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A comparative study reveals the relative importance of
prokaryotic and eukaryotic proton pump rhodopsins in a
subtropical marginal sea
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Proton-pump rhodopsin (PPR) in marine microbes can convert solar energy to bioavailable chemical energy. Whereas bacterial PPR
has been extensively studied, counterparts in microeukaryotes are less explored, and the relative importance of the two groups is
poorly understood. Here, we sequenced whole-assemblage metatranscriptomes and investigated the diversity and expression
dynamics of PPR in microbial eukaryotes and prokaryotes at a continental shelf and a slope site in the northern South China Sea.
Data showed the whole PPRs transcript pool was dominated by Proteorhodopsins and Xanthorhodopsins, followed by
Bacteriorhodopsin-like proteins, dominantly contributed by prokaryotes both in the number and expression levels of PPR unigenes,
although at the continental slope station, microeukaryotes and prokaryotes contributed similarly in transcript abundance.
Furthermore, eukaryotic PPRs are mainly contributed by dinoflagellates and showed significant correlation with nutrient
concentrations. Green light-absorbing PPRs were mainly distributed in >3 μm organisms (including microeukaryotes and their
associated bacteria), especially at surface layer at the shelf station, whereas blue light-absorbing PPRs dominated the <3 μm (mainly
bacterial) communities at both study sites, especially at deeper layers at the slope station. Our study portrays a comparative PPR
genotype and expression landscape for prokaryotes and eukaryotes in a subtropical marginal sea, suggesting PPR’s role in niche
differentiation and adaptation among marine microbes.

ISME Communications; https://doi.org/10.1038/s43705-023-00292-y

INTRODUCTION
Rhodopsins are now known in all three domains of life. The best
known is sensory rhodopsin for vision in animal eyes. More
functionally diverse rhodopsins occur in microbial organisms
(microbial rhodopsins) [1]. Initial discoveries of microbial rhodop-
sins date back to the 1970s, when rhodopsins in Halobacterium
halobium were characterized as proton or chloride pumps [2–4].
After a two-decade quiescent period, interest in microbial
rhodopsins was rekindled by the discovery of proton-pump
rhodopsins (PPRs), a subfamily of microbial rhodopsins, in the
SAR86 clade [5] and many other bacteria in the surface ocean.
PPRs pump protons from the cytoplasm out extracellularly and
create a proton gradient that has the force to drive ATP
production [6]. These photoenergy capturing rhodopsins were
widely reported to occur in 48% of small-size particles (<0.8 μm) in
the ocean’s photic zone [7, 8] or in 13–70% of bacteria living in the
surface ocean [9, 10]. They are now known to be abundantly
distributed globally, from the aquatic system (including marine
and fresh-water systems) to edaphic systems [11], from the tropic
[12] to polar regions [13, 14], and taxonomically, from giant virus

and eubacterial organisms [2, 14–16] to eukaryotic microbes
[17, 18].
Most of the proton-pump microbial rhodopsins documented so

far are outward proton pumps, which function to produce ATP in
the cells, although inward proton pump rhodopsins (i.e. xenorho-
dopsins and schizorhodopsins) have also been reported [19–21].
For that reason and brevity, the term PPRs will be used from here
on to depict microbial rhodopsins that were found to be outward
proton pump rhodopsins, the focus of the present study. PPRs
found so far include proteorhodopsins (PRs) [22–24], bacteriorho-
dopsins (BRs) [25], xanthorhodopsins (XRs) [26, 27], exiguobacter-
ium rhodopsins (ESRs) [28] and actinorhodopsins (ActRs) [29]. As
mentioned above, PPRs can hyperpolarize the membrane
potential, which could synthesize ATP to benefit the PPR-
containing microorganisms [30]. However, the ecological role of
the diverse PPRs is not completely clear, even though studies have
generally shown that they promote the growth or survival of their
carrier microbes in nutrient-poor environments [24, 31]. In
dinoflagellates, PPRs may provide energy to support growth
under food or nutrient-limited or light-limited conditions [32, 33].
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In diatoms, PPRs have been implicated in coping with iron
limitation [18].
The relative importance of prokaryotic PPRs and eukaryotic

