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Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and
analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses
outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to
distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool
(MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses.
After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility,
and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model
trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal
viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset
from the same habitats.
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INTRODUCTION
Earth’s nutrient and energy cycles are powered by tiny microbial
engines [1]. While bacteria are more commonly studied, there is
growing recognition that archaea are also critical [2, 3]. For
example, archaea can comprise nearly half of the microbial
community in the mesopelagic ocean [2]. Here, the Nitroso-
sphaeria (formerly Thaumarchaeota) are the primary ammonia
oxidizers, contributing to global greenhouse gas emissions (N2O)
and accounting for the majority of fixed nitrogen loss below the
photic zone [3–5]. In recent decades, a feedback between climate
change-driven expansion of low oxygen regions in the mesope-
lagic ocean, where Nitrososphaeria thrive, and the subsequent
increase in greenhouse emissions from these regions, is endan-
gering some of the world’s most productive marine environments
[6–8]. In wetlands and permafrost soils, dominant methanogenic
Euryarchaeota accounts for up to 40% of the world’s methane
production, much of which is further oxidized by co-occurring
methanotrophs [9]. This is of particular concern as much of the
world’s soil carbon is stored in permafrost regions, which are
rapidly transitioning into wetlands as global temperatures
increase, thus representing a potential major source of atmo-
spheric methane in the future [10]. Given the abundance and
critical biogeochemical roles played by archaea in these and other
systems, knowledge of the viruses infecting them is essential for
robust ecological assessments and predictive climatic modeling.
Just as bacteria have been well-studied relative to archaea in

most natural ecosystems, the same is true of bacteriophages

relative to archaeal viruses. Advances in metagenomic sequen-
cing, the ecogenomics sample-to-sequence pipeline, best prac-
tices in viral identification [11–14], and analytic platforms such as
iVirus that democratized these capabilities [15, 16], have enabled
the discovery of hundreds of thousands of bacterial viruses, or
phages, from environments around the world [17–20]. These
phages are credited with substantially impacting host mortality,
horizontal gene transfer, and metabolic reprogramming [21–27],
in ways that impact critical ecosystem functions such as global
ocean carbon cycling [28]. Thus, our ability to “see” phages is
strong, and this has resulted in transformational leaps in our
understanding of how phages impact ecosystems.
In contrast, archaeal viruses, which have traditionally been

studied in “extreme” environments, such as acidic hot springs,
hypersaline ponds, anaerobic sediments, or hydrothermal vents,
are severely underrepresented in most global scale metagenome
based studies [29–33]. For instance, to date, fewer than 230
marine archaeal viruses have been confidentially identified among
multiple metagenomics enabled, or culture-based studies
[18, 32, 34–42], while a recent single global oceans survey has
revealed over 488 k viral populations, most of which are presumed
to be phage [17]. In total, we estimate that there are now well
documented genomes or large genome fragments available from
fewer than ~380 archaeal viruses, with another 6027 putative
archaeal viruses in the IMG/VR-db v3.0, [43] which is a tiny fraction
when compared to the hundreds of thousands of population
genomes now available for phages [17–20]. An explanation for
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this may be that novel archaeal virus discovery is largely based on
sequence homology searches against public reference databases
that are populated by viruses from extreme environments and
many archaeal viruses lack homology to these references [44].
These “extreme” archaeal viruses are perhaps not good repre-
sentatives of those archaeal viruses from relatively non-extreme
environments, regardless of the incredible array of morphologies
and lifestyles they exhibit [29, 45–48]. Thus, distinguishing
bacteriophage from archaeal viruses in datasets from relatively
non-extreme environments, using current approaches, remains a
challenge, despite the clear genomic and evolutionary differences
between phages and archaeal viruses [29, 45, 46, 49–52]. As a
consequence, the ecological roles of archaeal viruses in relatively
non-extreme environments remain mostly unclear, even while
evidence suggests that they may be integral to biogeochemical
cycling and host community dynamics [36, 53–55].
The current approach to archaeal virus identification from

metagenomic data is based on sequence similarity searches
among reference databases, which is severely limiting given the
dearth of non-extreme archaeal virus reference genomes. Never-
theless, using this approach we previously developed an
annotation-based tool, the Metagenome Archaeal Virus Detector
or MArVD, to identify archaeal viruses and used it to discover
43 archaeal viruses from a marine oxygen minimum zone
metagenomic dataset [32]. MArVD is now ripe for an update for
three reasons: (i) the original tool is reliant on other unsupported
software [56], (ii) machine learning has emerged as powerfully
enabling in virus ecogenomics for this type of classification task
(i.e., DeepVirFinder [57], MARVEL [58], VIBRANT [59], and Virsorter2
[60]), and (iii) there is a growing set of new reference genome data
available due to the efforts of several groups manually identifying
archaeal viruses from metagenomic sequencing datasets [32–37]
and isolate-based datasets [38–42].
Here we introduce and extensively benchmark MArVD2

(Metagenomic Archaeal Virus Detector v2.0) as a machine
learning-based upgrade to MArVD that uses curated archaeal
virus data from both extreme and non-extreme environments to

better leverage the genomic features representative of such
archaeal viruses for novel archaeal virus discovery. MArVD2 takes
as an input a dataset of viral contigs, pre-identified from tools,
such as DeepVirFinder [57], MARVEL [58], VIBRANT [59], and
Virsorter2, and returns a list of viruses with their probability of
being an archaeal virus.

