involved in suppressing pathogens in the virtual micro-habitats.

ISME Communications; https://doi.org/10.1038/s43705-023-00312-x

INTRODUCTION
Plant-microbe interactions greatly impact agricultural production
and protection [1–3]. Plant roots significantly impact the physical
and chemical properties of the microhabitat in soil in which
microorganisms reside [4], leading to changes in the microbial
community composition in the rhizosphere, and even bulk soil [5].
These changes in microbial communities, in turn, have important
feedback on plant performance [4, 6, 7]. A better understanding of
how plant roots impact soil structure and microbial communities
could contribute to improving sustainable agricultural production.
Soil structure regulates many processes in soils, including water

flow, gas exchange, nutrient cycling, root penetration, and
microbial activities [8]. Soil aggregation is a key element of soil
structure where micro-aggregates (<250 μm) are formed by
primary particles (<53 μm) and humus, and macro-aggregates
(>250 μm) are further formed by organic polymers, fungal hyphae,
and plant root [9, 10]. In the last decades, most research has
examined soil aggregation from the perspective of soil manage-
ment [11–14] and its impact on ecosystem processes such as soil
carbon storage [15, 16]. Moreover, it is crucial to recognize that
soil aggregation plays a significant role in shaping the

composition and functioning of the soil microbiome as the
heterogeneous micro-environments within different size classes of
soil aggregates support varied microbes and their activities
[8, 17, 18].
Plant roots have a direct impact on root-adhering soil

aggregates, making them a crucial focus when studying plant-
soil feedback. Previous studies have contributed to our under-
standing of how root-associated microbiota impact the aggrega-
tion of root-adhering soil [19–22]. However, very few studies have
addressed how plant impacts, such as priming effects, differen-
tially impact microbial community activities across different soil
aggregates [23]. Plant roots can have differential effects on
microbes residing in different size classes of soil aggregates due to
the heterogeneity in physio-chemical properties. For instance, the
soil organic matter (SOM) within soil aggregates that support
microbes differ across size classes; macro-aggregates contain fresh
SOM, whereas micro-aggregates enclose older organic matter [24].
These divergences in organic matter among soil aggregates
culminate in dissimilar responses of microbiomes within distinct
size classes to root exudates, attributable to variations in chemical
composition. Nonetheless, there is limited knowledge about how
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microbial residents in different particle size classes are impacted
by plants during different growth stages, particularly regarding
their role in pathogen suppression. The soil-borne pathogens and
their inhibitors might exhibit preferences for specific habitats
created by the heterogeneity of different soil aggregate size
classes. For example, Fe is closely linked to plant pathogens
[25, 26], and the distribution of available Fe was reported to vary
among soil aggregate size classes [27], which can lead to a
preference of residence for pathogens. Evidence has shown that
the improvement of macro-aggregate formation may induce soil
conduciveness of banana Fusarium wilt by increasing the available
Fe content [28], which is necessary for the germination of the
spores of Fusarium, but the distribution of the pathogen among
soil aggregates was not assayed. Current studies often treat soil as
a homogeneous habitat, disregarding the fine-scale heterogeneity
within soil aggregates where microbial interactions occur. This
approach leads to a loss of information about the spatial
distribution of individual microbes and in-situ microbial interac-
tions during sample processing [18]. By recognizing the fine-scale
heterogeneity of soil aggregates, we can identify potential taxa
involved in suppressing soil pathogens and develop management
strategies to stimulate these target populations.
In this study, we examined the impact of plants on soil structure

and bacterial community composition, succession, and potential
function across different soil aggregate size classes to demonstrate
the effect of fine-scale heterogeneity of soil aggregates on
modulating the impact of the plant on soil bacterial communities.
We also examined whether the distribution of specific taxa across
different soil particle size classes corresponded to the density of a
soil-borne plant pathogen. We used long-term tomato fields as a
model to explore how bacterial residents of different particle size
classes are impacted by plants throughout their growth stages
(Fig. 1a). The field has been continuously cultivated with tomato
Solanum lycopersicum L. for seven cropping cycles, leading a build-
up of bacterial wilt disease caused by Ralstonia solanacearum. This
allowed us to evaluate the potential role of the microbiome within
soil aggregates in disease suppression. We collected root-adhering
soil aggregates at different growth stages (before-planting, seed-
ling, flowering, and fruiting) and separated them into size classes
(large macro-aggregates, LMa, 1–2mm; small macro-aggregates,
SMa, 0.25–1mm; Micro-aggregates, Mi, <0.25mm). In addition, we
took root-adhering soil aggregate samples and rhizosphere

