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Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-
chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and
population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in
the sediments (n= 76) of hot spring features, in the Taupō Volcanic Zone (New Zealand), spanning large differences in major anion
water chemistry, pH (2.0–7.5), and temperature (17.5–92.9 °C). Community composition, based on 16S rRNA amplicon sequence
variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs.
At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse
springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures.
Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial
ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in
57.9–84.2% of samples) and abundant (1.7–12.0% sample relative abundance), and together comprised 44% of overall community
abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic
traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-
specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with
each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and
archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.

ISME Communications; https://doi.org/10.1038/s43705-023-00291-z

INTRODUCTION
Globally, the environmental factor found to affect microbial
community composition the most is salinity [1]. However, at
smaller geographical scales or within single biomes where salinity
is stable (e.g., freshwater environments), other physicochemical
factors, such as temperature and pH become significant [2]. These
factors are expected to have an even greater effect in hot springs,
where temperature and pH ranges are extreme compared to
many other environments, e.g., pH ranges of −0.8 to 10.5 and
temperature ranges of <10 to >100°C [3–6]. The extremes of these
ranges are almost at the boundaries of conditions able to support
life [7–11], and are inhabited by acidophilic, alkaliphilic, and
(hyper)thermophilic microorganisms [6, 12–15].
Phylogenetically diverse microorganisms are found across the

physico-chemical ranges of hot springs. For example, the bacterial
phyla Proteobacteria and Aquificae are common inhabitants of
various hot springs such as Taupō Volcanic Zone (TVZ, New
Zealand), Yellowstone National Park (YNP, USA), and Hveragerði
(Iceland) [6, 12, 15–17]. In addition, various archaea from
Euryarchaeota (e.g., Thermoplasma) and Crenarchaeota (e.g.,
Sulfolobus) have been isolated or molecularly characterized from
hot springs globally [18, 19]. Likewise, several thermophilic

cyanobacterial genera, including Synechococcus, Leptolyngbya,
and Calothrix, have been reported across alkaline hot springs
worldwide [20]. While both hot spring bacteria and archaea have
been determined via 16S rRNA characterization [12, 21–23], most
of these studies utilized different primer sets for bacteria and
archaea, making archaeal and bacterial relative abundances
incomparable. Moreover, of the studies that have addressed both
domains together using a single universal prokaryotic primer set
[6, 24], some were potentially affected by known primer biases
against archaea [25], suggesting that further research is needed to
understand the relative contributions of archaea and bacteria in
various hot spring settings [6].
High phylogenetic diversity among hot spring microorganisms

may be expected given the distinct adaptations required to survive
across large ranges in temperature and pH [26, 27]. For example,
genome streamlining is a characteristic of microorganisms adapted
to high temperatures, allowing low costs of energy maintenance
and increased fitness [28]. Thermophiles may also possess higher
concentrations of saturated lipids compared to non-thermophiles
to increase their membrane integrity [29]. To maintain pH
homeostasis of their intracellular regions in highly acidic environ-
ments, acidophiles possess mechanisms to pump out excess
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intracellular protons, whereas alkaliphiles increase proton influx
into cells to maintain intracellular charge balance [30, 31].
Accordingly, previous studies have shown that temperature and
pH are strong drivers of differences in diversity and composition
among hot spring microbial communities [6, 12–15]. Despite the
selective pressures exerted by extreme physicochemical differ-
ences among hot springs, some groups of bacteria and archaea in
hot spring communities, such as Acidithiobacillus, Venevibrio and
some Thermoplasmatales, are present in hot springs spanning
large physicochemical ranges [6, 15]. For example, we previously
observed the same cosmopolitan, genome-streamlined, Acidithio-
bacillus species (particularly the TVZ_G3 group) in hot spring
sediments spanning temperatures of 17.5–92.9°C and pHs of
1.0–7.5 [17]. Nevertheless, the cosmopolitanism of other dominant
hot spring microorganisms across varying hot spring physico-
chemistries is yet to be determined.
Here, we evaluated the relative abundances of bacteria and

archaea, and their 16S rRNA gene copy numbers, across a wide
range of hot spring physicochemistries (i.e., temperature, pH, and
major anions), and assessed cosmopolitanism among dominant hot
spring microorganisms. To do this, we sampled 76 subaqueous
sediments from four geothermal areas (up to 65 km apart) across the
TVZ, New Zealand. We then examined the composition of 16S rRNA
gene amplicon sequence variants (ASVs), and the abundance and
prevalence of microbial ASVs/variants. The relationship of dominant
and prevalent variants – those with >1% relative abundance in the
overall microbial community and >50% prevalence across sam-
ples – to temperature and pH was determined. In addition, using
metagenomics, genomes of abundant and prevalent variants were
examined to evaluate population structures underpinning cosmo-
politanism and the traits of these populations related to sulfur,
nitrogen and hydrogen metabolism. Results provide insights into
phylogenetic distributions, cosmopolitanism and niche differentia-
tion among hot spring adapted microorganisms.