RESULTS AND DISCUSSION
MArVD2 is a random forest classifier, implemented in the scikit-
learn python package for novel archaeal virus discovery (Fig. 1)
[61] where it’s trained and tested with separate datasets of
archaeal viruses to best represent its performance in a variety of
environments (Fig. 1). Integrating MArVD2 with machine learning
introduces several practical and performance improvements over
MArVD (version 1) [32], including enhanced usability, with less
dependence on other end-user software, increased sensitivity, and
greater flexibility to adapt as new archaeal virus databases
emerge. MArVD2 retains the very high precision of its predecessor
with increased accuracy, enabling robust wide-scale archaeal virus
detection from metagenomic datasets.

Building MArVD2
Development of reference, training, and benchmarking archaeal
virus datasets. To better represent archaeal viruses from both
extreme and relatively non-extreme environments, we first
curated several collections of archaeal viruses and phages from
a variety of habitats to serve as reference datasets for comparison
with the training data, training data for feature generation, and
benchmarking datasets for model validation. Reference databases
used for genomic feature identification included archaeal virus
and phage protein clusters from publicly available repositories
(NCBI nr, [62] and pVOGs [63]) and a custom made database of
206 archaeal viruses from the oceans, where new archaeal viruses
are being rapidly discovered, curated herein as the OcAVdb or the
Ocean Archaeal Virus Database (see below and methods for
curation details) [18, 32, 34–39, 41, 42]. The training dataset for the

Fig. 1 Schematic diagram of the MArVD2 workflow. A representation of the main data processing steps and datasets leveraged in
developing and benchmarking MArVD2. MArVD2, as described herein, operates in three modes. First (in green) a training dataset of curated
archaeal viruses and phage and several databases of reference archaeal viruses and phage are used to develop a model for archaeal virus
identification. Second (in orange) the model is implemented with additional curated archaeal viruses and phage as a benchmarking dataset to
evaluate the models’ performance. Third (in blue) a user will supply their own dataset of unclassified dsDNA viruses for archaeal virus
prediction using the benchmarked model. See text for dataset description.
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random forest model generation includes 70 non-marine archaeal
viruses from the curated VirSorter curated database [64], 350
marine putative archaeal viruses identified from the Eastern
Tropical South Pacific (ETSP) [65, 66], and 437 randomly selected
bacteriophages from viral RefSeq (v85) [62], the VirSorter curated
database [64], and the ETSP dataset (Fig. 1) [65, 66]. Finally, a
benchmarking dataset used to examine the performance of
MArVD2 under a variety of constraints was comprised of 230
putative archaeal viruses and a random selection of phages with
genomes larger than 10 kb from the IMG/VR-db v2.0 [67], along
with 25 newly identified marine archaeal viruses from two stations
in the Tara Oceans GOV2.0 dataset [17] in environments enriched
for archaea (Stations 72_MES and 122_MES). Thus, in addition to
those archaeal viruses already available in the NCBI and pVOGs
databases, we leverage a total of 881 other archaeal viruses from
marine, hypersaline, hot spring, and anoxic environments for
reference, training, and benchmarking datasets, establishing a
robust base to represent archaeal viruses from both extreme and
relatively non-extreme environments.
We next sought to confirm that the collected archaeal viruses

for the reference, training, and benchmarking datasets were
indeed archaeal viruses. Previously, this was done through
meticulous manual screening of gene sharing networks, phyloge-
netic analysis, sequence homology comparisons, and functional
and taxonomic annotations, each of which have revealed that
archaeal viruses are distinguishable from phages using these
approaches [18, 32, 34–37]. Thus, manual confirmation of archaea
as the likely host for the reference archaeal viruses in OcAVdb, the
training archaeal viruses, and the benchmarking archaeal viruses
was conducted as follows. First, vConTACT2 [68] was used to
determine if the archaeal viruses would cluster amongst
themselves and separate from phages as has been previously
observed (Fig. 2) [32, 49, 50, 52]. Second, manual inspection of the
per-gene functional and taxonomic annotations, provided by
DRAMv [69], was used to identify archaeal or archaeal virus
signatures in each sequence (Supplementary Table 1).
First, network analysis [68] with the OcAVdb references and

training archaeal viruses used for model development revealed
that the majority of these archaeal viruses clustered with
each other and/or other reference archaeal viruses (Fig. 2)

