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Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on
developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community
types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography
using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a
novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct
a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of
the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only
temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of
community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the
subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-
term trends in the distribution of community types, which suggested responses to ocean warming.

ISME Communications; https://doi.org/10.1038/s43705-023-00308-7

INTRODUCTION
Monitoring the global dynamics of marine plankton is essential to
understand the function of the marine microbial ecosystem and
its interaction and evolution with climate change. Monitoring can
also facilitate the discovery of new plankton species. Global
plankton samples at a high spatial and temporal density using
research ships alone cannot be obtained, owing to the extent of
the ocean. However, regular and global remote sensing using
satellites can potentially be used to solve this problem. The
spectrum of light reflected from the ocean surface that is
observed by satellites (remote sensing reflectance) has a specific
relationship with plankton composition because some plankton
species harbor pigments that absorb light. Environmental para-
meters, such as sea surface temperature (SST), are also related to
plankton composition [1].
Several models for predicting plankton communities using

satellite-derived data have been developed over the past decades
[2, 3]. Most have focused on phytoplankton because these species
always contain pigments, such as chlorophylls, carotenoids, and

phycobilins, to capture light energy for photosynthesis [4]. The
abundances of three size classes—micro-phytoplankton (>20 µm),
nano-phytoplankton (2–20 µm) and pico-phytoplankton (0.2–2 µm)
—can be predicted with simple models integrating only the
concentration of chlorophyll a (Chl a), which is the core of the
photosynthetic unit [5–7]. More advanced models have also been
developed to predict size classes using remote sensing reflectance
[8–11]. The abundance of taxonomic groups of phytoplankton is
another target for predictive models. The abundance of diatoms,
prymnesiophytes (haptophytes), green algae, and Prochlorococcus
can be predicted using Chl a [5]. The PhytoDOAS model uses
remote sensing reflectance data at high spectral resolution to
predict the abundance of coccolithophores, dinoflagellates, cyano-
bacteria, and diatoms [12, 13]. Models also have been developed to
predict the plankton communities. The PHYSAT model can predict
communities dominated by diatoms, haptophytes, Prochlorococcus,
and Synechococcus defined by the pigment concentration ratio
[14, 15]. Another model has been developed to predict the
distribution of biogeochemical provinces [16].
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Despite these advantages, these previous methods have a
limitation with regard to the number of defined plankton groups
because most are based on empirical relationships between
pigments and light absorption. Although these methods provide a
synoptic view of the spatiotemporal extent of the main groups of
phytoplankton, they lack taxonomic resolution and cannot
reproduce the complexity of a planktonic community. To tackle
this point, this study presents a machine-learning model for the
satellite-based prediction of the global distribution of the
community types captured by an ecological network of plankton.
Its target was a community composed of phytoplankton and
heterotrophic protists delineated from rDNA 18 S V4 metabarcod-
ing data at a high taxonomic resolution. We used a network-
oriented approach, which was inspired by the Bayesian network
model used to predict metabarcoding-based bacterial composi-
tion in the English Channel [17]. There are two difficulties in
predicting species composition directly from satellite-derived
data. The first difficulty is the substantial number of response
variables compared with predictor variables. There are hundreds
of species represented in the metabarcoding dataset (after
selection by their occurrence) but only 17 parameters of ocean
color data acquired by multispectral sensors are available as
predictor variables. The second difficulty is the small number of
samples. In this study, we used the largest available compilation of
eukaryotic metabarcoding data, complemented with novel
sequence data from the Tara Oceans expeditions, but only a
few hundred samples were available for analysis after appropriate
filtering. Focusing on ecological networks alleviated these two
difficulties by reducing the number of variables (dimensionality) in
the metabarcoding data. Ecological networks tend to be
structured and are non-randomly assembled [18]. Indeed, a
previous study showed that, through an unsupervised approach
for community delineation, the global plankton network is self-
organized by marine biomes [19]. We took advantage of this
property of plankton networks to reduce dimensionality and
convert the problem into a multiclass prediction.