samples. The root-adhering soil aggregate samples were obtained
by wet-sieving the soils that were loosely bound to the tomato
roots. This procedure aimed to illustrate how tomato roots
influence the composition, progression, and potential roles of
bacterial communities within distinct soil aggregates across tomato
growth stages. On the other hand, the rhizosphere samples
encompass tightly remaining soils after root shaking and are
collected by root washing. This step was undertaken to examine the
dynamics of the Ralstonia pathogen and its potential inhibitory taxa
within the rhizosphere, while also tracing their distribution across
different soil aggregate size classes. All samples had DNA extracted
and the DNA was subjected to qPCR and Illumina MiSeq
sequencing based on the 16 S rRNA gene to quantify the bacterial
density and community composition. We hypothesized that (1)
different size classes of root-adhering soil aggregate would differ in
terms of total bacterial density, community composition, and
specific ASVs (amplicon sequence variants), and (2) the potential
functioning of soil aggregates in pathogen inhibition would vary
among size classes, as related to their differences in bacterial
community structure and potential function.

MATERIALS AND METHODS
Field site description
The experimental tomato fields were located at the Nanjing Institute of
Vegetable and Flower Science, Nanjing, China (32°02’N, 118°50’E). This
region has a tropical monsoon climate with an average annual temperature
and precipitation of 15.4 °C and 1106mm, respectively. Fields have been
continuously cropped with tomato (Solanum Lycopersicum L.) since March
2014 with two cropping cycles per year, one in the Spring and one in the
Autumn. The field was protected by a plastic shed, which included three
independent field plots. These field plots had the same management:
regularly irrigated during tomato cultivation, tillage, and fertilization, and
the roots and shoots of tomatoes were removed after the harvest. Both
organic and chemical fertilizers were applied to the fields with a total of
7500 kg/ha (dry weight) organic fertilizer fermented by chicken manure,
and chemical fertilizers including urea, calcium superphosphate, and
potassium sulfate applied supplementally to adjust the inputs in a total
amount of N (120 kg/ha), P (180 kg/ha) and K (120 kg/ha) in the sample
collection season.
With the long-term monoculture of tomatoes, these fields suffered

seriously from tomato bacterial wilt caused by a soil-borne pathogen
Ralstonia solanacearum [29, 30]. In the 7th cropping cycle from which we
collected the samples, the disease incidence of these field plots ranged
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from approximately 21.4% to 68.8% [31] based upon visible symptoms of
tomato bacterial wilt (e.g., initial wilting of upper leaves followed by
complete wilting of all leaves) [32].

Soil sampling
Soils were sampled in spring 2017 during the 7th cropping cycle. Soil
samples were collected from 4 growth stages of the tomato, i.e., before-
planting, seedling, flowering, and fruiting stage at weeks 0, 2, 5, and 10,
respectively (Fig. 1a). To avoid the impact of irrigation time, soil samples
were collected 3 days after irrigation at each time point. Three independent
field plots were split into six subplots in the middle (two subplots for each
field plot) as subplots for sampling. Before tomato planting, soil cubes
(10× 10× 10 cm) were sampled randomly from 3 distinct locations where
tomatoes will be planned within each subplot and pooled as one biological
sample. After tomato planting, 3 healthy plants of tomato were randomly
selected from each subplot for each growth stage (seedling, flowering, and
fruiting). The roots of these plants were dug up together with surrounding
soils (in 1000 cm3 cubes), and these soil cubes were transported to the lab
and immediately stored at 4 °C. The 3 plants or soil cubes collected from
each subplot were pooled as one sample. In total, 6 replicate samples were
collected for each stage. Soil moisture was determined by the oven-drying
method. For samples from the before-planting stage, soil cubes were gently
broken up by hand along natural planes of weakness and passed through an
8mm sieve, after which soils were directly subjected to a wet sieve for soil
aggregate separation. For samples from the other 3 growth stages with
roots, soil cubes were gently broken by hand along natural planes of
weakness, and soils that didn’t adhere to the roots were removed. Then,
roots were shaken fiercely by hand, and soil that had shaken off from the
roots was collected and subjected to aggregate separation to create
the root-adhering soil aggregate samples. The rhizosphere samples
were provided by Zhao [33]. Briefly, soils that remained on the root after
the shake were collected by root wash [30, 34].

Soil aggregate separation
Soil aggregates were separated by a modified wet-sieving method [35, 36].
In brief, fresh soils were air-dried in the lab until the soil moisture was
around 20% (60% of field capacity) to avoid the impact of soil moisture in
the determination of soil aggregate size distribution. Then, 25 g of soil was
wet sieved by a column of sieves including 2mm, 1mm, and 0.25mm.
Soils were placed on the top of the sieve column and immersed in
sterilized water for 5 min. Then, the sieves were gently shaken 50 times by
hand over the course of 2 min with an amplitude of 4 cm. The soil
remaining on each of the sieves was air-dried for about 3min under a

sterile wind to make it of suitable moisture for collection. The size classes
passing through the 0.25mm sieve were collected by centrifugation
(6000 g/min, 10 min). A part of the collected size classes was oven-dried at
60 °C for 24 h to determine soil moisture, and the remainder was stored at
−80 °C for DNA extraction.
Since no soil remained on the top of the 2mm sieve, root-adhering soil

aggregate samples were named as follows: Large macro-aggregates (LMa),
1–2mm; Small macro-aggregates (SMa), 0.25–1mm; Micro-aggregates
(Mi), <0.25mm.