MATERIALS AND METHODS
Sample collection and physicochemical measurements
Seventy-six sediment samples were collected from four geothermal areas
in the TVZ located 1–65 km apart – Parariki thermal stream, the Sinter Flats
lagoon area at the Rotokawa geothermal field, Tikitere geothermal field,
and Waiotapu Scenic Reserve located 1–65 km apart, in February and
November 2019 (Table S1; Fig. 1 from [15]). Across these geothermal areas,
eight sites with multiple co-located hot spring features, including 38 hot
spring vents, 27 hot spring outflows, and 11 geothermally-influenced
streams were sampled. Samples included 3–5 spatial replicates (<0.5 m
apart) per feature, except for at Waiotapu A, which comprised a complex of
numerous small vents with replicated chemistries, and Waiotapu B, where
its vent and outflow were relatively small. Sediment was collected from a
few millimeters to centimeters below the water surface into sterile 50mL
centrifuge tubes, transported on dry ice, and stored at -80°C. The pHs and
temperatures of the hot spring fluids were measured in situ using a WTW
330i handheld meter (WTW GmbH, Germany) (Table S1). Major water anion
data for Parariki stream, Rotokawa, and Tikitere were derived from prior
studies [32–34], and Waiotapu water chemistry data were from the
1000springs project (http://1000springs.org.nz).

DNA extraction, amplicon sequencing and quantification, and
metagenomic sequencing
DNA extractions, 16S rRNA gene V4-V5 amplicon sequencing from all
76 sediment samples, and metagenome sequencing from 18 samples,
along with genome assembly, binning and annotation were undertaken as
previously described [17] and are summarized in Supplementary Informa-
tion. Droplet Digital PCR (ddPCR) was used to quantify the concentration of
16S rRNA genes in each sample using the same primers (without Illumina
adapters) and PCR conditions with additional signal stabilizing steps [15].

Amplicon data analyses
QIIME2 (version 2019.10) was used to process demultiplexed sequence
reads by read joining, quality filtering (Q score cutoff of 25), and denoising

(with singletons removed) [35]. Tables of OTUs (clustered at 99% identity)
and ASVs (sequences 100% identical) were generated using VSEARCH and
deblur plug-ins, respectively [36, 37]. Taxonomy was assigned using the
SILVA database version 132 [38] and q2-feature-classifier plug-in [39].
Rarefaction curves were generated using R (version 4.0.2) with the R
package vegan (version 2.5-6). Alpha and beta-diversity were determined
using vegan and visualized using ggplot2 (version 3.3.2). Statistical
correlations were generated using R package ggpubr (version 0.4.0).
Correlations and statistical significances of correlations were determined
using Pearson’s correlation coefficients and t-distribution tables (df = n–1),
respectively.

Metagenomic data analyses
Metagenome-assembled genomes (MAGs) shared across up to 18 sediment
sample assemblies were grouped by 98% and 99% similarity threshold
using dRep version 1.4.3 [40] and are referred to as equivalent populations.
Barrnap version 0.9 [41] was used to extract 16S rRNA genes from MAGs.
FastANI version 1.33 was used to calculate pairwise average nucleotide
identities (ANI) [42]. DRAM version 1.4.6 was used for annotation against
KEGG-based KOfam, UniRef and Pfam databases downloaded 26-May-2023
[43–46]. Single-nucleotide polymorphisms (SNPs) detection was analyzed
using Snippy version 4.6.0 [47]. For full metagenomic methodology, refer
to Supplementary Information.

RESULTS AND DISCUSSION
Physicochemical diversity of studied hot spring settings
The four geothermal areas sampled differed based on fluid pH and
major anions, ranging from acid-sulfate-chloride to acid-sulfate-
bicarbonate [48, 49] (Table S1). Because temperature is a major
controller of microbial composition and diversity in hot springs
[6, 12, 15, 23, 50], we also sampled multiple features at each site,
including vents for high temperatures (38.0–92.9 °C), outflows for
moderate temperatures (17.5–69.1 °C), and geothermally-
influenced streams for low temperatures (18.3–33.4 °C) (Figure S1).
Site temperatures and pHs differed by up to 57.4 °C and 3.5 units,
with overall temperatures and pHs being 17.5–92.9 °C (average
47.7 °C) and 2.0–7.5 (average 4.0) (Figure S1). In the TVZ, most hot
springs are highly acidic, in contrast, for example, to the YNP,
which includes more circumneutral pH springs [51].