MATERIALS AND METHODS
Satellite data
Ocean color data acquired by the Moderate Resolution Imaging Spectro-
radiometer on board the Aqua and the Terra satellites were used in this
study. Level-3 data, mapped to a 5ʹ (ca. 9 km on the Equator) square monthly
grid, were downloaded from the Ocean Color Web operated by NASA
(https://oceancolor.gsfc.nasa.gov/). The data included 17 parameters con-
sisting of remote sensing reflectance (Rrs(λ)) from 10 visible light wavelengths
(412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm); six environmental
parameters derived from Rrs (Chl a, diffuse attenuation coefficient for
downwelling irradiance at 490 nm (Kd(490)), particulate organic/inorganic
carbon concentration (POC/PIC), photosynthetically available radiation (PAR),
and normalized fluorescence line height (nFLH)); and another environmental
parameter, SST, derived from infrared measurements. The data were
acquired from January 2003 to December 2021. To reduce the number of
missing values, the data from both satellites were used. If the values from
both satellites were available for a grid cell, averaged values were used
because they were well correlated (Fig. S1).

Two-dimensional projection of satellite-derived parameters
To capture the range of all possible satellite-derived parameter values, a
two-dimensional (2-D) projection of randomly selected grid cells was
performed. Twenty thousand grid cells were randomly selected from all
the 5ʹ square grids with the probability proportional to the area of each
grid. After removing grid cells on land or in coastal regions and those with
missing data, 7019 grid cells remained (Fig. S2). A sampling month was
randomly selected from 120 months (January 2009 to December 2018) for
each grid cell. The satellite-derived parameters for these randomly selected
grid cells and months were standardized by subtracting the mean and
scaling to unit variance. Finally, the 7019 points with the 17 parameters
were projected onto a 2-D map by Uniform Manifold Approximation and
Projection (UMAP) using the Python package umap-learn [20].

Metabarcoding data
Raw sequencing data were downloaded from the EMBL/EBI-ENA EukBank
umbrella project in their native format (accession numbers of all
BioProjects under the EukBank umbrella project are listed in Data S1).
When applicable, reads were merged and trimmed (using vsearch [21] and
cutadapt [22]) to cover the 18 S V4 region, as defined by the primers
TAReuk454FWD1 and TAReukREV3 [23], resulting in 347,327,830 unique
sequences, representing 1,672,099,024 reads. After clustering (swarm [24]),
chimera detection (uchime [25]), quality-based filtering, and post-
treatments based on occurrence patterns (swarm, lulu [26]; https://
github.com/frederic-mahe/mumu), representative sequences were com-
pared with the 18 S rDNA database EukRibo [27], using a global pairwise
alignment approach (usearch_global command in vsearch), and taxono-
mically assigned to their best hit (https://github.com/frederic-mahe/
stampa/). The filtered occurrence table of EukBank contained 460,147
operational taxonomic units (OTUs) clustered by swarm, representing
1,403,019,176 reads, collected from 15,562 samples. The sequencing data
from the EukBank umbrella project included the amplicon sequence data
(837,127,965 reads) targeting 18 S V4 regions from 1011 samples (1191
datasets) collected through the Tara Oceans expeditions, which are newly
released with this paper (accession numbers in Data S2).
To use the filtered occurrence table of EukBank for the analysis, the raw

number of reads was rarefied to 10,000 reads per sample. A total of
1715 samples from the ocean surface (depth < 10m) with spatiotemporal
metadata were retained. These came from several ocean sampling
projects, including Tara Oceans [1], Malaspina [28], and Australian
Microbiome [29]. Occurrences in sequencing replicates from Tara Oceans
were averaged. Samples from Tara Oceans were size fractionated by
organism size (e.g. four size fractions: 0.8–5, 5–20, 20–180, and
180–2000 µm), but most samples from other projects were not size
fractionated (simply 0.2–3 µm or >0.2 µm). The samples from the four size
fractions that mainly targeted piconano-plankton (0.2–3 µm, >0.2 µm,
0.8–5 µm, and >0.8 µm) were relatively similar in taxonomic composition
(Fig. S3). These four size fractions were selected for use in this study to
maximize the number of samples available for analysis. They were
averaged inside each of the 653 bins that matched the 5ʹ square monthly
satellite data grids. Although more than one sample from different size
fractions, sampling location and time were assigned to a single bin,
samples in the same bin were more similar compared with samples from
different bins (Fig. S4). Hereafter, we call these bins “samples”.