16 S rRNA gene amplicon sequencing
Total soil DNA was extracted by PowerSoil DNA Isolation Kit (Mobio
Laboratories Inc., Carlsbad, USA) using 0.5 g dry weight soil of each soil
sample, following the manufacturer’s instructions, and stored at −80 °C.
The V4 hypervariable region of the 16 S rRNA gene (~283 bp) was

amplified with primers 520 F (5′-AYTGGGYDTAAAGNG-3′) and 802 R (5′-
TACNVGGGTATCTAATCC-3′) [33]. PCR amplicons from total soil DNA (as
described in Supplementary Information) were subjected to DNA sequencing
using an Illumina Miseq PE250 platform (Illumina Inc., CA, US) at Personal
Biotechnology Co., Ltd. (Shanghai, China) to determine the bacterial
community compositions. Raw sequence data is available in the National
Center for Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/)
with the BioProject accession number PRJNA911225. The raw rhizosphere
amplicon sequencing data was obtained from Zhao [31], which was
processed using the same protocol for DNA extraction and MiSeq
sequencing, as described in the Supplementary Information.

Bioinformatic analysis
Raw paired-end reads of soil aggregate and rhizosphere samples were
processed by QIIME2-2021.8 [37] according to the pipeline. DADA2 [38]
was performed by the “dada2 denoise-paired” function to determine the
amplicon sequence variants (ASVs). Forward and reverse reads were
trimmed at the 5′ end until 15 and 18 bp, respectively, to remove the
primers and truncated at 3′ end until 180 and 160 bp, respectively, to
remove the low-quality base pairs. Then, contingency-based filtering was
performed to filter the ASVs that show up in no more than 5 samples using
the “feature-table filter-features” function. At last, a total of 3,724,170 high-
quality and non-chimeric sequences were obtained from a total of
114 samples, with a median of 30,345 sequences per sample (ranged from
18,477 to 52,667). Rarefaction curve (Supplementary Information Fig S1)
was performed to evolute the intensity of sampling, using “rarecurve”
function of “vegan” package in R 4.1.1. The rarefaction curves reached their
asymptotes or started to plateau for all samples, suggesting that saturation
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in sequencing was achieved. Taxonomy was classified using a pre-trained
Naïve Bayes classifier by “feature-classifier” function against the Silva Ref
NR99 [release 132] database [39].
To predict the potential functions based on 16 S rRNA gene sequences,

we applied PICRUSt2 (version 2.4.1) [40] based on the ASV abundance and
sequence table using the “picrust2_pipeline.py” function with default
parameters. The predicted KEGG Orthology (KO) dataset was used to
compare the difference between macro and micro-aggregates in potential
functions. The KOs were annotated according to the KEGG ORTHOLOGY
Database (https://www.genome.jp/kegg/ko.html) [41].

Real-time qPCR
To determine the density of bacteria within each soil aggregate size class
across all growth stages, the real-time qPCR test was performed based on
part of the V3 region of the 16 S rRNA gene (primer 338 F 5′-ACTCC
TACGGGAGGCAGCAG-3′ and primer 518 R 5′-ATTACCGCGGCTGCTGG-3′)
[42]. We also quantified the population density of the tomato bacterial wilt
pathogen, R. solanacearum, within each size class in the fruiting stage
while the disease breaks out, based on filC gene (primer F 5′-

GAACGCCAACGGTGCGAACT-3′ and primer R 5′-GGCGGCCTTCAGG-
GAGGTC-3′) [43]. Protocols of the real-time qPCR were shown in
Supplementary Information.

Statistical analyses
All statistical analyses were performed in R version 4.1.1 (R Core Team
2021). For alpha-diversity analyses, the total numbers of sequences in each
sample were rarefied to an equal sum of 18,477 (minimum sum over all
samples) using a “Rarefy” function in “GUniFrac” package. Beta-diversity
analyses were based on a non-rarefied dataset. The dataset was Hellinger-
transformed, Bray–Curtis dissimilarity was calculated based on the
transformed dataset. Principal coordinate analysis (PCoA) was used to
visualize the dissimilarity matrices. Significant variation between bacterial
communities was tested by analysis of similarities (ANOSIM) with 999
permutations using “anosim” function of package “vegan” based on
Bray–Curtis dissimilarities. “DESeq2” and “edgeR” package were employed
to identify the significantly different bacterial taxa between successive
growth stages in each soil aggregate size class. To ensure the robustness of
results, we focused on the intersection of ASVs that possessed adjusted P-
values lower than 0.05, as determined by both DESeq2 and edgeR. Then
Venn network diagrams were drawn in Cytoscape (Version 3.9.1) to show
their associations. The significant difference between values such as
bacterial density, alpha-diversity, dissimilarities, etc. was calculated by
Tukey Honest Significant Differences (Tukey HSD). Correlation tests were
performed by Spearman’s correlation test. Comparison between the
relative abundance of ASVs or density of R. solanacearum was performed
by Wilcoxon Rank Sum and Signed Rank Tests. For predicted functions, the
values of KOs were rounded into integers, and then, genes enriched in
macro or micro-aggregates were determined by DESeq2. KOs that had p-
values less than 0.01 and absolute values of log2FoldChange more than 1.5
were defined as enriched KOs.