(Supplementary Table 2). Out of the 626 archaeal viruses selected
for the OcAVdb reference database and the training data, 569
were clustered into 71 viral clusters or VCs (approximately genus-
level taxonomic groups [68]) with 45 outliers and 12 singletons.
Together these represented 18 network modules (interconnected
viral clusters sharing a fraction of their genes [68]) that shared no
overlap with phages (Supplementary Table 2). The vConTACT2
network analysis further revealed groupings of archaeal viruses
into modules seemingly associated with the Poseidonales or
Nitrososphaeria separately, largely corroborating the predicted
hosts of these viruses from their respective studies (Supplemen-
tary Table 2) [18, 32, 34–37]. Further inspection of the functional
annotation of the OcAVdb reference and the training archaeal
viruses revealed that on average 17% (stdev 11%) and 27% (stdev
23%) of ORFs per sequence received any annotation, respectively,
from KEGG [70] or viral NCBI [62] according to DRAMv [69]
(Supplementary Table 1). The training dataset likely received more
annotations due to its inclusion of a higher proportion of archaeal
viruses from hypersaline environments where archaeal viruses are
better characterized [52]. Of the archaeal virus ORFs receiving any
annotation in the OcAVdb reference database and the training
dataset, 55% (stdev 25%) and 71% (stdev 21%), respectively,
affiliated with reference archaea or archaeal viruses. In OcAVdb
and training datasets, all but 6 and 2 sequences, respectively,
encoded at least one archaeal virus-like ORF, and those that did
not generally have a very low proportion of their genes annotated
at all (Supplementary Table 1). Notably, early in the curation of
OcAVdb, 20 contigs were removed as probable falsely identified
archaeal viruses due to a low proportion of genes affiliating with
reference archaeal viruses or archaea (only 9 out of 358 total
annotated ORFs), and network clustering inconsistent with what is
expected of archaeal viruses [32, 49, 50, 52]. Most of these were
originally identified by k-mer frequency-based host prediction
methods, which can be faulty if the host dataset does not well
represent the diversity of the concurrent microbial community
(Supplementary Table 2) [71]. As a counterpoint, using the same
approach as above, inspecting now the functional annotation of
200 randomly selected phages from the training dataset revealed
that on average 70% (stdev 33%) of the phage ORFs were
annotated and only 2% (stdev 6%) of these affiliated with

Fig. 2 Gene sharing network representation of all training and test viruses used in developing MArVDv2. All sequences used for the
development and testing of MArVD2 are included in this network, created by vConTACT2. Reference viruses here include viruses from RefSeq
v85 as well as the OcAVdb. Training viruses are those curated from the ETSP and VirSorter datasets as detailed in the text. Benchmarking
viruses are those curated from the IMG/VR and GOV2.0 test dataset as detailed in the text. Viruses from the benchmarking datasets are further
color coded as either predicted archaeal viruses or phages, from both MArVD and MArVD2. Network modules were grouped according to the
inclusion of reference archaeal viruses (archaeal virus), reference phage (phage), or no reference viruses (unknown host).
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reference archaea or archaeal viruses (Supplementary Table 1).
While several of these phages were derived from well-curated
public databases (NCBI [62] and the Virsorter curated dataset [64]),
and represent exceptionally well-annotated viruses, this never-
theless suggests that phages will have a relatively low proportion
of ORFs affiliating with archaea or archaeal viruses, relative to
genuine archaeal viruses.
Next, manual curation of the benchmarking archaeal viruses used

to evaluate the performance of the random forest model once again
leverages the network analytics [68] and functional annotations
[69]. Network analysis with the benchmarking dataset revealed that
649 of the 1402 total sequences (183 archaeal viruses and 465
phages) clustered into 234 VCs (56 archaeal viruses, 178 phages)
with 354 VC outliers (68 archaeal viruses and 287 phages) and
399 singletons (23 archaeal viruses and 376 phage) (Fig. 2,
Supplementary Table 2). Out of the 1003 clustered or cluster outlier
viruses, 201 archaeal viruses and 582 phages fell into modules with
corresponding archaeal viruses or phages from the OcAVdb, NCBI
[62], or pVOGs databases [63]. Hereafter, we refer to those archaeal
viruses that fell into the same module with reference archaeal
viruses as the “verified archaeal viruses”, while those phages that
cluster with reference phages as the “verified phage”. Benchmark-
ing archaeal viruses that cluster amongst themselves but with no
reference virus, were considered as “putative archaeal viruses”, and
those that did not resolve in the network at all are referred to as
“archaeal virus singletons”, again with equivalent nomenclature for
the phages. Surprisingly, 20 additional IMG/VR phages [67],
clustered with archaeal viruses from OcAVdb, NCBI [62], or the
VirSorter database [64], possibly indicating a mis-annotation of
these viruses in IMG/VR and bringing the total number of verified
archaeal viruses up to 221 (Supplementary Table 2).
Functional and taxonomic annotations for the archaeal viruses in