Bacteria and archaea were relatively abundant across acidic to
circumneutral hot spring sediments
A total of 23,225 ASVs, comprising 47 phyla including unclassified
archaea and bacteria, were obtained based on 16S rRNA amplicon
sequences from hot spring and hot spring-influenced sediments.
Of these, 55.3% of the ASVs, in terms of richness, belonged to two
archaeal phyla, Euryarchaeota and Crenarchaeota, and one
bacterial phylum, Proteobacteria (Fig. 1a). These three phyla were
also dominant, and together comprised 72.1% of the overall hot
spring microbial community abundance. While specific hot spring
communities tended to be dominated by either bacteria or
archaea, overall, bacterial and archaeal abundances were roughly
similar (56.3% and 43.7%, respectively) and both exhibited broadly
similar distribution patterns with respect to temperature and pH
(Fig. 1b). However, we observed significant and opposing
correlations between temperature and the relative abundances
of archaea (R= 0.42, p= 0.00014, Pearson’s correlation coefficient)
and bacteria (R=−0.42, p= 0.00014) (Figure S2). No correlations
were observed with pH. These trends are consistent with archaeal
preferences for high-temperature niches and the early character-
ization of archaea solely as extremophiles [52]. Such associations
are supported by archaeal adaptations conferring high-
temperature tolerance, such as the presence of tetraether lipids
in cell membranes [26]. Despite this, bacteria still comprised, on
average, over 40% of communities from hot springs with
temperatures over 70 °C (45.4% on average) and also over 80 °C
(43.2% on average). In fact, some of the most well-studied (hyper)
thermophiles from hot springs are bacteria (e.g., Aquificales and
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Thermus spp.) [53], and studies of other TVZ hot spring features
(water and siliceous deposits) also showed that bacterial taxa,
such as Hydrogenobaculum (Aquificae), Venevibrio (Aquificae), and
Acidithiobacillus (Proteobacteria) were common in high-
temperature springs [6, 15, 50].
Euryarchaeota and Crenarchaeota, which dominated the

archaeal fraction of hot spring communities in this study and
were major constituents of the combined bacterial and archaeal
communities, comprise a high proportion of the archaeal
communities of many hot springs globally [18, 22, 23, 54, 55].
Other commonly observed archaeal phyla in this study (Fig. 1a)
are also common inhabitants of hot springs elsewhere. For
example, Thaumarchaeota, Diapherotrites, Hadesarchaeaeota,

Korarchaeota, and Nanoarchaeaeota have been reported from
hot springs in Kamchatka, YNP, and Iceland [56–59]. Likewise, the
dominant and commonly observed bacterial phyla detected in our
study (e.g., Proteobacteria, Thermotogae, Epsilonbacteraeota,
Aquificae, and Planctomycetes) are found in geographically
diverse hot springs [12–14, 24]. Taken together, these data
suggest widespread occurrences of the same bacterial and
archaeal lineages across hot springs globally. While our results
show that archaea are at least as abundant as bacteria in acidic to
circumneutral pH TVZ hot spring sediments, an extensive study of
hot spring water samples in the TVZ showed that the abundance
of archaea (6.4%) was much lower than bacteria (93.6%) [6], either
reflecting underestimation of archaea due to a V4 primer bias [6]
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Fig. 1 Distribution and relative abundances of bacteria and archaea in hot spring sediments of the Taupō Volcanic Zone (TVZ), New
Zealand. a Relative abundance of phyla based on 16S rRNA gene amplicons for prokaryotic communities associated with hot spring
sediments across all samples. Each sample contained between 24 and 2,046 ASVs (or 16 to 274 after rarefying to the minimum number of
sequences in a sample, 673, Table S1). Symbols in parentheses after the sample names refer to the local hot spring feature sampled: V = Vent,
O = Outflow, and S = Geothermally-influenced stream. b Plots showing the relative abundances of bacteria and archaea across all samples
(left), and their percent difference across hot springs with varying temperatures (middle) and pHs (right). Percent difference was calculated as
archaeal abundance per sample - bacterial abundance per sample. The gap between pH 4.1 and 5.3 reflects the lack of hot springs with these
pHs in the TVZ.
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(Supplementary Information), or substantial differences between
water and sediment community compositions [24].