Spatial resampling
A total of 653 metabarcoding samples from previous processing were
further filtered using the following procedure. Samples with missing
satellite data values owing to bad weather or other reasons were removed.
Samples from locations where the sea floor was shallower than 200m were
detected using a global relief model [30]. They were removed to keep only
open ocean samples [31]. Samples were thinned so that they were
separated by a minimum of 200 km, using the R package spThin [32]. This
procedure resulted in 177 samples available for analysis (Fig. S5).

Network inference
OTUs were selected by their occurrence to reduce the number of OTUs to
those similar to previous studies that analyzed network structures [33, 34].
Two hundred and eight OTUs with a minimum occurrence larger than 0.2%
(20 reads) in at least 10% of samples (18 samples) were retained (Fig. S6).
OTU read counts were centered log-ratio-transformed [35]. An ecological
network was inferred based on co-occurrence patterns using the Julia
package FlashWeave [36] with the settings “heterogeneous= False”,
“sensitive= True”, and “alpha= 0.05”, as in previous studies [36, 37].
FlashWeave is a package for detecting direct associations between OTU
pairs based on the local-to-global learning framework for causal inference.
The nodes in the obtained network were OTUs, and the edges were
decided based on direct associations between OTU pairs. Only positive
associations (edges) were considered here because most module detection
algorithms only allow non-negative networks. The module detection
performances of eight algorithms (Fast Greedy, Infomap, Label Propaga-
tion, Leading Eigenvector, Leiden, Louvain, Spinglass, and Walktrap) were
compared using the R package “igraph” (https://igraph.org/). To measure
the structure of the detected module division, we used the modularity
index Q as defined by the following equation:

Q ¼ 1
2S

X

u;v

σ u; vð Þ � kukv
2S

� �
δ Mu;Mvð Þ
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where u, v are nodes (OTUs), σ u; vð Þ is an edge weight (association
strength) between u and v, S is the sum of all edge weights, ku is a
weighted degree of node u, Mu is a module to which node u belongs, and
δ x; yð Þ is 1 if x= y and 0 otherwise [38].

Edge satisfaction
We defined an edge satisfaction index to measure the completeness of
each module in a sample. If M is a module and i is a sample, then the edge
satisfaction index of M and i is defined by,

ESM;i ¼
X

u;v2M
σ u; vð Þmin pi uð Þ; pi vð Þð Þ=

X

u;v2M
σ u; vð Þ

where u, v are nodes, σ u; vð Þ is an edge weight between u and v, pi uð Þ is a
weight of node u, which is the sigmoid transformation of the centered log-ratio-
transformed read count of OTU u in sample i. Briefly, this index measures the
ratio of the number of edges between existing nodes in a given sample and the
number of all the edges within a given module. The nodes and edges had a
weight between 0 and 1 (because only positive associations were considered).
The edge satisfaction index was thus also between 0 and 1.
This index was used for the assignment of a community type to each

sample. Each community type was defined as a sample in which the
corresponding module had the highest edge satisfaction index.