the benchmarking dataset revealed that an average of 47% (stdev
33%) of the ORFs per sequence receive an annotation from DRAMv
[69]. Out of the ORFs receiving an affiliation, 76% (stdev 30%)
matched either archaea or archaeal viruses from the KEGG [70] or
NCBI viral databases [62]. Only 10 of these sequences encoded no
detectable archaeal signal, 7 of which have <10% ORFs receiving
any affiliation. Among the 20 IMG/VR [67] phages predicted as
archaeal viruses, 78% (stdev 28%) of the annotated genes matched
either archaea or archaeal viruses (Supplementary Table 1).
These analyses, by both gene-sharing networks and genomic

functional annotation, indicate that the archaeal viruses in the
OcAVdb reference database, the training dataset, and the bench-
marking dataset are most likely to be bona fide archaeal viruses.
Critically, these curated databases drastically expand the available
archaeal virus references, which can now be leveraged for more
sensitive archaeal virus discovery in non-extreme environments.

Development of the random forest archaeal virus classifier—
MArVD2. With the now sufficient reference, training, and bench-
marking data in hand, we next sought to develop the tool, MArVD2,
for more scalable, user-friendly, and sensitive archaeal virus
identification by incorporating machine learning. To this end,
MArVD2 first populates a feature table consisting of a set of 27
genomic features, which we have predetermined to be informative
for archaeal virus identification (Supplementary Table 3), leveraging
several databases and tools as follows. First, ORFs are predicted with
Prodigal [72], yielding information regarding gene length, gene
density, and strand bias. Second, functional and taxonomic
annotations are provided by using (i) MMseq2 [73] to search
protein-coding regions against viruses in the NCBI nr database [62]
(ii) hmmsearch [74] to search against the pVOGs [63] database, and
(iii) iterative jackhmmer [74] searches against OcAVdb (Fig. 1). A
fivefold cross-validation is then used to recursively identify and
retain only the most important features based on the Gini
importance index [75] (Supplementary Fig. 1A, B). Finally, MArVD2
then implements the resulting feature table in the development of a

random forest machine-learning model for archaeal virus identifica-
tion, splitting the training data into training and out-of-bag test
datasets at a 70:30 ratio, respectively [75].
Evaluation of the random forest model development reveals that

MArVD2 exhibits a high degree of performance with the training
dataset. Using permutations of the training and out-of-bag test
dataset, the F1 score (harmonic mean of the precision and recall,
with a score of 1 indicating perfect precision and recall) for the
model’s development plateaued at 0.98 with the inclusion of only 8
of the most important features even though all 27 features were
identified as contributing to optimal model performance (Supple-
mentary Fig. 1A). This is also reflected by a considerably higher Gini
importance score for these 8 features (Supplementary Fig. 1B),
indicating that only a subset of the 27 features was required for
accurate archaeal virus identification. While building the random
forest model (not to be confused with later implementation with
the benchmarking dataset), only 19 out of the 857 training
sequences (10 archaeal viruses and 9 phages) had inconsistent
classifications, according to hierarchical clustering analysis with the
random forest proximity matrix (Supplementary Fig. 2). The
proximity matrix in this instance is a measure of similarity among
the terminal nodes per all decision trees in the random forest model
among the given sequences. All 10 of these were viruses of either
Halobacteria, Methanobacteria, or Thermococci. Closer inspection of
particularly the Thermococci sequences revealed this and one other
sequence to be pTN2-like plasmids which extensively share
replication and regulation genes with other Thermococcales viruses
[76, 77], further highlighting the value of iterating between model
classifications and manual inspection. The main difference between
the rest of these proximity outliers and the other training data was a
reduced number of hits to the OcAVdb (Mean 3.74 ± 1.72 vs Mean
18.02 ± 20.6, ANOVA p= 0.002), the second most important feature
in the models’ performance, suggesting that the OcAVdb reference
database is not representative of these outliers. Further, out of these
19 poorly characterized proximity outliers, 16 were either singletons
or outliers in the vConTACT2 network analysis [68], again indicating
that these sequences represent poorly covered sequence space,
often with incomplete representatives, in the reference databases
(Supplementary Tables 2 and 3). Nevertheless, the high accuracy in
classifying the rest of the 410 archaeal viruses compelled us to
further evaluate the model’s accuracy on a separate dataset.