Microbial composition, biomass, and diversity differed
strongly with changes in temperature and/or pH
Beta-diversity analysis indicated that microbial community com-
position in hot spring and hot spring-associated sediments was
shaped by temperature and pH (and major anions, which are pH-
associated) (Figure S3), comparable to previous studies
[6, 12–14, 24]. Higher temperature vent communities were
differentiated from cooler outflow or geothermally-influenced
stream communities in the constructed ordination. Similarly,
greater diversity was previously reported at a distal area than at
the spring vents [60]. Although the streams were cooler on
average than hot spring outflows (26.4 ± 6.7°C versus
36.1 ± 14.1°C), half of the geothermally-influenced stream sedi-
ment communities were indistinguishable from outflow commu-
nities, reflecting their acidity and the large geothermal inputs
received.
Biomass inferred from 16S rRNA gene concentrations was

significantly and negatively correlated with temperature
(R=−0.34, p= 0.0025; Fig. 2c), but not pH (R= 0.043, p= 0.71;
Fig. 2d). Studies of creek sediments and soils have also reported a
lack of correlation with pH [61, 62]. Correlated temperature and
16S rRNA gene concentrations across wide-ranging temperatures
(17.5–92.9 °C) and eight sites, together with similar trends
observed elsewhere, suggests inferred biomass is consistently
reduced in higher temperature springs (e.g., 39.3–74.1°C across a
single site [63]; 57–100 °C across three sites [12]). The trend
identified here remained significantly negative after excluding
geothermally-influenced streams (R=−0.3, p= 0.016; Figure S4).

At high-temperature sites (≥70 °C), we detected almost two-fold
lower copy number concentrations on average
(1,329,131 ± 1,284,851 copies/gram of sediment) compared to
low temperatures sites (≤40 °C, 2,571,607 ± 894,876 copies/gram
of sediment). Moreover, at some extremely high-temperature sites
(>80 °C), copy numbers were 1000-fold lower than at most low
and moderate temperature hot spring sites (Figure S5a), high-
lighting the negative effect of temperature on inferred microbial
biomass (Fig. 2c). Overall, concentration ranges were similar to
those reported from hot springs elsewhere [12, 24]. However, copy
numbers were 10 to 10,000-fold lower than those reported from
freshwater and marine sediments [64, 65], potentially owing to the
higher temperatures of hot springs in general. It is worth noting
that although ddPCR quantifies gene copy numbers and not
actual biomass or cell numbers, concentrations in this study were
similar to those obtained using direct cell counts to estimate cell
concentration ranges of 106 to 108 cells/ml in hot spring
environments elsewhere [66].
Several studies have identified significant negative correlations

between hot spring temperature and microbial alpha diversity
(using Shannon indices) [12–15]. We instead identified a weak,
non-significant, negative correlation (R=−0.17, p= 0.13; Fig. 2a
and S5b), despite significant changes in beta-diversity and inferred
biomass. Analysis of TVZ hot spring water (n= 925) also showed
no association between temperature and alpha diversity, except at
>70 °C [6]. However, we found that among features associated
with individual hot springs, microbial diversity of lower tempera-
ture geothermally-influenced streams (18.3–33.4°C) was signifi-
cantly higher than in vents and outflows (Figure S6). While the
effect of temperature cannot be excluded, this difference could be
due to higher reported nutrient (i.e., ammonia, nitrate, and
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phosphorus) concentrations in the streams [67], supporting a
greater diversity of microorganisms. In contrast, results overall
indicated a significant positive correlation between pH (range
2.0–7.5) and Shannon diversity (R= 0.28, p= 0.01; Fig. 2b),
consistent with other TVZ hot spring studies [6, 15]. Although
these studies show diversity increases with pH (up to at least pH
9.5), the growth of individual isolates from geothermal environ-
ments has been demonstrated across wide pH ranges (e.g., pHs of
1.0–6.0 for Acidianus brierleyi and 5.6–10.0 for Anoxybacillus
kamchatkensis) [68, 69], indicating broad tolerances.

Predominance of a few microbial taxa across physico-
chemically different hot springs
While microbial alpha diversity and community composition are
influenced by pH (Figure S3), some taxa inhabit hot springs with
wide-ranging pHs, for example, Sharp et al. [14] reported
consistent relative abundances of Proteobacteria, Acidobacteria,
Crenarchaeota, and Bacteroidetes across pH gradients. We
previously identified a wide occurrence of Acidithiobacillus spp.
across hot spring sediment and sinter pHs of at least 2.0 to 7.5
[15, 17], likely supported by multiple genes encoding amino acid
decarboxylases, K+ transporters, Na+/H+ antiporters, and plasma-
membrane proton efflux ATPases [17]. Features such as stream-
lined genomes and higher predicted proline contents also
potentially facilitate the prevalence of TVZ Acidithiobacillus across
broad hot spring temperature ranges [17]. The wide occurrence of
Acidithiobacillus across physico-chemically different hot spring
sediments and siliceous sinters was achieved by only a few
dominant and cosmopolitan species or sub-species, based on an
analysis of ASVs and MAGs [17]. To determine how widespread
this trend was among other hot spring microorganisms, we
examined all bacterial and archaeal variants. Most ASVs were
detected at single or narrow ranges of temperature and
pH. Specifically, 97.7% of ASVs displayed a temperature range of
<10°C, and 98.2% of ASVs had a pH range of <1 pH unit.
Nevertheless, some were distributed across large differences, and