PPRs in the ocean is poorly understood, both in terms of each
group’s contribution to the total diversity and the total expression
(potential activity) of PPRs. Only a limited number of studies have
documented expressed PPRs from microeukaryotes in the natural
marine environment, which mainly focused on dinoflagellates
[17], diatoms [18], and other microbial eukaryotes [13]. Thanks to
the increasing accessibility of high throughput sequencing,
metatranscriptomic studies on dinoflagellate blooms have
revealed high diversities and high expression of PPRs in the
bloom species Prorocentrum shikokuense (formerly Prorocentrum
donghaiense), suggesting that PPRs might function to fuel the
blooms in dim light or phosphorus nutrient-limited environments
[34, 35]. The differential distribution of PPR between eukaryotes
and prokaryotes and the relative expression levels of prokaryotic
and eukaryotic PPRs remains underexplored, however. A recent
study measured retinal concentration as the proxy of PPR
abundance in a Mediterranean-Atlantic Ocean transect and found
that the microbial PPRs there were primarily contributed by
bacteria; they estimated that prokaryotic PPRs could absorb as
much light energy as chlorophyll-a-based phototrophy, sufficient
to sustain bacterial basal metabolism in the oligotrophic seas [36].
Furthermore, point mutations are known to alter absorption

maxima in PPRs. Therefore, some PPRs (i.e. proteorhodopsins, PRs)
absorb green-light (GPRs, λmax= 525 nm) and others absorb
blue-light (BPRs, λmax= 490 nm) [37, 38]. Spectral tuning of PPRs
from blue to green light is due to the substitution of one amino
acid residue in the retinal pocket. At position 105 of the typical
PPR, it is a methionine or leucine in GPR but is the polar glutamine
in BPR [24, 39, 40]. A new study found that in the two PRs
named ISR34 and ISR36, besides position 105, Cys189 is a vital
residue controlling spectral tuning [41]. How these two types of
PPRs are distributed spatially and taxonomically in the ocean is
not well understood.
This study addresses the above-mentioned research gaps by

using metatranscriptome sequencing. The data were used to
analyze the diversity and relative expression levels of PPRs, in both
prokaryotes and eukaryotes, in the northern South China Sea
(NSCS), a subtropical marginal sea.

MATERIALS AND METHODS
Sample collection and environmental measurements
Seawater samples were collected at two sites, the continental shelf station
(C6, 117.46°E, 22.13°N) and the continental slope station (C9, 117.99°E,
21.69°N) (Fig. S1), of Taiwan Strait onboard the research vessel Yanping II
from 6th to 12th of August 2016. Samples were collected at the surface
(SUR), deep chlorophyll maximum (DCM) layer, and bottom of the photic
zone (BOT) using Seabird CTD (conductivity-temperature-depth profiler)
rosette equipped with 12-liter Niskin bottles. For each sample, 20–60 liters
(details in Supplementary 2) of seawater were pre-filtered through 200 μm
to remove large organisms and then serially filtered onto a 3 μm and a 0.22
μm pore-size, 142 mm diameter, polycarbonate membrane (Merck
Millipore, MA, USA). The filters were immediately transferred to 2mL tube
(KIRGEN, Shanghai, China) immersed with TRIzol regent buffer and stored
in liquid nitrogen during the cruise and then stored at −80 °C in the lab
until RNA extraction. Two replicate samples were collected from each
sampling event. Totally, 20 samples for transcriptome analysis were
collected. Twenty samples for 16 S and 18 S rRNA gene (rDNA SSU) analysis
were collected in same way as RNA samples but were immersed in DNA
lysis buffer before being stored at −80 °C. The analysis of the DNA samples
to characterize the microbial community structures has been reported
elsewhere [42, 43].
Bacteria in the small (0.22–3 μm) fraction are considered free-living,

whereas those in the large (3–200 μm) fraction are considered particle-
associated. Although we could not rule out the possibility that some free-
living bacteria might be retained in the large fraction when the membrane
was clogged by accumulated biomass, we think it is unlikely that this