Machine learning and cross-validation
Several machine learning algorithms were used to train predictive models
of the community types from satellite-derived data. Spatial parameters
(longitude and latitude) were also tested for their prediction ability. The
sine and cosine of the longitude were used as independent parameters
because longitude is circular (−180° and 180° are the same). K-nearest
Neighbors, Naïve Bayes, Multilayer Perceptron, Random Forest, and
Support Vector Machine (SVM) were applied using the Python package
“scikit-learn” (https://scikit-learn.org/). In the training process for all the
methods, except Random Forest, the satellite-derived and spatial
parameters were standardized by subtracting the mean and scaling to
unit variance. Both leave-one-out cross-validation and buffered cross-
validation [39] were used to measure the model accuracy. In the buffered
cross-validation, a test sample was chosen similar to leave-one-out, but
samples inside a buffer region surrounding the test sample were excluded
from training samples. The buffer was set to a radius of 2000 km from the
test sample. In each fold of the training, hyperparameters were chosen
through an exhaustive search using the implementation of grid search in
scikit-learn. The hyperparameters that were tuned with the grid search are
shown in Table S1. The class prediction output of each method was used
to measure accuracy, and output probabilities were used to calculate the
receiver operating characteristic (ROC) curve.
A predictive model of the community type was constructed by training a

machine-learning model with all 177 samples. The machine learning
method that recorded the highest performance in cross-validation was
used for training. A five-fold grid search was used to choose hyperpara-
meters. The permutation importance of each parameter for the prediction
of individual community types was assessed in the obtained predictive
model. The permutation importance was calculated as the decrease in
the area under the ROC curve (ROC–AUC) when the given parameter was
randomly reordered.

Time series prediction
The constructed model was used to predict the spatiotemporal distribution
of each community type based on satellite data. Satellite datamapped to the
5ʹ square monthly grid from January 2003 to December 2021 were used for
the prediction. Satellite data were downsized by choosing a grid cell at the
center of each 12 × 12 grid to reduce the computational cost. In other words,
a grid cell was chosen for every 1° square grid cell. The long-term trend in the
areas of predicted community types was tested by the seasonal Mann-
Kendall test and its slope was estimated by the seasonal Theil-Sen’s slope
estimator using the python package “pymannkendall” [40].

RESULTS
Two-dimensional map of points with 17 satellite-derived
parameters
We generated a 2-D map of points with 17 satellite-derived
parameters using UMAP to observe the parameter ranges (Fig. 1).

More than seven thousand points were used to train a UMAP
projection. These points were randomly selected from all available
locations and times to document the shape of the “continents” in
the parameter space map, which represents the possible range of
values of the satellite-derived parameters (Figs. S2 and S7). Points
associated with the EukBank metabarcoding samples were
scattered among all regions in the continents of the parameter
space map. We found that the metabarcoding data covered a
wide range of parameter space and were suitable for analysis in
terms of their relationship with satellite data, although the
number of samples was not large.

Network inference and module detection
The ecological network based on OTU co-occurrence patterns was
inferred using the FlashWeave algorithm. OTUs were selected by
their occurrence (see Materials & Methods). In the network, 560
positive edges (association strength > 0) between 208 OTUs were
detected (Fig. 2A). We applied several module detection
algorithms to the network. The modules detected by the Leiden
and Spinglass algorithms had the highest modularity index (0.55)
(Fig. S8). In the following analysis, the modules detected by the
Leiden algorithm [41] were used because it captured the
macrostructure better than the others (i.e., there were no small
modules) (Fig. S8). Among the six detected modules, module 1
was well separated from the other five modules, which formed
one super module with a highly aggregated module structure
(Fig. 2B). In the super module, modules 2 and 3, 5 and 6 were
strongly connected (Fig. 2B).
The taxonomic breakdown of each module is shown in Fig. 3.

The well-separated module 1 mainly contained Dinoflagellata
(mainly Dinophyceae) as the members, but included Dictyocho-
phyceae (silicoflagellates) and Prymnesiophyceae (haptophytes).
The other five modules, which formed the super module, had
different characteristics in terms of the taxonomy of the members.
Most of the members of modules 5 and 6 were Dinoflagellata
(mainly MALV-I and MALV-II), but modules 2 and 3 also contained
some Arthropoda (zooplankton) as the members. The read counts
of zooplankton OTUs seemed not to reflect the relative
abundance of adult animals, but relate to their debris, eggs, or
feces, considering the size fractions of samples [42]. The members
of module 4 consisted of half Dinoflagellata and half a variety of
other taxa. Data S3 contains the taxonomic annotation and
assigned module for each OTU.