were found in up to 84% of samples (Fig. 3a–d). We also identified
a strong relationship between prevalence and community
abundance (R= 0.64, p= 2.2 × 10−16), with eight of the ten most
abundant ASVs overall (comprising up to 12% of the overall
community) being the most prevalent (Fig. 4a).
A small fraction of ASVs comprised most of the overall

community. In total, 280 ASVs (1.2%) comprised 90% of
community abundance. Of these, the eight most prevalent (in
>50% of samples) were distributed across temperatures from
17.5 °C and up to 92.9 °C and pHs from 2.0 and up to 7.5 (Fig. 4a–c
and S7a). These eight ASVs accounted for 44% of hot spring
community abundance and spanned four phyla (pairwise
sequence identities 67.3% to 99.7%, Fig. 5a) that are commonly
detected in hot spring environments in New Zealand [6, 15] and
elsewhere [12, 14]. Three ASVs were Euryarchaeota/Thermoplas-
matota (two A10 and one BSLdp215), two each were Proteobac-
teria (Acidithiobacillus) and Thermotogae/Thermotogota
(Mesoaciditoga), and one was from Epsilonbacteraeota/Campylo-
bacterota (Desulfurella). Consistent with their wide hot spring
distributions, none showed strong correlations between their
relative abundances and either temperature or pH (rs ≤ 0.4,
p < 0.05), and three (Thermoplasmatales ASV2 and Mesoaciditoga
ASVs 5 and 8) showed no significant correlations with either
variable (Fig. 5b). All four lineages are well-documented in hot
spring settings. For example, Acidithiobacillus is also prevalent in
TVZ hot spring fluids [6], and has been found in hot spring fluids
[46, 70] and sediment [71] elsewhere. At least two species of
Desulfurella were first discovered from a sulfuric hot spring
environment (Kamchatka, Russia) [72, 73]. Similarly, Mesoacidito-
gaceae has been isolated from acidic hot spring water, whereas
members of Thermoplasmatota were among the first taxa
recovered from hot spring environments [19, 74].
Environments tend to select for phylogenetically related

microorganisms based on shared traits [75, 76]. Accordingly, six
out of eight of the prevalent and abundant hot spring ASVs we
identified were represented by just three taxonomic families or
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genera (Thermoplasmatales family A10, Mesoaciditoga, Acidithio-
bacillus; Fig. 5a) - i.e., there were two-to-three ASVs from each
lineage. Results also indicated that rarer close relatives of these
variants (those sharing >99% 16S rRNA gene amplicon similarity)
were numerous (Supplementary Information and Tables S2-3),
likely reflecting environmental selection based on shared traits
[75, 76]. ASV numbers were significantly positively correlated with
the summed relative abundance of close relatives (OTUs, Fig. 5c
and S7b), indicating higher strain or species level diversity among
successful hot spring taxa. A similar trend has also been found in
communities along oxic-hypoxic gradients of deep lakes [77].

Endemism is suggested to be a feature of hot springs separated
by large-scale geographic distances (e.g., different continents) due
to dispersal limitations [78, 79]. In this study, the wide distribution
of eight abundant microbial variants, up to 65 kilometers apart,
and spread across a broad spectrum of temperatures and pHs,
suggests cosmopolitanism and not niche differentiation, at least at
the 16S rRNA amplicon level of resolution. However, it remains to
be determined whether these variants are abundant and
prevalent in hot springs outside of the TVZ. Cosmopolitanism of
variants has been observed in various other environments. For
example, some Vibrio oligotypes have both host-associated and
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free-living lifestyles [80]. ASVs of certain methane-oxidizing
bacteria in eutrophic lakes also have been observed across both
oxygen-deficient and methane-deficient conditions [81]. Different
taxonomic resolution thresholds have been defined based on 16S
rRNA genes to determine the cosmopolitanism of closely-related
microbial taxa. For example, Ward et al. (2017) allowed
4-nucleotide variation in single ‘sub-OTUs’ [82], while a minute
gap of dissimilarity is allowed in single oligotypes (99.2–99.8%
identity or 0.2–0.8% sequence variation) [83, 84], and ASVs employ
100% identity [85]. Regardless, observations of dominant
sequence variants based on full or partial 16S rRNA gene
sequences do not preclude strain-level variation not captured by
differences in 16S rRNA genes, which more typically enables

genus and, in some cases, species level discrimination based on
the full gene [86–88].