RESULTS
Soil aggregate distribution changed with tomato growth
stages
The distribution of soil aggregates showed dynamic changes
across the different plant growth stages (Fig. 1b). Micro-
aggregates (Mi) showed the highest abundance (p < 0.05) in all
stages compared to other macro-aggregate size classes (i.e., LMa
and SMa). The abundance of Mi increased with the development
stage, especially in the fruiting stage, with a high level of
significance (p < 0.001) detected. In contrast, the proportion of
large macro-aggregates (LMa) was highest before planting. This
size class decreased with plant development, with a non-
significant decrease (p > 0.1) from the seedling to the flowering
stage, and a highly significant decrease (p < 0.001) from the
flowering to the fruiting stage. The proportion of the SMa size
class showed no significant changes between growth stages. In
short, the planting and growth of tomatoes negatively impacted
root-adhering soil aggregation.

Bacterial density changes showed markedly different
dynamics in micro-aggregates as compared to macro-
aggregates
To investigate the impact of soil aggregation on bacterial density,
real-time qPCR was performed to track the bacterial density within
soil aggregates for each growth stage (Fig. 2a). The bacterial
densities were similar (p > 0.1) between soil aggregates before
tomato transplanting. The bacterial density in micro-aggregates
(Mi) significantly (p < 0.05) increased in the seedling stage, causing
a significantly higher density in Mi as compared to LMa and SMa.
In the fruiting stage, the bacterial density in macro-aggregates
decreased (i.e., p < 0.1 in LMa, p < 0.05 in SMa), while the density in
micro-aggregates significantly increased (p < 0.05), causing a
significant (p < 0.05) higher density in Mi than LMa and SMa.
These results indicated that bacterial density showed a similar
dynamic change in macro-aggregates (i.e., LMa and SMa), but an
opposite pattern in micro-aggregates compared to macro-
aggregates. Spearman’s rank correlation test also showed that
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the bacterial density in stages after tomato transplanting (i.e.,
seedling, flowering, fruiting) showed a significantly negative
correlation (i.e., LMa~Mi, r=−0.505, p < 0.05; SMa~Mi,
r=−0.622, p < 0.01) between Mi and LMa or SMa (Fig. 2b), again
indicating opposite patterns of bacterial density in macro-versus
and micro-aggregates for root-adhering soil.

Impact of soil aggregates on beta-diversity of bacterial
community succession
To show the variation among aggregate size classes and growth
stages, principal coordinate analysis (PCoA) was performed based
on Bray–Curtis. When all samples were included in the analysis
(i.e., rhizosphere, whole soil, and root-adhering soil aggregates)
(Supplementary Information Fig S2), both the size class and the
growth stage significantly (p < 0.001) impacted the bacterial
composition according to ANOSIM. The soil aggregate size
explained a higher degree of variation (r= 0.36) compared to
the growth stage (r= 0.245). The PCoA also showed a clear
distinction between rhizosphere and root-adhering soil.
To further evaluate the impact of root-adhering soil aggregates

on bacterial community succession, we performed PCoA and
ANOSIM using soil aggregate samples based on Bray–Curtis
dissimilarity (Fig. 3a). The PCoA revealed a clear separation between
the soil aggregate size classes and growth stages, while ANOSIM
also indicated that the growth stage and soil aggregate size
significantly impacted the bacterial community composition. In this
case, growth stage explained more variation (r= 0.409) than soil
aggregate size class (r= 0.177). Soil aggregate size showed various
effects on bacterial community succession across the different
tomato growth stages. Bray–Curtis dissimilarities were extracted
between each of the two continuous growth stages in individual
soil aggregate sizes (Fig. 3b) to examine bacterial community
succession in each soil aggregate size class. The soil aggregate sizes
showed a negative correlation (r=−0.37, P < 0.001) with
Bray–Curtis dissimilarities in the seedling stage versus the before-
planting stage, indicating a greater change in smaller size classes in
the seedling stage. In contrast, soil aggregate size showed positive
correlations with Bray–Curtis dissimilarities in later growth stages
(flowering vs seedling: r= 0.25, P < 0.001; fruiting vs flowering:
r= 0.49, P < 0.001), suggesting that greater changes occurred in
larger size classes in the flowering and fruiting stages.