“accidental” bacteria would dominate over the authentic particle-
associated bacteria, particularly because the biomass in the oceanic
stations was generally low. Temperature, salinity, and turbidity were
measured using CTD (SBE 17plus V2, Sea-Bird Scientific, Bellevue, WA, USA)
at each sampling event. The concentrations of dissolved inorganic
nitrogen (DIN) (nitrate and nitrite), silicate and phosphate were measured
using a Technicon AA3 Auto-Analyzer (Bran-Lube, Norderstedt, Germany),
and all measurements were performed on triplicate samples.

RNA extraction and Illumina high-throughput sequencing
RNA was extracted from the field samples following our previously reported
protocol [34] that combines the TRIzol procedure with Zymo RNA
purification column, and incorporates FastPrep-24 bead mill (MP Biomedi-
cals, Solon, USA) with 0.5 mm- and 0.1 mm-diameter zirconia/silica beads
(Biospec, Shanghai, China) to completely break the cells. The RNA purity
and quantity were assessed using NanoDrop 2000 (Thermo Scientific,
Waltham, MA, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA). The RNA samples with RNA integrity number (RIN) ≥ 6.0
were used for RNA-seq sequencing (BGI, Shanghai, China). Ribosomal RNA
of each sample (1 μg RNA) was removed using a Ribo-Zero™ rRNA Removal
Kit (Human/Mouse/Rat), Ribo-Zero™ rRNA Removal Kit (Plant Leaf) and Ribo-
Zero™ rRNA Removal Kit (Bacteria) (Illumina, San Diego, CA, USA). Using
rRNA removal instead of oligo(dT)-based mRNA enrichment yielded mRNAs
from both prokaryotes and eukaryotes. The purified mRNA was then
fragmented with Elute, Prime, Fragment Mix. First-strand cDNA was
synthesized using the First Strand Master Mix and Super Script II Reverse
Transcriptase (Invitrogen, CA, USA). After purifying the product (Agencourt
RNA Clean XP Beads, AGENCOURT; Beckman Coulter Genomics, Danvers,
MA, USA), the second-strand cDNA was synthesized by adding Second
Strand Master Mix and dATP, dGTP, dCTP, dUTP mix. The double-strand
cDNA was processed by purification, end repair, and adaptor ligation.
Fragments, which were about 400 bp (insert size about 250 bp), were
selected and sequenced on the Illumina HiSeq 4000 instrument (Illumina,
San Diego, CA, USA). Finally, Illumina high-throughput sequencing of all
samples yielded a total of 881 Gb raw reads.

Bioinformatic analysis and expression quantification of
rhodopsins from the metatranscriptomes
After trimming adaptors from raw reads, sequences with >5% ambiguous
bases (N) and low-quality reads (>20% bases with quality value < 20) were
removed to obtain clean reads using Soapnuke (version 1.5.6). De novo
assembly was carried out for remaining clean reads using Trinity, then Tgicl
was used to cluster transcripts to unigenes with a minimum of 95%
identity between the contigs [44]. The unigene sets from all samples were
merged to generate the final unigene dataset (Unigene) for downstream
analysis. The taxonomic were analyzed using BLASTX base on NR and
BLASTN base on Nucleotide Squence Database (NT) (version 20180814)
with the following cutoff values: E-value < 10−5 and identity >40%. The
best hit with strong e value was assigned the organism from which the
microbial rhodopsins sequence was originated. SwissProt functional
annotation was conducted using Diamond BLASTX [45]. Bowtie2 [46]
was used to align clean reads to the unigene dataset (as reference), and
then Salmon v0.9.1 [47] was used to calculate gene expression levels in
each sample. In the subsequent analysis, we eliminated unigenes whose
TPM (Transcripts Per Kilobase of exon model per Million mapped reads)
was less than 0.1 across all 20 samples.