Population structure underpinning the distribution of
cosmopolitan variants
To explore the population structures underpinning variant
cosmopolitanism, we selected MAGs associated with the eight
ASV lineages. Overall, there were 198 MAGs (75-100% complete
with <5% contamination) that spanned 35 phyla from 18 hot
spring samples (17.5–92.9°C and pH 2.0–7.5). Of these, 50 MAGs
were classified as Mesoaciditogaceae, Desulfurellaceae, Acidithio-
bacillaceae and three Thermoplasmata families (Table S4), and are
proposed here to represent 17 unique species based on average
nucleotide identities (ANI’s) of ≥96.5% (alignable fractions of 43-
96%) [89] (Table S5). Almost half contained 16S rRNA gene
sequences, enabling sequence-based comparisons between
cosmopolitan ASVs and 20 Thermoplasmata and three Acidithio-
bacillaceae MAGs (Fig. 6a and Table S4). ASVs 1 and 2 were 100%
identical to 16S gene sequences from eight Thermoplasmata
family ARK-15 MAGs (NCBI strain identifier A10-Griffin-MG), while
ASV3 was identical to six GCA-001856825 family sequences. ASVs
6 and 7 were identical to 16S genes from two MAGs designated as
Acidithiobacillaceae (ASV 6) and one Acidithiobacillaceae
UBA2486 sp002341825 (ASV 7). Genomes sharing as little as
85% ANI or less can share identical 16S rRNA gene sequences [90],
and microorganisms with identical 16S rRNA gene sequences, but
divergent genomes, are known to occupy distinct niches [91]. In
this study, ASVs 1 and 3 matched with the V4-V5 hypervariable
regions of six MAGs each that shared strain-level similarity (≥99%
and >98% ANI, respectively). In contrast, ASVs 2 and 6 matched to
regions from MAGs with ANIs below the species delineation
threshold (91% and 95% ANI), suggesting genus level resolution.
Results therefore indicated that these ASVs encompassed collec-
tions of strains and distinct species.
To determine the spatial distributions of the 50 MAGs, including

those matched to cosmopolitan ASVs, the MAGs were clustered at
98% ANI. Dereplicating populations at this similarity yields a
negligible 0.6% chance of indiscriminate mapping (ANI proportion
to the power of read length, 0.98250) [92]. The resulting 18
representative MAGs had cluster sizes of one to nine, reflecting
the recovery of highly similar genomes from multiple hot spring
locations (Fig. 6a). Genomes with such high similarity have been
termed ‘sequence-discrete’ populations [93–95]. Sequence-
discrete populations share >95% nucleotide similarity, are
separated from other populations by a genetic discontinuity,
and are by inference conspecific [89]. They are more likely to share
environmental niches than distinct populations (or species) [94,
95]. Here, genome coverages of representative MAG populations
were determined by read mapping. Results indicated the presence
of sub-species populations, associated with each of the four
archaeal and bacterial lineages, that had broad physicochemical
distributions, extending results reported previously for Acidithio-
bacillus [17]. At least one population from each phyla was present
in the majority of sites from which metagenomes were derived (16
to 17 sites), which spanned temperatures from 23 to 74 °C or 80 °C
and pHs from 2.5 to 7.3 (Fig. 6a, Table S6). Related populations,
within and the same families, tended to share broadly similar
spatial distribution patterns. However, some differentiation in
spatial niches was evident, such as the relatively high abundances
of ASV2-associated ARK-15 MAGs 224-226 at 69–80 °C. Striking
differences were also evident between Thermoplasmata families -
Thermoplasmataceae were all absent (or lower in abundance) at
the higher pHs.

Metabolic traits of cosmopolitan lineages
Differentiation in functional genes as part of the accessory
genome is believed to drive niche differentiation among closely-
related taxa [96]. For example, key genes for osmolyte uptake are
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present in the marine subclades/ecotypes of the well-documented
alphaproteobacterial bacterioplankton SAR11, but absent in
freshwater SAR11 [97]. Similarly, the different responses to light
intensity of Prochlorococcus ecotypes are likely due to differences
in number of putative high-light-inducible proteins [98]. To
determine differences in metabolic potential within and between
populations we examined Mesoaciditogaceae, Desulfurellaceae,

