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Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of
microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement
of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits,
which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using
bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny
predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite
limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait
reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the
variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history
contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain
a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.

ISME Communications; https://doi.org/10.1038/s43705-023-00281-1

INTRODUCTION
In soils, microorganisms participate in many ecological processes
that are critically important to the maintenance of ecosystems,
such as organic matter decomposition, nitrogen fixation, and
nutrient immobilization [1, 2]. These ecosystem processes are
determined by the aggregated traits of the individual taxa that
make up microbial communities [3–5]. Unfortunately, most studies
of soil bacteria characterize communities using marker gene
sequencing which provides little information beyond phyloge-
netic community composition. To understand how community
composition influences ecosystem processes we must characterize
the traits of microbial taxa.
Trait-based approaches have proven useful to connect the

composition of plant and animal communities with ecosystem
functions for modeling [6–8]. However, the diversity of micro-
organisms and the difficulty associated with measuring the traits
of microbial taxa in natural communities has made connecting
microbial community structure and function challenging. Most
environmental bacteria cannot be isolated and the few organisms
that are culturable outside of their natural environments fail to
adequately represent prokaryotic diversity [9, 10]. Metagenomic
sequencing can provide functional ‘potential’ [11] and can be
used to estimate bacterial replication rates [12]. However,

genome-based indicators of functional potential often fail to
predict observed traits. For instance, rRNA copy number [13] and
genome size [14], are predictive of maximum growth rates in pure
culture, but these traits do not correlate with growth under natural
soil conditions [15]. Most molecular methods of community
analysis do not distinguish active populations of microorganisms
from dormant, although the latter may constitute the majority of
observed taxa in a community [16], which may contribute to the
disparity between growth rates in culture and natural conditions.
Quantitative stable isotope probing (qSIP) enables the measure-
ment of key microbial traits, such as relative growth rate, by
measuring the amount of heavy isotope incorporation into taxon-
specific DNA sequences in their natural environments [17].
Measurements of microbial function reflect the contributions
active populations under specific environmental conditions, and
quantifying the effects of environmental factors (such as
temperature) on the traits of individual microbial taxa is an
important step toward connecting microbial community composi-
tion with function. Experiments using qSIP have begun to quantify
soil bacterial traits in an increasing number of ecosystems [18, 19]
and in response to a variety of experimental treatments [20–23].
However, the direct measurement of bacterial traits for all taxa in
all ecosystems would be an insurmountable feat. Consequently,
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characterization of microbial processes across all ecosystems will
require methods for inferring functional processes from microbial
community composition.
A phylogenetic signal in microbial functional traits (i.e. greater

similarity in the traits of close relatives than expected by chance
[21]) may permit trait predictions for uncharacterized taxa from
phylogenies. Evolutionary processes such as rapid evolution, gene
loss, and horizontal gene transfer can disrupt the phylogenetic
signal in microbial functional traits. For instance, traits associated
with carbohydrate metabolism in bacteria are only weakly
phylogenetically clustered. In contrast, complex functional traits,
such as methanogenesis and photosynthesis, that are controlled
by multiple genes are more phylogenetically conserved [24, 25].
Work with simulated community and trait data suggests traits that
exhibit an adequate phylogenetic signal may be amenable to
phylogeny-based trait prediction [26]. Phylogeny-based trait
prediction maps trait variation to a phylogenetic tree based on
observed trait measurements for members of the phylogeny, then
predicts trait values for ancestors and unobserved taxa based on
their position within the phylogeny [27, 28]. When measured via
qSIP, bacterial growth rates as well as carbon and nitrogen
assimilation rates exhibit phylogenetic signals [18, 21, 28, 29], but
it is unclear if the phylogenetic signal in bacterial traits is sufficient
for phylogeny-based predictions.
A strong phylogenetic signal is likely to permit phylogeny-based