Community type of samples
The newly proposed edge satisfaction index was used to measure
the completeness of the network module in each sample (see

Fig. 1 Two-dimensional map of satellite-derived parameter space.
Points associated with metabarcoding samples used to train
predictive models are projected on the parameter space map (large
green points). Small points are randomly selected grid cells, which
were used to train a UMAP projection, colored by the Longhurst
biomes (see Fig. S7).
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Materials & Methods). Figure 4A shows the edge satisfaction index
of each module in all samples. Notably, module 1 tended to be the
only module with a high edge satisfaction index in high-latitude
samples. We assigned community types 1–6 to samples in which
modules 1–6 had the highest edge satisfaction index, respectively.
The geographic distribution of the community types is shown in
Fig. 4B. Community type 1 was associated with high-latitude
regions, including the Arctic and the Southern Oceans. Commu-
nity types 3 and 6 were mainly seen in tropical regions of the
Pacific and the Indian Oceans, respectively. The other three
community types were associated with mid-latitude regions.
In the 2-D map of satellite-derived parameter space, samples

formed clusters of community types (Fig. S9). For example, clusters

of community types 1 and 5 were located at the bottom of the
small and large continents of the parameter space map,
respectively. This distribution implies a relationship between the
satellite parameters and the community types.

Prediction performance
We applied several machine learning algorithms to classify the
community types based on satellite-derived parameters. Among
the five machine learning methods used, SVM achieved the
highest prediction accuracy and micro-average ROC–AUC
(Table S2). Using leave-one-out cross-validation, the accuracy
and the ROC–AUC of SVM were 0.67 and 0.90, respectively (Fig. 5A,
B). Using buffered cross-validation, which excluded the neighbors

Fig. 2 Plankton network inferred using metabarcoding data. A Force-directed representation of the network. Nodes (plankton OTUs) are
colored by the module they belong to. B Connections between modules in the network. The edge width is proportional to the number of
inter-module edges.

Dinoflagellata Dinoflagellata

Metazoa

Metazoa

Dinoflagellata

Dinoflagellata Dinoflagellata Dinoflagellata

Fig. 3 Taxonomic breakdown of modules in the plankton network. The breakdown of taxa annotated to OTUs belonging to each module.
The taxonomic level is “taxogroup 2” in the EukRibo.
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of a test sample from the training samples, the measures were
reduced to 0.54 and 0.83, respectively (Fig. 5C, D).
We compared the prediction performance when different sets

of satellite-derived and spatial parameters were used (Table 1,
Figs. S10 and S11). For the prediction only using spatial
parameters (latitude and sine/cosine of longitude), the ROC–AUC
dropped from 0.91 to 0.59 (close to 0.50, i.e., random prediction)
when the cross-validation method was changed from ordinary
leave-one-out to the buffered one (spatial bias controlled). In
contrast, there was a small decrease from 0.90 to 0.83 for the
prediction using all 17 satellite-derived parameters. This result
demonstrated the advantage of using satellite-derived parameters
to classify the community types when spatial biases were
appropriately controlled. The prediction performance with only
one satellite-derived environmental parameter—SST or Chl a—
was not as good as the one with all satellite-derived parameters,
but it did improve when SST and Chl a were combined. Adding
the other five satellite-derived environmental parameters (Kd(490),
POC, PIC, PAR, and nFLH) to SST and Chl a further improved the
performance but it was still slightly worse than that with all 17
satellite-derived parameters, including Rrs.
A predictive model of community types was constructed by

training SVM with all 177 samples. A five-fold grid search selected
the linear kernel and the L2 penalty parameter C= 1.0 for the
predictive model. The chosen threshold of the output probability
of SVM was 0.28, which gave the highest F1 score in cross-
validation (Fig. S12). The importance of each parameter for the
prediction of individual community types was assessed in
the predictive model (Fig. S13). Only the SST was important in
the prediction of community type 1. For other community types,
SST and also PAR (community type 2, 3, and 4) and Rrs from several
wavelengths (community type 2, 5, and 6) were important in the
prediction.