Acidithiobacillaceae, and Thermoplasmata genome annotations
for genes involved in sulfur, nitrogen and hydrogen metabolism.
Taxa within the four phyla are known for distinct metabolisms.
Desulfurella and Acidithiobacillus are known for sulfur metabolism
(reduction and oxidation, respectively), along with iron oxidation
by Acidithiobacillus species [72], which might explain the
prevalence of both genera in the sulfur-rich TVZ hot springs
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(http://1000springs.org.nz). Thermotoga are known as strictly
anaerobic fermenters and Mesoaciditogaceae have been shown
to reduce thiosulfate and iron [74, 99], while species of
Thermoplasmata engage in heterotrophy, methanogenesis or iron
oxidation [100, 101]. However, of the TVZ hot spring taxa, all had
genes with similarity to those encoding hydrogenases - either
FeFe (the Mesoaciditogaceae) or NiFe (Fig. 6b). Mechanisms for
sulfur metabolism were ubiquitous, and predictably most
numerous in Acidithiobacillaceae and scarcest in
Mesoaciditogaceae.
Genomes within each of the four phyla shared characteristic

traits (Fig. 6b). For example, all 12 Acidithiobacillus MAGs
contained soxABXYZ, sulfide-quinone reductase (sqr), and sulfite
oxidase genes. Almost all Thermoplasmata MAGs (24 of 25)
contained genes homologous to asrAB anaerobic sulfite reductase
(analogous to sulfhydrogenase, cytochrome c3 hydrogenase).
These were co-located with an archaeal-type formate dehydro-
genase alpha subunit with a molybdopterin oxidoreductase 4Fe-
4S domain (Table S7), which potentially substitutes for siroheme-
binding AsrC oxidoreductase. Asr couples sulfite reduction to
hydrogen sulfide with electron acceptors, including NADH, H2, and
formate [102]. Energy yielding nitrogen cycling mechanisms were
largely absent. However, all four Desulfurellaceae MAGs contained
nar respiratory nitrate reductase genes, and other spatially-
localized Campylobacterota relatives present contained periplas-
mic nap nitrate reductase genes (Table S7) [103], indicating that
diverse members of this phylum conserve energy via nitrate
reduction, albeit via different mechanisms.
Despite shared traits overall, some populations could be

delineated from relatives by consistent differences in gene
presence or copy numbers. For example, all five Acidithiobacilla-
ceae UBA2486 sp002341825 MAGs were distinguished from other
Acidithiobacillaceae by the presence of dsrE genes (involved in
sulfur transfer) [104], and only a single copy of the soxABX sulfur
oxidation genes [105]. Comparably, among the Thermoplasmata,
only the nine ARK-15 genomes conspecific with MAG 214 had
syntenous cysAT sulfur transport genes annotated (Fig. 6b) [106],
suggesting other Thermoplasmata relied on an alternative
mechanism for importing thiosulfate/sulfate. The sulfate adenylyl-
transferase gene, sat, involved in converting sulfur to adenosine
5′-phosphosulfate in the Dsr pathway [107], was instead almost
exclusive to other Thermoplasmata families (GCA-001856825 and
Thermoplasmataceae).
Some traits appeared to be MAG-specific. In particular,

complete sets of adenylyl-sulfate reductase aprAB and dissim-
ilatory sulfite reductase dsrABC genes were found in a handful of
distantly related Thermoplasmata MAGs across all three families.
Likewise, syntenous clusters of formate hydrogenlyase (fhl
subunits 1–5) genes that annotations suggest encode a bidirec-
tional NiFe hydrogenase [108], were present in a small number of
ARK-15 MAGs. Although genome incompleteness likely accounts
for some differences observed, the complete absence of these
genes in a several MAGs, estimated to be 95–99% complete (Table
S4) points to strain-level differences in sulfur and hydrogen
metabolism.

Single-nucleotide polymorphisms differentiate populations of
Thermoplasmatales
To further explore the genomic diversity among Thermoplasma-
tales populations, which contained the largest number of
genomes and the greatest number of matches to cosmopolitan
ASVs, we performed SNP analysis. Results show that SNPs— includ-
ing indels, non/synonymous point mutations, and complex or
multiple/combined point mutations and indels — within a
population accounted for an average of 0.2 ± 0.1% of the
genomes, whereas the rates between populations rose to
2.6 ± 0.9% (Fig. 7a). Of these SNPs, more than 80% were located
in CDS regions (1730 ± 1145 SNPs per Mbp for intra-population
and 19,884 ± 12,918 SNPs per Mbp for inter-population). In
contrast, only 0–0.03% of SNPs were detected in non-coding
rRNA gene regions (0–0.8 SNPs per Mbp for both intra/inter-
populations) (Fig. 7b), as expected for the highly conserved nature
of 16S rRNA genes. Similarly, Leptospirillum and Ferroplasma
populations, isolated from acid mine drainage, showed no SNPs in
their 16S or 23S rRNA gene sequences, while the average SNP
rates of their whole genomes were 0.08% and 2.2%, respectively
[109]. In addition, we found that about half of SNPs (47.8–66.2%)
were synonymous and are not predicted to alter encoded amino
acids (Fig. 7c), whereas approximately a quarter were missense
SNPs, along with a small number of frameshifts and stop/start
codon disruptions (25.1–34.5%) that encode distinct amino acids
and may represent phenotypic differences. For example, func-
tional shifts caused by SNPs, which are common among
pathogenic microorganisms (e.g., Staphylococcus aureus), have
been associated with increases in virulence and antibiotic
resistance [110]. Comparable to our results, one-third of SNPs
detected in Leptospirillum and Ferroplasma populations in the acid
mine drainage study were suggested to cause changes at the
protein-coding level [109]. Taken together, our results imply that
the cosmopolitanism observed among hot spring ASVs encom-
passes genomic variation resulting from intra- and inter-
population point mutations (as illustrated with Thermoplasma-
tales), along with differences in metabolic gene composition.