predictions of the traits of unobserved taxa using the traits of
related species measured within the same ecosystem. However,
differences in phylogenetic community composition (a lack of
closely related species) and trait plasticity in response to
environmental variation could hamper trait prediction across
ecosystems. Despite these challenges, phylogeny-based predic-
tion across ecosystems may be possible if related organisms are
present in both ecosystems and there is consistency in the
estimated traits of ancestors (nodes in the phylogeny) present in
both ecosystems. Additionally, challenges associated with trait
plasticity may be diminished by measuring traits in experiments
that manipulate environmental conditions—such as temperature,
which is a principal regulator of microbial activity [4, 5]. While
warming generally increases microbial activity and decomposition
rates, soil carbon responses to warming temperatures remain
challenging to predict. This may be because the temperature
sensitivity of individual taxa varies [19], which is not currently
accounted for in ecosystem models [5]. Community composition
and taxon-specific temperature responses to warming were found
to improve predictions of soil carbon mineralization in a
controlled experiment [19, 30], phylogeny-based trait prediction
could help make this possible on a larger scale. Phylogenies
constructed from hundreds of thousands of genomic sequences
provide a robust model of prokaryotic evolutionary history
[31, 32], and widespread surveys of prokaryotic community
composition provide data from diverse environments and soil
conditions [33, 34]. Predicting traits from phylogeny could harness
this data to estimate taxon-specific and community level function,
but the accuracy of phylogeny-based trait prediction using
empirical data is currently unknown.
Here we aimed to determine if the phylogenetic signal in

bacterial relative growth rate is sufficient to support phylogeny-
based trait prediction and examine the accuracy of phylogeny-
based trait prediction within and across distinct ecosystems. Our
first objective was to assess the accuracy of phylogeny-based trait
predictions of bacterial relative growth rates and determine how
this accuracy varied with the phylogenetic signal within ecosystems.
Our second objective was to determine if there was covariation in
relative growth rates for taxa and ancestral nodes shared between
ecosystems that could provide a foundation for phylogeny-based
trait prediction across ecosystems. Our third objective was to assess
the potential for, and accuracy of, phylogeny-based prediction of
bacterial relative growth rates across dissimilar ecosystems.

To address these objectives we used qSIP measurements of
bacterial relative growth rates, from a previously published study of
Arctic, boreal, temperate, and tropical soils (n= 5) [19]. As bacterial
relative growth rate is highly sensitive to temperature, we tested
phylogeny-based prediction of relative growth rates across a range
of temperatures to gain insight into how environmental conditions
may influence the utility of phylogeny-based trait predictions of
bacterial activity. Bacterial phylogenies were constructed for the
communities of each ecosystem incubated at each temperature and
used to assess phylogenetic signals, estimate ancestral relative
growth rates, and assess phylogeny-based trait prediction within
and across ecosystems.

METHODS
Taxon-specific relative growth rates were quantified using quantitative
stable isotope probing (qSIP) for soil microbial taxa in four ecosystems, as
described by Wang et al. [19]. Briefly, soil samples were collected in August
2017 from 5 replicate plots each at the Arctic LTER site at Toolik Lake Field
Station in Alaska (arctic), the SPRUCE experimental site at Marcell
Experimental Forest in northern Minnesota (boreal), a mixed conifer forest
site at the Hart Prairie Nature Reserve in northern Arizona (temperate), and
the Sabana Field Research Station in the Luquillo Experimental Forest in
Puerto Rico (tropical). Sample size was restricted due to experimental
expense. All replicates were subjected to the same experimental
conditions and all samples were included in analysis. Environmental and
soil characteristics varied widely across the four experimental sites
(Table S1). Soil samples were incubated for qSIP under uniform soil
moisture conditions to allow for comparisons of growth rates across
ecosystems. Soil moisture varies seasonally within all four sites, but 60%
WHC is a realistically observed moisture content perennially in the Arctic
and boreal ecosystems, from Autumn to Spring for the temperate
ecosystem, and during the rainy season in the tropical ecosystem. Samples
from each of the four sites were brought up to 60% water holding capacity
with 98% 18O-enriched water for qSIP incubation for 5 days at 5°, 15°, 25°,
and 35 °C, providing 16 different experimental groups based on ecosystem
and temperature.
To assess taxon-specific relative growth rates, DNA was extracted from