Evaluation of MArVD2s performance
Benchmarking MArVD2. Random forest classification is drawn
from the collective designations of all decision trees per input
query, whereby the prediction probability is the proportion of
trees agreeing on a particular classification [61]. These prediction
probabilities can be interpreted as confidence intervals and
provide a high degree of resolution to discern the range of
predictions in which MArVD2 will be reliable (Fig. 1) [61]. These
confidence metrics are derived from the training set however, and
it is good practice to verify these using an independent
benchmarking dataset, here including both archaeal viruses and
phage from a wide range of environments (see above). Of the 221
verified archaeal viruses in the benchmarking dataset, MArVD2
correctly classified 212, including 13 of the IMG/VR predicted
phage that cluster with reference archaeal viruses, while only 9
verified archaeal viruses were missed (Supplementary Table 4).
Another 47 putative archaeal viruses were also correctly classified
by MArVD2. MArVD2 incorrectly classified only 18 of the 582
verified phages as archaeal viruses (Fig. 3A). Overall MArVD2 had a
TPR, ACC, SPEC, MCC, and FDR of 0.96, 0.97, 0.97, 0.92, and 0.08,
respectively (Fig. 3B) (See Supplementary Fig. 3 for metric
definitions). These results can be compared to what could be
expected of a guided homology search without machine learning
by considering the same analysis, using the original MArVD
(essentially a rule set for archaeal virus identification via homology
searches). The original MArVD had a TPR, ACC, SPEC, MCC, and
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FDR of 0.98, 0.92, 0.90, 0.79 and 0.27, respectively, revealing that
MArVD2 had much greater precision but slightly reduced accuracy
relative to MArVD (Fig. 3B) [32]. Together, with the fact that the
original MArVD is no longer functional due to its reliance on
unsupported software, and its relative inflexibility to grow as
archaea virus discovery progresses, this makes MArVD2 far
superior to its predecessor.
To better assess the performance of MArVD2 and determine

which probability thresholds yield the most optimal results, we
evaluated the receiver operating characteristic curve, relative to
the prediction probabilities of MArVD2. The verified archaeal
viruses from the benchmarking dataset had an average MArVD2
prediction probability of 0.87 (Fig. 4), with a very high area under
the receiver operating curve (AUROC) value (0.99) (Fig. 5A). Above
this conservative probability threshold, 71% of the verified
archaeal viruses (n= 157) were identified with only one false
positive among the verified phage. Decreasing the probability
threshold to 0.80 facilitated the correct identification of 85% of the
verified archaeal viruses (n= 188) with only 2 false positives
among the verified phage. The FPR does not exceed 2% until the
MArVD2 probability threshold drops below 0.55, at which point
MArVD2 correctly classifies 95% of the true archaeal viruses
(n= 210) with 13 false positives among the verified phage and
another 20 among the putative phage.
When used with unbalanced datasets (i.e., more phage than

archaeal viruses), classifiers with a low FPR on benchmark datasets
can still yield as many or even more false-positive predictions than
true positives, thus rendering the model ineffective. In addition to
the detection of archaeal viruses, we also evaluated whether
MArVD2 could correctly classify viruses that were not archaeal
viruses using a precision-recall curve. Here, the area under the
precision-recall curve (AUPRC) value again is high (0.99) where the
precision of the model does not drop below 98% until sensitivity
exceeds 80% (Fig. 5B). Hence the performance of MArVD2 should
not be significantly impacted by potentially unbalanced datasets
which would include many more phages than archaeal viruses.
Together these analyses indicate that with a permissive

prediction probability (we suggest 0.80), MArVD2 will identify
most of the archaeal viruses (~85%) from marine, hypersaline, and
hot spring environments with very few falsely classified phages.

How much genomic information is needed?. Many viral datasets
are plagued by short sequences or considerable amounts of
microbial contamination which can have major impacts on viral
identification and classification [78]. To determine how well
MArVD2 would perform on realistic datasets, we split our
benchmarking dataset into three test groups to examine the

effect of variable dataset size, sequence length, and microbial
contamination. The first test dataset included randomly selected
sequences from the benchmarking dataset with sequence counts
of between 5 and 75% (at 25% intervals) of the original count. The
second test dataset includes genome fragments with variable
sequence sizes between 1 kb and 10 kb (at 2.5 kb intervals) from
the benchmarking dataset. The third test dataset includes varying
proportions, between 10 and 75% (at 25% intervals), of randomly
selected microbial genomic fragments from IMG/M [79] (equal
parts bacteria and archaea) of sizes between 10 kb and 200 kb.
Dataset size in terms of the number of sequences included had

a negligible impact on the performance of MArVD2. Across all
dataset size fractions (5%, 25%, 50%, 75% number of original
sequences) there was minimal variation in TPR, ACC, SPEC, MCC,
and FDR relative to the original dataset (average 0.96, 0.97, 0.97,
0.92, 0.8 respectively) (Supplementary Fig. 4).
Other viral identification machine learning tools such as

DeepVirFinder [57], MARVEL [58], VIBRANT [59], and Virsorter2
[60] have reduced performance as virus genome fragment length
diminishes. Not surprisingly, we found that MArVD2s performance
is impaired on progressively smaller fragments with TPR, ACC,
MCC, AUROC, and AUPRC values only exceeding 90% on datasets
with contigs>10kbp (Fig. 6A and C). The exception to this was
SPEC which remained high and nearly unchanged across the
variable sequence size fractioned datasets (1 kb, 2.5 kb, 5 kb,
7.5 kb, 10 kb, >10 kb). Further, the FDR stayed relatively low across
all fragment sizes, never exceeding 15% (Fig. 6A, C).
Likewise, increasing amounts of “contaminating” microbial