CONCLUSIONS
This study reports the influence of temperature and pH on the
relative abundance, diversity, and prevalence of bacteria and
archaea in hot spring sediments. We found that bacteria and
archaea shared similar abundances in the overall hot spring
microbial communities, despite a slight proportional increase in
archaea with higher temperatures. The dominant phyla overall
were a mixture of bacteria (Proteobacteria) and archaea (Eur-
yarchaeota and Crenarchaeota). Higher microbial diversity was
associated with an increase in pH from 2.0 to 7.5, while microbial
cell concentrations, as inferred from 16S rRNA gene copies, were
primarily influenced by and positively correlated with tempera-
ture. Although differences in microbial composition were driven
by temperature and pH, we identified eight phylogenetically
diverse bacterial and archaeal variants (based on ASVs) that were
found in up to 84% of the hot spring communities and accounted

Fig. 6 Plots showing the distribution and S/N/H-related metabolic potential of MAGs affiliated with ASV-identified cosmopolitan
lineages (Thermoplasmata, Desulfurellia, Acidithiobacillales and Mesoaciditogaceae). a Heat maps showing the log relative genome
abundance per site based on read mapping. Abundances were normalized to library size, and are included where the summed length of
mapped reads equated to least 5% of each genome (72 Kbp to 6 Gbp). Samples are ordered by temperature (left plot), or pH (right plot), and
sample conditions and locations are indicated below the x-axes. White dashed boxes indicate samples from which a genome was recovered.
MAGs shown are representatives following dereplication at 98% ANI, and MAG cluster sizes based on 98% and 95% ANI thresholds are shown
on the right, along with GTDB based taxonomy. Asterisks indicate references for ≥95% ANI clusters. Cosmopolitan ASV sequence matches are
shown where 100% identical to a MAG-derived 16S rRNA gene sequence. b Heat maps showing gene copy numbers present (maximum =
four) per MAG associated with sulfur metabolism (oxidation/reduction), energy-generating nitrogen-cycling processes (only nitrate reduction
identified for the MAGs shown), and hydrogen metabolism (production/consumption). hydr hydrogenase, cyt cytochrome, aux auxiliary,
fhl formate hydrogenlyase.
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Fig. 7 Single-Nucleotide Polymorphisms (SNPs) of MAGs that yielded 16S rRNA gene sequences 100% matched with ASV1, ASV2, and
ASV3 of Thermoplasmatales (from Table S5), and SNP rate of members within populations (>99% identity) and between populations
(<99% identity). a Types of SNP point mutations including substitutions, insertions, and deletions, and complex (i.e., multiple points/
combined mutations of substitutions and indels). b Genomic regions where SNPs were detected. SNPs identified as ‘unspecified’ were
excluded, specifically 200–700 SNPs for intrapopulation and 100-3,200 SNPs for interpopulation MAGs. c The effects to CDS by SNPs.
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for 44% of the relative abundance. These variants, belonging to
Thermoplasmatales, Desulfurella, Mesoaciditoga, and Acidithioba-
cillus, were present across geographically distant hot spring sites
with wide-ranging temperatures and pHs, illustrating the lack of
constraint of temperature and pH on their distributions. Amplicon
results suggest bacterial and archaeal cosmopolitanism may be a
common feature of hot spring environments. Metagenomic results
indicated the presence of strain-level (sub-species) populations
associated with each of these four lineages that had broad spatial
and physicochemical ranges. In general, diverse members of each
lineage (different families or genera) shared common metabolic
traits, although variations in mechanisms for sulfur, nitrogen and
hydrogen metabolism were evident both between and within
predicted species. Accordingly, when inspecting nucleotide-level
difference among the numerous Thermoplasmata MAGs recov-
ered, we found that both intra-species, and to a greater extent,
inter-species populations were differentiated by a mixture of
synonymous and non-synonymous SNPs, indicating differences in
amino acid coding and potential differences in protein function.
Results suggest that multiple prokaryotic lineages, including both
bacteria and archaea, are successful in colonizing a range of hot
spring conditions by harboring diverse population structures and
genome-specific metabolic traits.
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