Time series prediction
We applied the obtained model to predict a 19-year time series of
community type distribution, from January 2003 to December
2021 (Video S1). The global community type distributions in each
season of 2021 are shown in Fig. 6. Community type 1 was mainly
in high-latitude regions. Community type 5 predominantly
corresponded to the subtropical gyres. Community types 3 and
6 were in tropical regions. Community type 2 filled the gap
between community types 5 and 3. Community type 4 showed a
pattern related to warm currents. The relationship was to the
regions of the Kuroshio and Gulf Stream extensions in the late
autumn and early winter in the Northern Hemisphere
(November–January) (Fig. 6D, Video S1) and those of the Brazil,
Agulhas, and East Australian Currents extensions in the late

autumn and early winter in the Southern Hemisphere (May–July)
(Fig. 6B, Video S1).
We investigated whether there were long-term trends in the

areas of community types for each Longhurst biome (Figs. S14,
S15, and S16). Areas with no satellite data showed no trend or a
relatively small one. Thus, missing satellite data had only marginal
influence in trends in the community-type areas. Most notable
trends were seen in the Trades biome. Community type 2 showed
a decreasing trend (of 9.77 × 105 km2/year) and community type
6 showed an increasing trend (of 7.89 × 105 km2/year), while SST
gradually increased (approximately 0.4 °C) during the period 2003
to 2021 (Figs. S15 and S17). In contrast, community types 1, 3 and
5 showed a relatively small trend in the Trades biome. In
particular, the relatively small change in the seasonal rolling mean
curve suggested that community types 1 and 5 were stable over
the past two decades (Fig. S15). Community type 4 was mainly
seen in the Westerlies biome, and its appearance was depressed in
the years of 2005 and 2006 (Fig. S16). A decreasing trend in
community type 2 and a relatively stable trend in community
types 1 and 5 also existed in the Westerlies biome, where SST
gradually increased similar to the Trades biome (Figs. S16 and
S17). Community type 1 was dominant and stable in the Polar
biome, where SST was relatively stable over the observation
period (Figs. S14 and S17).

DISCUSSION
Here, six plankton community types were identified from a global
co-occurrence network, and their distribution was successfully
predicted from satellite data using a machine-learning approach.
The predictive model outputs were plankton community types
that were similar to the phytoplankton-dominated community
output of the PHYSAT model [15] rather than a quantitative
abundance output like the PhytoDOAS model [12, 13]. However,
our method has two advantages over these previous models. First,
the output of our model was directly connected with the OTUs
inferred from the metabarcoding data. We used a swarm for
clustering sequences into OTUs, which was designed to maximize
taxonomic resolution [24]; thus, the community types integrated
high taxonomic resolution information. For example, dinoflagel-
lates were treated as one group in the PhytoDOAS model [12],
whereas they were represented by 136 OTUs that were classified
into one of the six different modules in this study (Fig. 3 and
Data S3). Second, the community-type output from our
method can be easily extended. In this study, the network
included phytoplankton and heterotrophic protists, but it can be
extended to prokaryotes and viruses using their composition data
because of their strong association with eukaryotic communities

Fig. 4 Assigned community types of samples. A Heatmap of the edge satisfaction index. The rows are samples ordered by their latitude and
the columns are modules. The leftmost column shows the community type of each sample by color. Community types were assigned using
the module with the highest edge satisfaction index. B Geographic distribution of community types. The community type assigned for each
sample is shown in the color of the sampling site on the map.
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[43, 44]. Prokaryotes and viruses are difficult to observe directly
from satellites owing to their small size and lack of optical
properties.
Our results indicated that the predictive performance using satellite-

derived SST and/or Chl awas relatively high (Table 1, Figs. S10 and S11).
This was not unexpected because SST and Chl a are correlated with
microbial community structure in the ocean [1]. We also showed that
the predictive performance with all 17 satellite-derived parameters was
higher than only with SST and/or Chl a (Table 1, Figs. S10 and S11). This
result indicated the advantage of using additional environmental
parameters (Kd(490), POC, PIC, PAR, and nFLH) and Rrs to predict
community types, although the improvement of the performance was
not large. Hyperspectral Rrs from future global satellite missions such as