fragments in the viral dataset introduced a higher likelihood of
misidentifying a non-viral sequence as an archaeal virus. Even with
a 10% inclusion of microbial sequences, MArVD2’s MCC was
reduced to less than 90%, while the FDR increased reaching a
maximum of 53% with 75% of the input data being microbial.
Interestingly, MCC and FDR were the only values influenced by the
inclusion of microbial sequences, indicating that the true archaeal
viruses were still identified, but that the false positive rate was
driven up due to archaeal virus classifications of non-viral
sequences (Fig. 6B, D). Notably, when applying the recommended
0.80 prediction probability threshold from above, and using
the 75% microbial dataset, the FDR is reduced to 16%, and of the
false positives identified above this threshold, all were from
Archaea derived from metagenomic datasets.
Pragmatically, this means that for themost optimal performance of

MArVD2, we suggest using datasets comprised of contigs no smaller
than 10 kb and which have previously been identified as viral by the
various available viral identification tools currently available, as well
as, an archaeal virus probability threshold of 0.80 (Fig. 6B, D) [57–60].

Fig. 3 MArVD2 performance and comparison with the original MArVD. A Venn diagram representing the number of verified archaeal
viruses and phages correctly and incorrectly classified by MArVD2 in the benchmarking dataset. B Several performance metrics from the
analysis of the benchmarking dataset with either MArVD or MArVDv2. Each metric is recorded with the same proportional units where the
higher values indicate better performance, except for FDR where a lower value indicates improved performance. Mathematical definitions for
each metric are available in Supplementary Fig. 3.
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Beyond these minimal recommendations, we note that the
underlying training and test datasets used to develop MArVD2 are
predominantly derived from marine, hypersaline, and hot-spring
environments. MArVD2 will potentially be ineffective at predicting
archaeal viruses from other untested environments or other
taxonomic lineages not represented in the current training datasets
as it is yet undetermined if these viruses are substantially different
from those in the current training datasets. Additionally, it is unclear
whether MArVD2 will function with datasets composed of ssDNA
viruses, as it has not yet been tested in this capacity. Though
currently, this represents a “next frontier” development need,
MArVD2 is designed such that it should handle them once
appropriate reference genomes become available. In addition,
while untested, there is potential that DNA Eukaryotic viruses may
be incorrectly identified as archaeal viruses by MArVD2. While the
vast majority of dsDNA viruses are thought to infect prokaryotes, we
caution users to be aware of these factors.
Contaminating microbial sequences, issues stemming from

discerning provirus boundaries, and the potential to miss novel,
divergent viral types present considerable challenges to any viral
identification effort. These challenges may be exacerbated when
further searching for archaeal viruses with relatively unknown
sequence space, and which in some cases may share considerable
portions of their genome with host elements. These difficulties
present potentially unforeseen shortcomings in MArVD2s perfor-
mance. We strongly encourage the user to carefully examine each

putative archaeal virus identified to ensure that the sequence in
question is sensibly viral and an archaeal virus.

CONCLUSIONS
Identifying viruses across the Earth’s virosphere is advancing at an
astounding pace, with large-scale sequencing and sampling
efforts providing new opportunities to see these often hidden,
nanoscale ecosystem players. Once identified, the challenge
becomes to classify them, where vast inroads have been made
with bacterial [68, 80, 81] and eukaryotic viruses [80], but archaeal
viruses lag. Here we sought to develop a curated genomic
resource and a machine learning-powered tool that will improve
our ability to see archaeal viruses in non-extreme environments
where archaea themselves have become increasingly recognized
as important [3]. Such ability to separate archaeal viruses from
other viruses will allow increasing resolution in understanding the
ecological interactomes [82, 83] that drive the Earth System.

METHODS
All computation analyses were conducted using the Ohio Supercomputing
Center [84], or the National Energy Research Scientific Computation Center,
located at the Lawrence Berkeley National Laboratory.

OcAVdb development
The database of marine archaeal viruses (OcAVdb) was created by
collecting all the putative archaeal viruses published from marine
metagenomic, single-cell genomes, and viral isolation studies up to 2019
[18, 32, 34–40, 42]. This included a total of 226 archaeal viruses which were
further manually curated using vConTACT2 [68] to provide a taxonomic
context for each of the putative archaeal viruses, and DRAMv [69] to
provided functional annotations. Only those viruses larger than 10 kb
which fell into a network module (a collection of related genus scale
taxonomic clusters) comprised of only other archaeal viruses, and included
archaea or archaeal virus like ORFs were retained in the final database.