Phylogenetic analysis
The phylogenetic analysis was conducted to assess the diversity and
classification of rhodopsins (PPRs and other types of rhodopsins). We chose
the sequences from our metatranscriptome data that at least contained
transmembrane helices C-F. Deduced protein sequences and selected
reference sequences from the NCBI database were aligned using the
Muscle model in MEGA X [48] (Supplementary file 3). Model Test in MEGA X
was used to find the best model of amino acid evolution. The phylogenetic
tree was inferred using Maximum likelihood method in MEGA X using
LG+G model with 1000 bootstrap replicates performed to obtain statistical
support for the tree topology. After exporting the tree in the Newick format,
color modification of phylogenetic trees was added using iTOL.

Statistical analysis
Merger of datasets from size fractions to enable comparison. Large
(3–200 µm) and small (0.2–3 µm) size fractions samples were from the
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same water samples even though they were sequenced separately. To
facilitate the comparison of prokaryotic and eukaryotic contributions to the
rhodopsin mRNA pool in each water sample, the data from the two size
fractions were combined after adjusted for the volume of the water
sample. We multiplied the TPMs of prokaryotic (Pro-TPM) or eukaryotic
(Euk-TPM) rhodopsins in the small and large size fractions with their
respective amounts of RNA extracted from the size fraction samples,
respectively, added the two products, and then divided the sum by the
total RNA mass extracted from both size fractions from the same volume of
water sample, i.e. Rhodopsin contributions of prokaryotic microbes = (Pro-
TPMsmall * RNAsmall per L+ Pro-TPMlarge * RNAlarge per L)/(RNAsmall
per L + RNAlarge per L) and the Rhodopsin contributions of eukaryotic
microbes = (Euk-TPMsmall * RNAsmall per L + Euk-TPMlarge * RNAlarge
per L)/(RNAsmall per L + RNAlarge per L). These allow estimation of
contribution of Prokaryotic (Pro) or Eukaryotic (Euk) microbes from both
size fractions to the total rhodopsin transcript pool from each plankton
community (water sample).

Distance correlations between microbial rhodopsin and environmental
factors. We computed pairwise distances between samples based on
microbial rhodopsin or PPRs abundances (TPM) matrix, from prokaryotic or
eukaryotic microbes, and environmental factors matrix. The following
environmental factors were chosen for correlation analysis: NO2

- (µmol/L),
PO4

3- (µmol/L), NO3
-_NO2

- (nitrate plus nitrite, µmol/L), SiO3
2- (µmol/L),

depth, temperature, salinity, and N:P ratio. These distance matrices were
computed using partial Mantel correlations in R studio through the vegan
R software package.

Difference and correlation analysis. To evaluate the statistical significance
of the differences observed between different sampling sites, size fractions
or water depths, the analysis of variance (ANOVA) was performed using the
IBM SPSS statistics package (version: 18). All data presented in this study
are means with standard deviation calculated from the duplicate samples
in each condition. The linear correlation between PPR expression and the

abundance of source microbes was based on the Pearson correlation
coefficient.

RESULTS
Diversity of microbial rhodopsins
As mentioned earlier, microbial community structures based on
SSU (rDNA) have been reported elsewhere [42, 43] and data are
available (BioProject numbers PRJNA782430 and Accession
number CNP0001483). The high-throughput sequencing of our
RNA samples yielded 881 Gb raw data, which resulted in 792.7 Gb
of clean reads in total after quality processing. These reads were
assembled into 4,499,414 unigenes with N50 of 372 bp and
maximum length 71,092 bp. After assembling, the computational
pooling and clustering of all rhodopsin cDNA sequences from our
metatranscriptomes yielded 1,765 rhodopsin unigenes.
To classify these sequences into the existing rhodopsin