PACE [45] will likely improve the prediction performance. We used
177 samples (1715 before binning and thinning, see Materials &
Methods), which was relatively small for applying a machine learning
approach. This may explain why the linear SVMwas the best prediction
algorithm for our problem. More complex and nonlinear algorithms
such as Multilayer Perceptron, Random Forest, and kernel SVM
overfitted the training dataset during model training (Fig. S18).
The time series prediction of community types using the

constructed model revealed the spatiotemporal distribution of
each community type (Fig. 6 and Video S1). Generally, these
community-type distributions were similar to previously obtained
plankton provinces using the 18 S V4 rDNA dataset of Tara Oceans
[46, 47]. Those provinces were defined using species

Fig. 5 Performance of Support Vector Machine (SVM) on community type prediction using satellite-derived parameters. Performance of
SVM using all 17 satellite-derived parameters. A, B The confusion matrix (A) and the ROC curve (B) in the leave-one-out cross-validation.
C, D The confusion matrix (C) and the ROC curve (D) in the buffered cross-validation.

Table 1. Performance of Support Vector Machine (SVM) on community-type prediction when different sets of satellite-derived and spatial
parameters were used.

Parameter set Leave-one-out cross-validation Buffered cross-validation

Accuracy ROC-AUCa Accuracy ROC-AUCa

All 17 satellite-derived parameters 0.67 0.90 0.54 0.83

Latitude, Longitudeb 0.68 0.91 0.29 0.59

SST 0.40 0.79 0.28 0.72

Chl a 0.43 0.72 0.23 0.62

SST, Chl a 0.52 0.86 0.47 0.82

All seven environmental parameters 0.58 0.88 0.50 0.83
aMicro-average area under the ROC curve.
bSine and cosine of longitude were used as parameters.
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compositional dissimilarity between samples, while the commu-
nity types in our study relied on the species co-occurrence
network. The consistent results obtained by different datasets and
analytical approaches suggest the stability of plankton community
partitioning and corroborate our approach using the newly
proposed edge satisfaction to capture community types.
Community-type distributions also had some correspondence
with the Longhurst biomes [48] (Fig. S7). Community type 1
corresponded with the Polar biome, community type 5 corre-
sponded with the Westerlies biome, and community types 3 and 6
corresponded with the Trades biome. This is consistent with the
latitudinal self-organization previously observed and described in
plankton community networks [19]. Community type 4 had a
seasonal spatiotemporal distribution possibly related to the
extensions of the western boundary currents (Fig. 6 and Video S1).
A previous study showed that the greatest seasonal changes in
environmental variables (phosphate, nitrate, silicate, and dissolved
inorganic carbon) occurred in the extension of the Kuroshio
among other regions in the Pacific basin [49]. Furthermore, clear
seasonal variations in the abundance of cyanobacterial diazo-
trophs were observed in the same region [50]. Module 4,
representing community type 4, connected the two well-
connected pairs (modules 2 and 3, 5 and 6) of the super module
in the network (Fig. 2B) and had relatively high taxonomic
diversity (Fig. 3). In a simulation of emergent phytoplankton in the
ocean, areas downstream of the western boundary currents
showed high species diversity [51].
Our prediction results identified different long-term trends in

areas across community types, which may be related to changes
in the SST of the Trades and Westerlies biomes during the
observation period. Temperature was the most important
environmental factor shaping plankton composition in previous
research [1]. Here, our results indicated that the changes (i.e.,
increase, decrease, or fluctuating trend) in plankton composition
at the community level likely reflected the long-term change in
SST in the Trades and Westerlies biomes, while community type 5,
which corresponded to the subtropical gyres, was relatively stable
(Figs. S15, S16, and S17). Consistently, neither the phytoplankton
communities nor the temperature showed significant long-term