soil samples and separated via CsCl density gradient centrifugation and
fractionation. The DNA in each fraction was purified, 16S rRNA gene copies
were quantified using qPCR and the V4 region was sequenced using
Illumina technology. Amplicon sequences were clustered into operational
taxonomic units (OTUs or taxa) using UCLUST [35], and taxonomy was
classified by aligning the most abundant sequence for each OTU with the
SILVA 16S rRNA v128 gene database at 97% identity [31, 36]. Sequences
were filtered for quality, excluding samples with <3500 sequence reads
and excluding taxa that accounted for <0.05% of the total relative
abundance in all samples [19]. Community structure of each ecosystem
and temperature group varied slightly for all four ecosystems, leading to
unique bacterial phylogenies. After quality filtering by OTU abundance and
sequencing read depth, 888 unique OTUs with relative growth rate
measurements, averaged from the five sampling reps, were included for
analysis across all 16 ecosystem and temperature incubations; 205–210
OTUs in arctic soil incubations, 165–200 in boreal, 376–381 in temperate,
and 257–264 in tropical. Taxon-specific relative growth rates of soil
microorganisms were calculated based on the change in density following
incubation in the presence of 18O-water, the change in density reflects the
excess atom fraction of 18O in microbial DNA and was used to calculate a
relative growth rate, expressed as a proportion per day [17, 19, 29].
Topology of the SILVA SSU gene guide tree, which is constructed by

aligning full-length 16S rRNA gene sequences, was assumed to represent
the phylogenetic relationships of all OTUs across the 16 experimental
communities [31]. Phylogenetic analyses used the SILVA SSU guide tree
pruned to include only the OTUs with observed growth rates from the qSIP
experiment. To determine the influence of phylogenetic organization on
bacterial growth we calculated phylogenetic signals, measured using
Blomberg’s K, of taxon-specific relative growth rates in each ecosystem at
each temperature [37]. We used residual maximum likelihood estimates of
relative growth rate to estimate ancestral trait values for nodes in the
phylogeny for each ecosystem and temperature combination [38]. To
determine if estimated ancestral traits covary across ecosystems, we
calculated the correlation coefficient (r) for ancestral relative growth rate
estimates at nodes shared between paired ecosystems incubated at the
same temperature.
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We tested the potential to predict growth from phylogeny with a
phylogeny-based trait prediction method implemented in R, based on
phyEstimate from the package picante and using functions from the
package Rphylopars [39–41]. This function uses phylogenetic tree pruning
and rerooting to estimate missing trait values for individual OTUs. Briefly,
for each OTU without observed trait data in a community, a phylogenetic
tree is pruned to include just that unobserved OTU and the OTUs with trait
data, then rerooted at the parent node of the unobserved OTU. The
residual maximum likelihood estimate of the trait calculated for the root of
this rearranged tree is recorded as the trait estimate for the
unobserved OTU.
We first tested the accuracy of phylogeny-based estimates of bacterial

growth within each community with an exclusion exercise in which trait
values from 20% of the OTUs were randomly removed and then estimated.
The estimated values were regressed with the observed trait values to
determine estimate accuracy, quantified as the coefficient of determina-
tion (R2). We repeated this exercise 1000 times for each ecosystem and
temperature combination. To determine how phylogeny-based trait
prediction accuracy covaried with the strength of the associated
phylogenetic signal (Objective 1) estimate accuracy values (mean R2 of
estimated and observed relative growth rates) were regressed against
Blomberg’s K measurements of phylogenetic signal across all ecosystems
and temperatures.
To assess the potential for predicting traits from phylogeny across

ecosystems with few shared taxa, observed trait values from each
ecosystem were used to predict trait values for the other ecosystems at
the same temperature. For example, relative growth rates observed at
25 °C in the Arctic ecosystem were used to predict relative growth rates at
25 °C in the Boreal, Temperate, and Tropical ecosystems. Ancestral
reconstruction was performed for each ecosystem separately to permit
comparison of estimates at shared nodes (Objective 2). For OTUs shared
between ecosystem pairs the observed trait value measurement for the
predicting ecosystem was used as the prediction. Cross-ecosystem
prediction accuracy was measured as the R2 of estimated and observed
trait values. To determine if and how phylogeny-based trait prediction
accuracy across ecosystems depends upon the strength of covariation in
shared estimated ancestral trait values we regressed cross-ecosystem
prediction accuracy with the correlation coefficient (r) of shared ancestral
node relative growth rate estimates for each ecosystem pair at each
temperature.