The training and benchmarking dataset development
The training dataset used to develop the MArVD2 random forest model for
archaeal virus identification was created by using a combination of public
reference databases and databases created by the original MArVD (described
below) [32], each vetted by vConTACT2 [68] to include only sequences which
fall into the same network module as a reference archaeal virus, and
functional and taxonomic annotations affiliating with archaea or archaeal
viruses from DRAMv [69]. In total, the training dataset includes 857 virus
sequences larger than 10 kb with roughly equal parts archaeal virus and
phage. This includes 194 phages from the RefSeq version 85 database [62],
112 phages, and 70 archaeal viruses from the VirSorter database [64] and 131
phages, and 350 archaeal viruses from a published marine environmental
virome from the ETSP [65, 66]. Each of these phages and archaeal viruses
were selected for inclusion in the training dataset because they cover as
much of the taxonomic sequence space as possible according to a network
analysis by vConTACT2 and were derived from a variety of environments
including hot springs, hypersaline ponds, and the oceans. Training data were
implemented in the model creation by Scikit-learn at a ratio of 70 and 30%
training and testing datasets [75].
The benchmarking test dataset was created by mining the IMG/VR-db

v2.0 [67] for all archaeal viruses from enrichment cultures, the marine
environment, hypersaline or alkaline habitats, and thermal hot springs
among others. Phages were selected randomly from the same environ-
ments with the addition of phages from soils, freshwater, and freshwater
sediments. To account for a lack of archaeal viruses from the open ocean in
the IMG/VR dataset, an additional 25 putative archaeal viruses from 2 open
ocean mesopelagic samples in the Tara oceans GOV2.0 dataset [17] were
identified by the original MArVD [32] as described below and included in
this test dataset. All viruses in the benchmarking dataset were >10 kbp.

Re-design of the original MArVD
The original MArVD [32] was recreated as a python 2.7+ script to use the
output information from the widely accessible viral identification software
VirSorter [64]. This redesigned version of the original MArVD, first uses

Fig. 4 MArVD2 prediction probability of viral populations from
the marine, hypersaline, and hot spring viruses, separated into
archaeal virus or phage confidence categories. Verified archaeal
viruses are those with archaeal or archaeal virus gene homologes
and cluster into modules with reference archaeal viruses. Archaeal
virus singletons are viral populations suggested to be archaeal
viruses by either IMG/VR (n= 22) or our manual curation (n= 1), but
they are not included in any of the vConTACT2 network clusters.
Putative archaeal viruses are those suggested to be archaeal viruses
by IMG/VR (n= 25) or by our manual curation (n= 33) and are
included in the network, but without references. Equivalent
notations apply to the putative (n= 144), singleton (n= 347), and
verified (n= 582) phage respectively.
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MetaGeneAnnotator [85] predicted proteins from the VirSorter identified
viruses and uses BLASTp [62] to search against the Refseq (version 77)
database [62]. Functional and taxonomic annotations are then prescribed
in concordance with the highest scoring target sequence with a bitscore
>50 and evalue >0.001. These annotations are then integrated into the
VirSorter “affi_contigs.csv” gene annotation file retaining the VirSorter
derived Pfam [86] designations >40 bitscore and <0.00001 evalue. Using
this updated per gene annotation file, MArVD functions exactly as its first

inception [32]. Only MArVD category 1 and 2 putative archaeal viruses,
corresponding to viruses having over 66 or 50% of their annotated genes
affiliating with archaeal viruses respectively, and with bitscore >75 and
higher than those for the phage affiliations, were retained as MArVD
predicted archaeal viruses. This updated version of MArVD enabled the
creation of the new environmental archaeal virus datasets from the ETSP
and GOV2.0 datasets needed to train and test MArVD2 as well as allows for
a means to compare the performance of MArVD with MArVD2.

Fig. 6 MArVD2 performance with different categories of viral data types. A MArVD2 performance relative to contig size using a probability
threshold of 0.50. Values were calculated on the IMG/VR and GOV2.0 benchmarking datasets where contig sizes were fragmented into
different size categories and randomly selected the same number of input contigs as the original dataset. B MArVD2 performance relative to
varying proportions of cellular contamination, using a probability threshold of 0.50, with the IMG/VR and GOV2.0 benchmarking datasets
supplemented with cellular gene fragments of equal proportions archaea and bacteria of size between 10–200 kb. C, D These represent the
same analysis with an adjusted probability threshold of 0.80, reflecting our recommended threshold. The red line indicates 0.90 where
performance is considered acceptable. Performance metrics are described in detail in Supplementary Fig. 3.