trends in the Polar biome, which was dominated by community
type 1, during the observation periods (Figs. S14 and S17). The
areas of community type 1 in other biomes, which were related to
cold currents from polar regions, were also relatively stable
(Fig. S15 and S16). These results imply that our method could
detect SST-induced long-term changes in plankton communities
that occurred during the past two decades. Notably, the
prediction model was only trained on limited sequence data
(2009–2017). Therefore, the extrapolations remain to be validated
with new sets of sequence data. However, with our cross-
validation results, our study underscores the potential to gain
insight into complex eukaryotic plankton communities using only
satellite data without direct observations.
Although the high taxonomic resolution of metabarcoding data

is attractive for research, using a small number of samples
imposed several limitations. After binning and thinning, only
177 samples were suitable for our study, although we accessed
unprecedentedly large datasets. First, some taxonomic groups
were lost in the process of pooling samples to make the analysis
dataset. We used only four size fractions, mainly targeting
piconano-plankton (0.2–3 µm, >0.2 µm, 0.8–5 µm, and >0.8 µm),
to maximize the number of samples available for analysis.
Through this procedure, however, taxonomies only observed in
larger-size fractions (e.g., diatoms) were lost in the network
(Fig. S3A). Second, the network inference algorithm used in this
study was not entirely suitable for the dataset. The FlashWeave
algorithm had two options: heterogeneous=False for data with a
small (hundreds) number of samples from homogenous condi-
tions, and heterogeneous=True for data with a large (thousands
and more) number of samples from heterogeneous conditions
[36]. We tested both options (Fig. S19), however, it was difficult to
judge which option was better because our data were from
heterogeneous conditions, but the number of samples was small.
We used the results of the heterogeneous=FALSE option for our
analysis because this option provided a better performance in
predicting known interactions in previous studies [36, 37]. Third,
the resolution of the plankton diversity described by six
community types was limited. Adding OTUs with relatively low
occurrence to the network by changing the cutoff for selecting

Fig. 6 Spatiotemporal distribution of community types predicted from satellite-derived parameters. Community type distribution in
February (A), May (B), August (C), and November (D), 2021, predicted from satellite-derived parameters. When multiple community types were
predicted to the same point, the community type with the highest probability is shown in transparent color. Gray points mean that no
community type was predicted.
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OTUs (Fig. S6) and tuning the module detection algorithms to
capture the microstructure of the network can increase the
number of detected modules, which will describe plankton
diversity at a higher resolution. However, a machine learning
model with a greater number of community types is difficult to
train because its prediction performance is dependent on the
number of samples for each community type.
In this study, we inferred the ecological network of OTUs using a

global metabarcoding dataset and identified six distinct community
types of plankton. We applied SVM to construct a predictive model
of community types at each site based on satellite data and
obtained an accuracy of 67% in cross-validation. The spatiotemporal
distribution of community types was shown by applying the model
to 19 years of global satellite data at monthly intervals. The study
revealed the long-term trends in the distribution of community
types, which implied responses to ocean warming. Given the ability
of the model to predict the spatiotemporal dynamics of plankton
community types from space, our combined network-based and
machine-learning approach provides a particularly useful tool to
monitor and survey the impact of environmental and climate
change on plankton communities at a global scale.

DATA AVAILABILITY
Figures S1–S19, Tables S1 and S2, Data S1–S3, and Video S1 are provided as
supplementary materials. Video S1 shows the 19-year time series of community-type
distributions predicted from satellite-derived parameters, related to Fig. 6. Newly
sequenced Tara Oceans 18 S V4 data have been deposited to EMBL/EBI-ENA:
PRJEB6610 (Tara Oceans), PRJEB9737 (TARA Oceans Polar Circle). Data and codes
used in the analysis are available at the GenomeNet FTP: https://www.genome.jp/ftp/
db/community/tara/Satellite/. Essential codes are also available at the GitHub
repository: https://github.com/hirotokaneko/plankton-from-satellite.
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