RESULTS
Evolutionary history influenced bacterial relative growth rates
across the Arctic, boreal, temperate, and tropical ecosystems
despite differences in climate, soil organic carbon, soil nitrogen,
and soil pH among the ecosystems (Supplemental Table S1).
Specifically, significant phylogenetic signals were present in the
relative growth rates of soil bacteria from all four ecosystems at
15°, 25°, and 35 °C, and in Arctic, boreal, and temperate
ecosystems at 5 °C (Table 1). The strength of the phylogenetic
signal, measured using Blomberg’s K values, ranged from 0.17 for
the Arctic community at 35 °C to 0.66 for the temperate
community at 15 °C (Table 1). The strongest phylogenetic signals
were observed at 15 °C for the arctic, temperate, and tropical
communities, and at 25 °C for the boreal community. Estimates of
ancestral relative growth rates were calculated along the branches
and nodes of phylogenetic trees for each ecosystem and
temperature combination. The phylogenetic signal in relative
growth rates can be visualized by coloring phylogenies according
to observed values for taxa (tips), and estimated values for
ancestors (branches and nodes, Fig. 1).
To determine if the phylogenetic signal in bacterial relative

growth rate is sufficient to support phylogeny-based trait
prediction within an ecosystem, we used a simulation exercise
where trait data for 20% of the taxa (tips) were randomly
excluded, predicted, and compared to observed values. Estimates
from 1000 simulations for each ecosystem and temperature
combination were regressed with observed values. Trait prediction
accuracy ranged from R2= 0.006 for the boreal soil community
incubated at 5 °C (Fig. 2A) to R2= 0.58 for the temperate soil
incubated at 15 °C (Fig. 2B). Accuracy of the relative growth rate

predictions increased linearly as the phylogenetic signal, mea-
sured as Blomberg’s K, increased (R2= 0.82; Fig. 2C).
Bacterial community composition was distinct across the four

ecosystems, likely due to the large climatic, geographic, and
pedological differences (Supplementary Fig. S1; Table S1). Within
each ecosystem community composition was similar across
incubation temperatures suggesting that it did not change
substantially over the incubation period (Supplementary Fig. S1).
The number of observed taxa (tips) shared between any two of
the ecosystems was typically fewer than 10%, and ranged from
1.5% to 26%. Despite these compositional differences at the tips
of the phylogeny, the ecosystems had significant overlap deeper
in the phylogeny, as evidenced by the presence of shared nodes
(ancestors) common to the phylogenies derived from each
ecosystem (Supplementary Fig. S2). Estimates of relative growth
rates at shared ancestral nodes were linearly correlated for
ecosystem pairs at most incubation temperatures (Fig. 3). The
strength of these relationships, measured using Pearson’s correla-
tion, varied across temperatures and ecosystem pairs, and ranged
from weak and nonsignificant (r= 0.09, p= 0.47) to strong and
highly significant (r= 0.80, p < 0.001, Fig. 3). As with the
phylogenetic signals, covariation in relative growth rate estimates
for shared ancestral nodes across ecosystems was strong at 15 °C.
These correlations reflect similar relative growth rates in some
nodes and descendant taxa across ecosystems. For example, the
ancestor of Acidobacteriaceae (node 1159) and all descendant
taxa had below average relative growth rates while the ancestor of
Sphingobacteriales (1765) all descendant taxa had above average
relative growth rates across all ecosystems (Fig. 4).
To test phylogeny-based trait prediction accuracy across

ecosystems, we used relative growth rates from each ecosystem
to predict the relative growth rates for all taxa within each of the
other ecosystems at the same temperature. The predicted relative
growth rates were then regressed with observed values. A
substantial amount of the variation in observed trait values was
explained by cross-ecosystem relative growth rate predictions in
41 out of 48 comparisons (p < 0.05). In general, the accuracy of
predictions was related to the strength of covariation in estimated
ancestral trait values at nodes shared between ecosystems
(R2= 0.59; p < 0.001; Fig. 5). Estimates of relative growth rates
were the least accurate when soils incubated at 5 °C were
compared and most accurate for comparisons among the 15 °C
incubations (Fig. 5). Across ecosystems, prediction accuracy was
lowest when boreal and tropical communities at 5 °C (R2= 0.02;
p= 0.006) were used to estimate relative growth rates of bacteria
in the temperate soil, and highest when the boreal community
data at 35 °C (R2= 0.38; p < 0.001; Fig. 5) was used to estimate
relative growth rate of bacteria in the temperate ecosystem
samples.

DISCUSSION
Taken together our results suggest that evolutionary history
imprints a phylogenetic signal on the traits of bacteria that can
allow phylogeny-based predictions within and across ecosystems.