classification scheme, we constructed a phylogenetic tree using
deduced amino acid sequences long enough to include helices
C-F (totally 831 unigenes), with reference sequences from NCBI to
represent existing rhodopsin groups. Phylogenetic analysis results
showed that the cluster of proteorhodopsins (PRs) contained the
highest number of rhodopsin unigenes, followed by xanthorho-
dopsins (XR and GR in the phylogenetic tree) and
bacteriorhodopsin-like proteins (including BR and SRI in the
phylogenetic tree) (Fig. 1). Nearly all of these are light-driven
outward proton pump rhodopsins (i.e. ATP producing type) or
PPRs for brevity. In the phylogenetic tree, we also found several
unigenes that were affiliated with sensory rhodopsin-I, which is
non-proton pump microbial rhodopsin. Besides, according to the
SwissProt annotation results, other non-proton pump rhodopsin
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Fig. 1 Maximum likelihood phylogenetic tree of microbial rhodopsin amino acid sequences. Different colors show types of rhodopsin,
which are represented by reference sequences marked in red. Types of rhodopsin are shown on the medial left. The tree scale is shown on the
upper left. Bootstrap is shown on the lower left. The number in the circles depicts the total number of rhodopsin unigenes in the cluster.
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(AIN36550.1, ADY17811.1, ADY17809.1, ADY17808.1, ABV22426.1, ABV22432.1, AAO14677.1, AEF32711.1, ABV22427.1, ADY17806.1,
AJA37445.1, WP_011404249.1, AEP68177.1, AKG94905.1), GR (BAC88139.1).
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existed in the metatranscriptomes, including Archaerhodopsin
from Halobacterium sp. and Halorubrum chaoviator, Cruxrhodopsin
from Haloarcula argentinensis, sensory rhodopsin-II from Haloar-
cula vallismortis, and Octopus rhodopsin from Enteroctopus
dofleini. However, these many classification types of rhodopsin
exhibited low expression levels (Table 1).

Spatial and taxonomic differences in transcript abundance of
microbial rhodopsin
The taxonomic origin of the microbial rhodopsins detected in the
samples was determined from metatranscriptome annotation
against NCBI databases. The result provided a clear separation of
prokaryotic and eukaryotic rhodopsins and assigned the
sequences to specific taxa. In all our metatranscriptomic datasets
combined, prokaryotic microbes accounted for 71% of the
rhodopsin unigenes number and 40–97% of the rhodopsin
contribution whereas microeukaryotes (protists) accounted for
27% of unigenes number and 2–60% of contribution, respectively.
We then counted all the microbial rhodopsins expressed by
prokaryotic and eukaryotic microbes in both the small (0.2–3 μm)
and large size fraction (3–200 μm) and compared station- and
lineage-wise differences using non-parametric ANOVA. In the
transcriptomic data of shelf station (C6) samples, rhodopsin
contribution in prokaryotic microbes were more abundant than
those in protists (p < 0.05, Fig. 2). However, in slope station (C9)
samples, there was no significant difference between prokaryotes
and eukaryotes in the rhodopsin contribution due to large
variations between samples (p > 0.05, Fig. 2). In addition, between
the two study sites, the contribution of total microbial rhodopsins
at the continental shelf station appeared to be slightly higher than
the continental slope station but without statistical significance,
regardless of size fractions (Figs. 2 and 3).
To examine different microbe supergroups’ contribution to

rhodopsin expression, the expression level (TPM) of rhodopsin
transcripts in different size fractions at different samples were
analyzed. According to taxonomic annotation against NCBI
databases, in the small-sized samples, rhodopsins were mainly
expressed by Proteobacteria, Bacteroidetes, and Other_Bacteria,
whereas in large-sized samples, rhodopsins were dominantly
expressed by Dinophyceae, Proteobacteria, and Other_Bacteria
(Fig. 3). The proteobacteria and Other_Bacteria in the large-sized
fraction should be associated, endosymbiotically or ectosymbio-
tically, with eukaryotes, although some of them might be free-
living bacteria retained on filters because of clogging during
filtration.
According to the results of the Mantel test, the transcript

abundance of total microbial rhodopsin from protists was
correlated with depth and temperature (Fig. 4A), whereas the
transcript abundance of protist PPRs was correlated with nutrient
concentrations, including phosphate (PO4

3-), nitrate plus nitrite
(NO3

-_NO2
-), and silicate (SiO3

2-), besides depth and temperature

(Fig. 4B). In contrast, transcript abundances of prokaryotic
rhodopsin and total rhodopsin (prokaryotic and eukaryotic
combined) showed weak correlation with environmental
parameters.