Taxa affected by successive growth stages in each soil
aggregate size class
To investigate the ASVs that significantly changed between two
successive growth stages in each soil aggregate size class, DESeq2
and edge R were performed, and Venn network diagrams were
drawn to show their associations (Fig. 4). The greatest change
occurred between the seedling and before-planting stages, with a
total of 121 ASVs significantly changed (i.e., 74 increased, 47
decreased), while only a few ASVs significantly changed in the
flowering (i.e., 0 increased, 3 decreased) and fruiting (i.e., 0
increased, 1 decreased) stages. Interestingly, in the seedling stage,
most of the affected ASVs were unique to each soil aggregate
class (i.e., 90 unique ASVs; 31 common ASVs), indicating a
disparate change of ASVs in different soil aggregates. Almost all
(i.e., 30 out of 31) of the common ASVs increased between the
before-planting and seedling stage and a majority (i.e., 23 out of
31) of these ASVs belong to the Proteobacteria, indicating an
overall effect of root compounds on enriching similar taxonomic
groups in all soil aggregate size classes. In the flowering and
fruiting stages, all significantly changed ASVs were unique to each
soil aggregate size class, indicating that roots had a distinct effect
on ASVs in soil aggregates along the growth stages.

The potential function of pathogen inhibition across soil
aggregate size classes
After long-term continuous cropping of tomatoes, the experimental
fields suffered seriously from tomato bacterial wilt caused by R.
solanacearum. In the 7th cropping cycle, the one from which we
collected our samples, the disease incidence of the three plots
reached approximately 21.4%, 50%, and 68.8%, respectively.
Bacterial wilt symptoms typically broke out at the fruiting stage. It
is also at this time that we saw an explosive increase of ASV1
(Supplementary Information Fig S3). This ASV had a high mean
relative abundance of 64.02% in the fruiting rhizosphere and was
classified as being affiliated with the Ralstonia genus. We, therefore,
assumed that this ASV corresponds to the population causing the
bacterial wilt in these fields. To examine if ASVs could be identified
that might be involved in pathogen suppression, we searched for
ASVs that were negatively correlated with the pathogen in the
rhizosphere. To this end, we performed a Spearman’s rank
correlation test to determine the ASVs that had a significantly

seedling vs before flowering vs seedling fruiting vs flowering 
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Fig. 4 Venn network showing the distribution of significantly changed ASVs between two successive growth stages in individual soil
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The circles in different colors represent ASVs classified into different phyla. Edges between soil aggregate size classes and ASVs indicate these
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negative correlation (p < 0.05) with the relative abundance of the
Ralstonia ASV1 in the fruiting rhizosphere. A total of 29 such ASVs
were found. Then we investigated the distribution of these potential
pathogen-suppressive ASVs across soil aggregate classes, and 21 of
these ASVs were found in soil aggregate samples (relative
abundance of these ASVs shown in Supplementary Information
Fig S4). Of these ASVs, 4 were found to vary significantly in relative
density between soil aggregate size classes. Figure 5a shows the
correlations of these 4 ASVs with the Ralstonia_ASV1. All these 4
ASVs had a significantly (p < 0.05) higher relative abundance in one

of the macro-aggregate size classes as compared to the micro-
aggregate size class (Fig. 5b). Two of them (i.e., ASV224 and ASV556)
had a significantly (p < 0.05) higher abundance in LMa than Mi size
class, and the other two (i.e., ASV122 and ASV239) were significantly
(p < 0.05) higher in SMa than Mi. The above results suggest that
macro-aggregates have more potential pathogen inhibitors com-
pared to micro-aggregates in the growth stage where the disease
becomes manifest.
To further investigate the potential function of the bacterial

community in soil aggregates on pathogen inhibition, the density
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of the pathogen R. solanacearum in the fruiting stage was
examined by qPCR test (Fig. 5c). Interestingly, the density of R.
solanacearum was significantly higher in the Mi size class than LMa
and SMa size classes. This result indicates that micro-aggregates
can harbor more population of the pathogen.
PICRUST2 was used to predict the potential microbial functions

of the microbial communities of different size classes in the
fruiting stage. Predicted KEGG ORTHOLOGYs (KOs) were com-
pared to determine the potential functions enriched in macro-
versus micro-aggregates. As shown in Fig. 5d, macro-aggregates
were relatively enriched with 22 KOs compared to micro-
aggregates. For micro-aggregates, only five KOs were enriched.
Interestingly, four of the KOs enriched in macro-aggregates are
involved in the biosynthesis of antibiotics (i.e., K15320, K16421,
K13547, and K16423 are involved in the biosynthesis of enediyne
antibiotic, vancomycin, neomycin/kanamycin/gentamicin, and
vancomycin, respectively). Moreover, two of the KOs enriched in
macro-aggregates are related to antimicrobial resistance (i.e.,
K00561 and K18220). In contrast, metabolism KOs enriched in
micro-aggregates are associated with phosphatase, amino sugar
and nucleotide sugar, dibasic acid, and porphyrin, with no KOs
associated with antibiotic biosynthesis or resistance.