Table 1. Phylogenetic signal in the relative growth rates of soil
bacteria for four ecosystems incubated at four temperatures,
quantified as Blomberg’s K (*p-value < 0.05).

Ecosystem Temperature

5 15 25 35

Arctic 0.38* 0.56* 0.44* 0.17*

Boreal 0.33* 0.30* 0.34* 0.30*

Temperate 0.47* 0.66* 0.56* 0.60*

Tropical 0.18 0.56* 0.43* 0.31*
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Specifically, bacterial relative growth rates in soil from four
ecosystems displayed phylogenetic signals sufficient for trait
prediction with a meaningful level of accuracy across a range of
temperatures (15°–35 °C). Consequently, phylogeny-based trait
prediction may help facilitate the inclusion of biodiversity
informed microbial growth and turnover rates into ecosystem
models [1, 2].
In soil, bacterial growth rates are the emergent product of many

genes expressed in response to spatially and temporally hetero-
geneous environmental conditions [15, 42, 43]. In our study, these
environmental conditions, including pH, soil texture, and mean
annual temperature and precipitation, varied widely between
ecosystems, resulting in distinct bacterial communities with little
taxonomic overlap [19]. However, there was a significant
phylogenetic signal in bacterial relative growth rate in nearly all
the ecosystem-temperature combinations (Table 1, Fig. 1) demon-
strating the importance of evolutionary history in shaping this
ecologically important trait. The strength of phylogenetic signals
we observed for bacterial growth rates are consistent with
previous qSIP experiments that have shown bacterial growth
and assimilation of carbon and nitrogen to be evolutionarily

constrained across environmental gradients [18, 28, 29]. Although
the phylogenetic signal for plant and animal traits varies widely,
many functional traits have comparable phylogenetic signal
values to bacterial growth rates and could be suitable for
comparing results of phylogeny-based analyses [37, 44]. Bacterial
genes related to complex ecological functions such as nitrogen
fixation, methanogenesis, and photosynthesis are often phylo-
genetically conserved [24] and our results suggest the genetic
basis of bacterial growth rate may follow similar patterns of
vertical inheritance.
The accuracy of phylogeny-based trait prediction using the

traits of related species measured within the same ecosystem
increased linearly with the strength of phylogenetic signal (Fig. 2).
Our results are consistent with past in-silico work with simulated
bacterial communities and trait data, which showed the accuracy
of phylogeny-based trait predictions increases with stronger
phylogenetic signal and decreases with the proportion of the
community missing trait data and the mean phylogenetic distance
to a taxon with a described trait [26]. Many clades, even among
animals and plants, still lack sufficient observations of functional
traits and consequently phylogeny is used to predict traits values

D

0 0.341relative growth rate

B

0 0.393relative growth rate

A

0 0.221relative growth rate

C

0 0.321relative growth rate

Fig. 1 Phylogenetic trees overlayed with bacterial relative growth rates. Relative growth rates (color) are shown for taxa (tips) and
estimates are provided for ancestors (nodes and branches) at 15 °C for Arctic (A), 25 °C for boreal (B), 15 °C for temperate (C), and 15 °C for
tropical (D) ecosystems (note different scales).
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[45–47]. Physiological and life strategy traits have been estimated
for amphibian and mammalian species, generally with similar or
higher accuracy than the best predictions of our analysis (i.e.,
R2 > 0.58); this could reflect the use of larger trait datasets in these
studies or selection for traits that exhibit stronger phylogenetic
signals [48, 49]. Phylogenetic analyses of plant and animal
communities often benefit from more samples contributing to
trait datasets and use phylogenies that represent a relatively
narrow taxonomic clade, such as a single order, which complicates
a comparison to our analysis which includes taxa from across an
entire domain [45–49]. Accurate estimates of complex traits from
phylogeny, such as body mass or longevity for animals and leaf
area or wood density for plants, can increase the accuracy of
models combining trait and environmental data to predict
ecological range or threat status [45–49]. Despite greater diversity
in the bacterial phylogeny and smaller trait datasets many animal
and plant traits exhibit similar phylogenetic signal values to
bacterial growth rates, and the accuracy of phylogeny-based
predictions for these traits are similarly comparable to bacterial
growth rate predictions [45–49].
The spatial distance and environmental dissimilarity of the