The distribution of blue light- and green light-absorbing PPRs
Blue light-absorbing PPRs (BPRs) contain the polar glutamine at
the spectrum tuning site (105 of the typical PPR), equivalent to
position 104 in the PPR of P. shikokuense, whereas green light-
absorbing PPRs (GPRs) contain methionine or leucine at that
position [24, 39, 40]. We identified and counted BPR and GPR of all
unigenes in the microbial rhodopsin pool based on the functional
annotation results against SwissProt datasets. For both shelf and
slope stations, the expression of BPRs increased with the increase
of depth, whereas the expression of GPRs decreased with
increasing depth (Fig. 5). GPRs were mainly distributed in large-
sized microorganisms of the surface assemblages at the shelf
station. In contrast, BPRs were dominant in small-sized micro-
organisms of both study sites especially deeper depths at the slope
station (Fig. 5).
Based on annotation results of function and taxonomy, the PPRs

of prokaryotes we detected were predominantly blue light-
absorbing and were primarily contributed by Candidatus Pelagi-
bacter ubique and some uncultured bacteria (Fig. 5). Cand. P.
ubique is a member of the Pelagibacterales (SAR11). The BPR
transcript abundance of Pelagibacterales was strongly correlated
with the relative abundance of Pelagibacterales (SAR11) based on
16 S rRNA gene data (Fig. 6A, R2= 0.8338). Meanwhile, GPRs also
occurred in prokaryotes, primarily contributed by Flavobacter-
iaceae (Fig. 5). Similar to the case of BPR in Pelagibacterales, the
GPR transcript abundance in Flavobacteriaceae also exhibited a
strong correlation with the relative abundance of Flavobacter-
iaceae based on 16 S rRNA gene data (Fig. 6B, R2= 0.801). For
protists, our metatranscriptome data showed that their PPRs were
dominantly blue light-absorbing and were mainly harbored and
expressed by the dinoflagellate species annotated as Karlodinium
micrum, and Ceratium fusus, whereas their green light-absorbing
rhodopsin mainly expressed by Alexandrium andersonii (Fig. 5),
indicating that dinoflagellates were the major contributors of
eukaryotic protists’ PPRs in the study area.

DISCUSSION
The dominance of ATP-producing PPRs in the microbial
rhodopsin landscape
To explore relationship between microbes and corresponding
rhodopsin expression, we portrayed a microbial rhodopsin land-
scape using the RNA-seq method instead of rhodopsin PCR
amplification to avoid potential PCR biases. In the small-sized
samples, rhodopsins expression level was the highest in

Table 1. Expression levels ranges of different rhodopsins based on
SwissProt annotation results.

Rhodopsin types C6 (TPM ± SDa) C9 (TPM ± SD)

Proteorhodopsin &
Xanthorhodopsin

931–6413
(±20–±2230)

5–4282
(±2–±2215)

Bacteriorhodopsin 2–14 (±0–±2) 0–2 (±0–±4)

Sensoryrhodopsin 0.43–1 (±0–±1) 0–1 (±0–±2)

Archaerhodopsin 3–24 (±0–±7) 0–9 (±0–±12)

Cruxrhodopsin 0–3 (±0–±4) 0–0.3 (±0–±0.4)

rhodopsin from
Enteroctopus dofleini

0 0–2 (±0–±2)