DISCUSSION
There is a long history of research investigating root-adhering soil
aggregation and its relationship with soil microbiota. For instance,
it has been shown that wetting and drying cycles can impact
rhizosphere soil aggregation [21], and rhizosphere microbiota,
such as Bacillus polymyxa [44] and Rhizobuim sp. [45], can improve
rhizosphere soil aggregation. In our experiment, we also found
that soil aggregation was negatively affected by the growth of
plant roots (Fig. 1b), which is in line with several arguments that
plant roots can lead to the disruption of soil aggregates. Firstly,
the tomato roots become longer as the growth of tomatoes and
penetrate into the macropores, such a process may physically
break the existing macro-aggregates [46]; Secondly, some of
the organic compounds released by plant roots can increase the
dispersion of clay particles [47]. In this experiment, the soil
type was a clay loam, with a high clay content of 30% [48], in
which the dispersion of clay can cause a breakdown of the macro-
aggregates; Moreover, Wet-dry cycles caused by water uptake of
tomato roots can disrupt soil aggregation in swelling clays,
making the clay particles separate from other particles, decreasing
the soil aggregate stability [49]. The development of tomato
growth stages will increase the effect of water uptake throughout
the growth of tomato roots, boosting the negative impact on soil
aggregation.
Numerous studies have shown that the microbiomes of root-

adhering soils are impacted by plant roots [50–54]. However,
nearly all such research has relied on typical soil sampling
strategies, i.e., taking the entirety of the root-adhering soil as a
collective rhizosphere sample. Unfortunately, such sampling
approaches do not account for the complex and heterogeneous
nature of the soil matrix at the micro-scale, where different sizes of
soil aggregates can provide an array of different micro-
environments that may differ in their physical-chemical condi-
tions. For example, larger soil aggregates were shown to have
higher organic matter content and carbon stocks in Loess
Plateau soils [55], which could support greater bacterial biomass
within [56]; meanwhile, heavy metals such as Cd, Cr, Cu, Zn were
found to have higher concentrations in smaller aggregates of
farmland soil [57], these heavy metals are toxic to the vast majority
of bacteria and impact their activity in organic matter degradation
[58]. Macro-aggregates from natural grassland in China also had a
lower pH and higher porosity than micro-aggregates [59], while
soil pH is a critical driver of soil bacterial community structure [60,
61]. The typical soil sample is huge compared to individual soil

aggregates. This discrepancy in scale at the level of the spatial
habitats of individual microorganisms does not allow for the study
of in-situ species interactions in microbial niches [18]. Similarly,
although many studies have examined the influence of plant roots
on the rhizosphere microbiome, little is known about how this
influence is exerted across different root-adhering soil aggregate
size classes. Our research shows the in-situ impact of fine-scale
heterogeneity of soil aggregates on bacteriome assembly in the
rhizosphere and how these changes throughout plant develop-
ment. We found that succession within the bacterial communities
across soil aggregate sizes differed, with micro-aggregates being
more responsive to the changing impact of plant roots both at the
community (i.e., total density, community diversity) to species
levels (i.e., potential functional ASVs, pathogen R. solanacearum).
Our results highlight the importance of fine-scale heterogeneity
among soil aggregates on plant-soil feedback research, giving
heed to the appeal that soil aggregation should be considered as
an important driver of evolution and interaction in soil microbial
communities [17, 62].
Plant roots can secrete a wide range and a large quantity

(5–21% of total fixed carbon) of compounds into the rhizosphere,
which can be assimilated by root-associated bacteria [63]. In this
study, the planting of tomatoes also provides organic matter to
soil-borne bacteria, causing an increase in bacterial density from
the pre-planting to the seedling stage for all soil aggregate size
classes, and this effect is most pronounced for micro-aggregates
(Fig. 2a). This phenomenon may be attributed to the varying water
storage capabilities of different soil aggregate sizes. Plant roots
release organic compounds for microbes by root exudates [64].
The extent to which these liquids are acquired by soil aggregates
may differ among size classes due to differences in pore sizes and
structure within the soil: smaller size classes of soil aggregates
exhibit reduced porosity [65] but possess a greater number of
pores [66]. This, in turn, enhances the water retention capacity
within micro-aggregates [67]. Consequently, micro-aggregates are
better equipped to absorb and retain root exudates, thereby
creating more favorable conditions for bacteria to utilize the
nutrients derived from these exudates. This contributes to a
higher overall bacterial density within micro-aggregates during
the seedling stage. Conversely, the smaller porosity and stronger
water storage capacity of micro-aggregates result in slower water
flow within them. As a consequence, the influx of exudates into
this category of aggregates is reduced. This, coupled with the
depletion of initially safeguarded soil organic carbon, leads to a
decline in total bacterial density within micro-aggregates during
the flowering stage. Intriguingly, bacterial density experiences a
renewed increase during the fruiting stage (Fig. 2a). This pattern
aligns with the existing framework regarding the root-driven
aggregates-turnover associated rhizosphere priming effect: plant
roots can drive the release of aggregate-protected C for microbial
decomposition and then facilitate new C (from root exudates)
sequestration [68]. As a result, the total bacterial densities within
micro-aggregates increased in the early growth stage of tomato
and then decreased in the later stage due to the dynamic of soil
organic matters.
In contrast, macro-aggregates (i.e., LMa and SMa) showed an