Fig. 5 MArVD2 performance on curated benchmarking archaeal viruses and phage. A Receiver operating characteristic curve (ROC),
plotting the MArVDv2 sensitivity (TPR) versus the FPR. B Precision (TP/TP+ FP) vs sensitivity (TPR) curve (PR) for MArVDv2 predictions. Data for
both (A) and (B) are from the MArVD2 results on the IMG/VR and GOV2.0 benchmarking dataset using only the manually verified phage and
archaeal viruses. Quantitative measures of performance for each evaluation are reported as the area under the curve in both A and B where
the closer the value to 1, the better the performance. MArVD2 prediction probabilities are reported in the rainbow color gradient.
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Feature table, databases, and MArVD2 development
Informative features distinguishing archaeal viruses from phages were first
identified by generating a feature table containing numerous genome
attributes (e.g., average gene length, gene density, strand bias, etc.)
(Supplementary Table 3) and combining this with aggregated results from
searches against various databases. ORFs were predicted using prodigal [72]
with the “-p meta” option. Each of the final set of features were derived either
from genomic attributes of the input sequences, an MMseq2 [73] comparison
with the NCBI nr [62] database, hmmsearch [74] comparisons against the
pVOGs [63] database, or comparison with OcAVdb using jackhmmer [74],
each with default parameters. Values and attributes for each feature per input
sequence were created and tabulated into a comprehensive feature table
which becomes the basis for the random forest model generation [61]. To
avoid potential bias introduced in the random forest model by co-correlating
features, a co-correlation analysis was performed. Features with greater than
0.95 correlation coefficients were removed. Finally, each virus was designated
as archaeal virus or phage and fed into python’s scikit-learn [75]
implementation of the random forest model. A manual examination of all
archaeal viruses used herein (with the exception of known archaeal viruses in
public repositories) is listed in Supplementary Table 1.
MArVD2 first creates the feature table as described above, including only

MMseq2 hits with evalues <1e-5, hmmsearch hits with full protein length
evalues of <1e-10, and jackhmmer hits with evalues of <1e-5. The MArVD2
random forest model is then built by the python scikit-learn package [75]. To
obtain the optimal number of features to create the highest F1 score,
recursive feature elimination was used. Features with the lowest Gini
importance scores were iteratively removed, with a minimum of five features
being retained. fivefold cross-validation of the model’s final accuracy is then
calculated using a permuted set of training and out-of-bag test datasets.
Multiple additional machine learning algorithms were also tested, but almost
always with random forest performing the best. The final random forest
model and the preliminary feature table for the training dataset are saved for
later implementation with other novel datasets. Re-running the model with
new input data will generate a new feature table with archaeal virus or non-
archaeal virus predictions and the probabilities associated with those
predictions. Hierarchical clustering a visualization of the proximity matrix
were conducted using the R packages “vegan” and “pheatmap” [87, 88].

MArVD2 benchmarking
Using the benchmarking test dataset derived from IMG/VR [67] and the
GOV2.0 data [17], we next evaluated the performance of MArVD2 in
distinguishing archaeal viruses from phage. The test IMG/VR dataset was
first confirmed to be of viral origin by VirSorter [64]. Distinctions between
archaeal viruses and phage were next verified by MArVD and confirmed by
vConTACT2 [68] network analysis and manual curation of the functional
annotations provided by DRAMv [69]. The verifed phage and archaeal virus
dataset from IMG/VR were then size fractioned to include contigs of 1 kb,
2.5 kb, 5 kb, 7.5 kb, 10 kb, and >10 kb lengths. For the >10kbp size fraction,
a second test dataset with various amounts of microbial sequences was
included with equal proportions of bacteria and archaea. Genomic
fragments from microbial sequences were randomly selected from the
IMG/M [79] database and only included if their size was between 10 kb and
200 kb. Microbial sequences were added at 10, 25, 50, 75, and 95% of the
total data. Microbial sequences were ensured not to be viral by use of
VirSorter. Dataset size in terms of the number of contigs was also tested
with the benchmarking dataset being broken into sets 10, 25, 50, 75,
and 95% of the total number of contigs from the original validation
dataset.
Sensitivity analysis was then conducted on the unaltered benchmarking

dataset and each of the datasets of various size fractions and with various
proportions of included cellular sequences. For each dataset, the true positive
rate (TPR), specificity (SPEC), accuracy (ACC), Matthews correlation coefficient
(MCC) and false detection rate (FDR) was calculated using the R package
“EvaluationMeasures“ [89]. The MCC calculation is preferred over an F1 score
here because, in practice, environmental datasets will likely have a
disproportionate amount of phage to archaeal viruses, so a test that
incorporated both the true positives and true negatives will be more
informative than one that only includes the true positives. TPR, SPEC, ACC, and
MCC were also calculated for the MArVD analysis. AUROC and AUPRC analysis
were conducted on each of the datasets using the R package “PRROC” [90].
Visualization of the probability vs host phylum and the statistical assessments
were plotted with the R package “pROC” [91], and “gglpot2” [92]. Gene sharing
between archaeal viruses and phage was assessed using vConTact2 with
default settings by adjusting the “keywords” in the input “proteins.csv”.

DATA AVAILABILITY
All databases, training data, benchmarking data, OcAVdb, and the random forest
model described herein are available on Cyverse at https://de.cyverse.org/data/ds/iplant/
home/shared/commons_repo/curated/DeanVik_MArVD2_Apr2022 https://doi.org/10.25
739/1ttq-2q60 and Zenodo at https://zenodo.org/record/7768113/files/MArVD2_files.
tar.gz MArVD2 is available at bitbucket https://bitbucket.org/MAVERICLab/marvd2/ and
as a bioconda package at https://anaconda.org/bioconda/marvd2.
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