SDa: Corresponding ranges of standard deviation.
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Fig. 2 Rhodopsin expression levels in prokaryotic and eukaryotic
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Proteobacteria whereas in large-sized samples rhodopsins were
dominantly expressed by Dinophyceae (Fig. 3). At the same time,
according to 16 S and 18 S rDNA sequencing results, at the
phylum/class level, Dinophyceae was the most abundantly
represented among eukaryotic microbes in our samples (Fig. S2A),
while proteobacteria were the most abundant prokaryotic phylum
in microbial communities of the two study sites (Fig. S2B).
However, we must note that, as is true in any rDNA-based
metabarcoding studies, the abundance of the barcode (marker
gene) does not directly represent the abundance of the cells,
because rDNA copy number per cell varies between lineages, and
is particularly high in dinoflagellates [49]. Therefore, the corre-
sponding trends of PPR expression and rDNA abundance for
Proteobacteria and Dinophyceae suggest the possibility that PPR
promotes the growth of these lineages, but this still needs to be
verified in the future using cell abundance data.
In total, seven types of rhodopsin (PR, BR, XR, Archaerhodopsin,

Cruxrhodopsin, sensory rhodopsin, and Octopus rhodopsin) were
detected in this study, but each contributed to the rhodopsin
mRNA pool at very different levels. In the microbial rhodopsin
pool, PPRs accounted for 16–98% of the total microbial
rhodopsins mRNA pool in different samples. The PPRs in our
study sites were mainly PRs and XRs, followed by BR-like proteins
(Fig. 1 and Table 1), all of which are assumed to be light-driven
outward proton pump rhodopsins that can presumably fuel ATP
production. This is the first documentation of the rhodopsin
profile in the NSCS and one of the few in the global ocean that
compared the abundances of rhodopsin between prokaryotes and
eukaryotes. More recently, two new types of PPRs, xenorhodopsins
and schizorhodopsins, were discovered, which pump protons
inward [19–21], but its spatial and taxonomic distribution is less
clear. However, the inward proton pump rhodopsins were not
found in the mRNA pool in the present study.

Lineage- and space-differential distribution of expressed PPR
Between the two study sites, based on relative read counts, there
were higher rhodopsin transcript abundances in the continental
shelf region (C6) than the slope region (C9) (Fig. 1 and Table 1).
Furthermore, in the transcriptomic data of shelf samples, the
contribution of PPRs mRNA in prokaryotic microbes from both the
small and large size fractions were higher than microeukaryotes
(p < 0.05, Fig. 2), indicating that the prokaryotic microbes were
more important contributors of rhodopsin-based solar energy
converting mechanism than protists in the continental shelf
region. However, in our transcripts data of slope samples, there
was no significant difference in the abundance of rhodopsin
mRNA between prokaryotic microbes and protists, indicating that
in the continental slope region, the PPR-based energy harvesting
mechanism was probably equally important for both prokaryotes
and protists. Many of these protists are eukaryotic microalgae
(phytoplankton) (Figs. 3 and 5), and thus possess not only a
rhodopsin-based energy transducer system but also chlorophyll-a-
based photosynthesis system, uniquely having two energy-
harvesting mechanisms, or “dual engines.” The coexistence of
rhodopsin and photosynthesis system might be important for
protists inhabiting the more nutrient-poorer environment, which
happened to be at the continental shelf station we sampled in the
NSCS, as our nutrient data indicated (see below).

Relationship between expressed PPR and nutrient condition
Previous studies have shown that the PPR-based energy mechanism
may serve to ameliorate the deficiencies of nutrients such as nitrogen,
phosphorus, or iron [18, 33, 36, 50]. For marine phytoplankton,
nitrogen limitation depresses photosynthesis and growth as nitrogen
is required for the synthesis of nucleic acid, protein, and Chl a;
however, the precursor of all-trans retinal (functional equivalent of Chl
a) is not affected by nutrient limitation [51, 52]. Therefore, PPRs might
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provide supplemental energy to enable the microbial community to
survive in the nitrogen-limited condition.
At both study sites in the present study, nitrogen and

phosphorus nutrient concentrations at surface layer were
0.156–0.607 μmol/L and 0.021–0.058 μmol/L respectively, with an
N: P ratio of <12.7 (Supplementary file 2), lower than the typical