opposite pattern in bacterial density with the highest bacterial
densities at the flowering stage (Fig. 2b). This could be linked with
the higher saturated hydraulic conductivity [65] and less protec-
tion of soil organic matter [69] by the larger size of soil aggregates,
causing a slower dynamic of soil organic matter impacted by the
rhizosphere priming effect. Bacterial densities thus show aggre-
gate size class-dependent dynamics throughout the different
growth stages of the plant [70]. Here, we used qPCR to track the
changes in bacterial abundance, although the copy number of the
16 S rRNA gene may also reflect certain growth traits such as
growth rate [71], the results from qPCR are still comparable, as it is
a systematic error which similar to all the samples that be tested.
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Due to the limitations of technology, qPCR is still a commonly
used approach for bacterial abundance determination, methodol-
ogies should be developed to improve the accuracy.
Previous studies have shown differences across root-adhering soil

aggregates concerning soil respiration [72, 73], microbial biomass,
and enzymatic activities [22]. Here, we provide additional information
regarding bacterial community traits such as density, community
structure, taxon distribution, and potential functioning as related to
disease suppression. For instance, in the seedling stage, larger
temporal changes were found in the smaller size of soil aggregates in
community turnover (Fig. 3b) and more taxa significantly changed in
relative abundance were found for these samples (Fig. 4). It may be
that the root exudates and plant-derived substrates are binding
agents of macro-aggregates [46]. Consequently, the chemical
composition of nutrient resources derived from root-generated
substrates could exhibit similarities to the organic matter present in
macro-aggregates. As a consequence, bacteria relying on “old”
organic material might have been subjected to more pronounced
disturbances triggered by the introduction of root-derived substrates
during the tomato’s seedling stage [51].
At the taxonomic level, the three sizes of soil aggregates only

shared a few common increased ASVs, mostly classified as
Proteobacteria (Fig. 4) in the seedling stage. This is in line with a
previous report that showed that exogenous seedling tomato root
exudates could increase the relative abundance of Proteobacteria
[74]. Interestingly, the most significantly changed ASVs at the
seedling stage are unique to individual soil aggregates (Fig. 4),
indicating the importance of appreciating the fine-scale hetero-
geneity of soil aggregates.
Interestingly, we found a potential linkage between different

bacteria within soil aggregates and potential pathogen inhibition
function. Exposure to plant disease-causing agents can
induce the recruitment of an assemblage of plant-beneficial
bacteria in the rhizosphere, resulting in an enrichment of disease-
suppressive microbial traits in the rhizosphere of disease-
exposed plants [75]. Moreover, evidence has also shown that, as
root-adhering soil is dislodged, such impacts on the soil
microbiome can extend beyond the immediate plant surface
after pathogen invasion, thereby inducing a soil-borne legacy to
benefit subsequent plant generations [76]. The fields in our
experiment suffered acutely from tomato R. solanacearum disease
[29, 30], allowing examine the distribution of both the pathogen
and potentially pathogen-suppressive bacteria across different
size classes of root-adhering soil aggregates. The tomato bacterial
wilt outbreak occurred at the fruiting stage in our experimental
field. This corresponded to a large increase in the relative
abundance of an ASV classified as the pathogen genus, Ralstonia,
in the rhizosphere. We found an interesting distribution of the
pathogen and potentially pathogen inhibition taxa across soil
aggregates, where the pathogen is most prevalent in micro-
aggregates (Fig. 5c), while more candidate pathogen inhibitors
reside in macro-aggregates (Fig. 5b). These taxa, which are
negatively correlated to the density of the Ralstonia ASV in the
rhizosphere, were classified into groups that have previously
been reported to be associated with disease suppression. For
instance, some species of Nocardioides can produce antibiotic
compounds that exhibit antibacterial activities toward Gram-
positive and Gram-negative bacteria, such as the rice disease
pathogen Xanthomonas oryzae [77]. The genus Hyphomicrobium
was also reported to increase with Pine wilt disease resistance-
inducing chemical elicitor acibenzolar-s-methyl in the rhizo-
sphere [78]. Unfortunately, the other two ASVs, ASV122 and
ASV556, could only be classified at the family level, making it
more difficult to relate them to previous knowledge related to
pathogen suppression. It should be noted that our results only
suggest the potential function of these ASVs in disease
suppression. Confirmation of such activities would require future
isolation and inhibitions studies.

To get more insight into differentially represented microbial
functions related to disease suppression across aggregate size
classes, we performed PICRUST2 analysis to predict the potential
functions of differentially distributed ASVs across soil aggregate
size classes at the fruiting stage. Interestingly, the results of
predicted metagenome properties (Fig. 5d) supported the results
related to the taxa that were negatively related to the pathogen in
macro-aggregates (Fig. 5b): K15320, K16421, K13547, K15956, and
K16423 were enriched in macro-aggregates, with these KOs being
involved in antibiotic biosynthesis including enediyne, vancomy-
cin, Neomycin/kanamycin/gentamicin, daunorubicin, and vanco-
mycin, respectively [70, 79–81]. Antibiotic resistance genes were
also found to be enriched in macro-aggregates, K18353, K00561,
and K18220 being associated with antimicrobial resistance
[82–84]. These results suggest that macro-aggregates represent
habitats with relatively high levels of antibiotics, which is in line
with the finding that pathogen densities are highest in micro-
aggregates. To develop a more complete picture of differential
pathogen inhibition capabilities across soil aggregate size classes,
additional studies will be needed to track the densities of genes,
transcripts, and/or proteins involved with antibiotic production
and resistance. The higher abundance of R. solanacearum in
micro-aggregates indicates its preference for micro-environments
in such size classes (Fig. 5c). This preference might be linked to the
stronger water storage capacity of micro-aggregates [67], while
higher soil moisture can support a greater density of R.
solanacearum [85]. More populations of potential pathogen-
inhibiting taxa (Fig. 4a,b) and predicted antibiotics genes (Fig. 5d)
were found in macro-aggregates. This might be induced by the
amendment of organic fertilizers, which was shown to increase
disease suppressiveness by triggering beneficial microbes [86],
and such “fresh” organic matters would first format into macro-
aggregates according to the existing soil aggregate turnover
model [46], resulting in a direct simulating on inhibitors within this
size classes.
Our findings suggest that bacterial community succession and

functioning are dependent on soil aggregate size class, with
micro-aggregates being more favorable to the soil-borne patho-
gen R. solanacearum than macro-aggregates. Moreover, we found
that soil aggregation is influenced quickly and substantially by
agricultural management, creating more pathogen-favored habi-
tats (i.e., micro-aggregates) in the tomato field. This might be the
major factor causing the tomato consecutive cropping obstacle.
Potential management strategies could be developed for a more
sustainable tomato continuous cropping agricultural system
according to our study: (1) The improvement of the macro-
aggregate proportion and the increase of macro-aggregate
stability can help decrease the amount of habitat for the pathogen
and increase the abundance of pathogen inhibitors; (2) the
inoculation of micro-aggregates favored pathogen-inhibit micro-
organisms may contribute to the decrease of pathogen density in
soils. As our study is limited to a single experimental field, with its
specific soil properties, future research should be dedicated to
examining similar aggregate-specific properties across other soil
types and management schemes. This knowledge related to the
properties and activities of soil aggregate samples could help us
to better understand the microbial processes and interactions that
determine disease suppression and outbreak and to develop
appropriate management strategies.

CONCLUSION
In summary, our study suggests that the soil structure is negatively
impacted by the plant root throughout tomato growth stages and
highlights the importance of fine-scale heterogeneity of soil
aggregate size classes in modulating the effect of plant roots on
bacterial community characteristics and soil-borne disease-asso-
ciated functions. Distinct patterns were observed across different
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soil aggregate size classes, revealing variations in total density
dynamics, shifts in community composition, and alterations in the
abundance of taxa. Remarkably, the tomato bacterial wilt
pathogen exhibited a preference for micro-aggregates, while taxa
negatively correlated with pathogen abundance in the rhizo-
sphere, and predicted functional genes associated with antibiotics
were found to be more prevalent within macro-aggregates. These
insights accentuate the intricate interplay between plant root
effects, bacterial community traits, and functions relevant to
disease management within the context of soil structure, which
suggests that better management of soil structure such as
improvements of soil aggregation and macro-aggregates stability,
pathogen-suppressing microorganisms preferring micro-
aggregates can significantly contribute to the sustainability of
continuous cropping agricultural system.

DATA AVAILABILITY
16 S rRNA gene amplicon sequence data is available in the National Center for
Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/) with the BioProject
accession number PRJNA911225.
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