Redfield ratio of 16:1, suggesting nitrogen limitation. Between the
two stations, the average DIN concentration and N: P ratio at shelf
region were lower than that at slope region (Supplementary file 2),
and consistent with the expectation from the previous studies, a
higher PPR mRNA abundance was found in microeukaryotes at
shelf region. This PPR-nutrient relationship was further supported
by the significant correlation found between the transcript
abundance of microeukaryotic PPRs and nutrient concentrations
and the lack of similar correlations for prokaryotic PPRs (Fig. 4A, B).
The microeukaryotes are likely phytoplankton, which require
nutrients for photosynthesis, unlike prokaryotes that require
organic matter as source of nutrition.
For the eukaryotic microalgae (phytoplankton) that possess the

“dual engines,” the supplemental energy provided by PPRs can
probably support their carbon dioxide assimilation [38] and confer
these organisms with competitive advantages in a nutrient stress
environment. PPRs in diatoms are postulated to enable these
diatoms to survive iron deficiency [18]. However, this function may
not be as important in our study sites because surface water of the
NSCS has been reported to be not iron limited [53].
In the PPR-carrying microorganisms, PPRs may enhance the

fitness in the low dissolved organic carbon (DOC) environment
[54]. In the present study, Flavobacteriaceae and Candidatus
Pelagibacter ubique taxa were the major microbes that contained
rhodopsin, GPR and BPR, respectively. Flavobacteria play a vital role
in mineralizing DOC in the ocean. On the one hand, our results
showed that PPR expression in Flavobacteriaceae was strongly
correlated with the relative abundance of Flavobacteriaceae
(Fig. 6B, R2= 0.801), indicating the potential that PPR supported
the growth of these bacteria. On the other hand, Cand. P. ubique is
a species of the SAR11 clade, the most abundant group of
heterotrophic bacteria in the ocean [55, 56], relying on PPR to
support its endogenous carbon respiration when facing carbon
starvation [57]. Its PPR expression was also strongly correlated with
its relative abundance (Fig. 6A, R2= 0.8338). In Cand. P. ubique, the
relative PPR transcript abundance was higher at slope region than
shelf region (Fig. 5), and consistent with the notion that PPR is
selected for in nutrient-poor environments, DOC concentration has
been reported to be lower at slope than shelf [58]. PPR might help
increase the fitness of Cand. P. ubique in a low DOC environment.

Differential absorbance spectrum shift and niche
differentiation
The depth distribution of different spectrum absorbing rhodop-
sins has been shown to be related to light distribution
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characteristics [40]. In our results, GPRs were highly abundant both
in the number of unigenes and in mRNA quantity in large-sized
organisms in the surface water at both stations, especially at the
shelf station, whereas BPRs were dominant in small-sized
microorganisms in the deeper water, especially at the continental
slope station (Fig. 5). This pattern is generally consistent with the
pattern of spectrum-differential attenuation of light in the water
column (blue light penetrates deeper than green light), indicating
an adaptive evolution of the microbes.
This evolutionary adaptation may explain the differential distribu-

tion of two important groups of bacteria. In our samples,
Flavobacteriaceae was more abundant in the surface, and their PPRs
were the green-light absorbing type. In contrast, the change in
relative abundance of Cand. P. ubique at different water depths was
smaller than Flavobacteriaceae (Insets of Fig. 6), mirroring the pattern
of their PPRs (Fig. 5), which was more stable between surface and
DCM in Cand. P. ubique than in Flavobacteriaceae. This coincides
with the fact that PPR of Cand. P. ubique were blue light absorbing
type, and blue light can reach deeper in the water column.
The spectrum shift analysis was based on the annotation results

against the SwissProt database. However, this method is not
perfect. For instance, the PPRs in K. micrum and C. fusus
were annotated as GPR in SwissProt annotation results. Yet,
these K. micrum and C. fusus PPRs are actually BPRs rather than
GPRs [59]. We corrected their annotation to BPRs and the final
results indicate that there were abundant BPRs in the large-sized
fraction and dinoflagellates were the major contributors of
eukaryotic protists’ BPRs in the study area (Fig. 5). Furthermore,
dinoflagellates possess BPRs and GPRs in addition to Chl a, which
possibly possess the ability to utilize slightly different wavelength
than non-rhodopsin-carrying phytoplankton in the NSCS.
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