ecosystems studied was reflected in differences in bacterial
community composition [50], with relatively few taxa observed
in more than one ecosystem (Supplementary Fig. S1). However,
many of the ancestral nodes were shared across ecosystem pairs
(Supplementary Fig. S2), and bacterial growth estimates for
ancestral nodes shared between ecosystem pairs were correlated
at almost every temperature. However, the strength of significant
relationships, measured as Pearson’s correlation coefficient, varied
drastically (Fig. 3). The relationships of ancestral character state
estimates for nodes shared by communities incubated at 5 °C
were the most variable and included the strongest correlation (e.g.
between the Arctic and temperate soil communities), but also
some of the poorest correlations (e.g. those involving the tropical
ecosystem). The correlation we observed in ancestral trait values
across very different ecosystems indicates a significant and
consistent influence of evolutionary history on bacterial growth

rates, strong enough to persist across great variation in biotic and
abiotic conditions. For example, some clades had below average
relative growth rates across ecosystems, these included Rhizo-
biales (node 1398), and Gaiellales (node 1556), while other clades,
including Xanthomonadaceae (1513) and Sphingobacteriales
(node 1765), had above average relative growth rates across
ecosystems (Fig. 4). These consistent patterns may provide a
foundation for relating phylogenetic community composition to
ecosystem function across space and time.
Correlation in ancestral growth estimates between distinct

ecosystems suggests phylogeny may aid in predicting functional
traits, even for bacterial communities with very limited overlap in
taxonomic identity. The accuracy of relative growth rate predic-
tion, using phylogeny and trait measurements from distinct
ecosystems, varied with temperature and ecosystem, and
accuracy increased linearly with correlation of ancestral growth
estimates at shared nodes (Fig. 5). Estimates were generally less
accurate than predictions within an ecosystem (Fig. 2), which is
unsurprising because trait measurements reported in these
experiments are not independent from ecosystem-specific biotic
and abiotic conditions. Variation in relative growth rates across the
different environments and temperatures is the product of both
environment and genetics, but only the latter affects trait
prediction based on phylogenetic analyses. The relationship
between relative growth rate prediction accuracy and consistency
in ancestral relative growth rate estimates between two commu-
nities indicates that phylogeny-based trait prediction across
ecosystems is only possible when phylogenetic coherence is
strong enough to persist across differences in biotic and abiotic
conditions. For pairings of communities with strongly correlated
growth estimates across their shared ancestry up to 38% of trait
variation could be explained by phylogeny alone, without
accounting for environmental factors (Fig. 5). Given the great
differences between the ecosystems included in this study
(Supplementary Table 1), more accurate cross-ecosystem predic-
tions may be possible for ecosystems pairs with higher biotic and
abiotic similarity.
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exemplifying low prediction accuracy (low R2), and temperate soil incubated at 15 °C (B), exemplifying high prediction accuracy (dash line is
1:1). Phylogeny-based trait prediction accuracy (R2) increased with phylogenetic signal (Blomberg’s K) across ecosystems and temperatures (C).

J. Walkup et al.

5

ISME Communications



The effect of temperature on growth rate can vary across
individual taxa depending on their genes, physiology, and
interactions in the ecosystem. Overall, bacterial growth tended
to increase with temperature, with growth in the 5 °C incubations
substantially lower than in the other incubations. At 5 °C many
bacteria may have been dormant with relative growth rates too
low for reliable quantification, resulting in low phylogenetic
signals and inconsistent correlations between ancestral relative

growth rate estimates for shared nodes (Fig. 5). Thus, some
experimental or environmental conditions, such as low tempera-
tures, might prevent the application of phylogeny-based predic-
tion of traits. At the higher incubation temperatures, the poorest
ancestral growth estimate relationships were generally observed
for ecosystem pairs that included the boreal soil (Fig. 5), which
exhibited the highest cumulative growth rates and lowest
community diversity among the four ecosystems [19].
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Additionally, the strength of phylogenetic signals were generally
lower in the Boreal ecosystem relative to other systems, which
could be a product of decreased community diversity and more
significant influence of environmental factors on relative growth
rates in this ecosystem (Table 1). Our results suggest that the
utility of phylogeny-based trait prediction may vary in response to
biotic (e.g. diversity) and environmental (e.g. temperature) factors.
Consequently, additional research may be needed to identify the
circumstances under which phylogeny-based trait prediction can
provide reliable estimates of microbial functional traits.
Looking forward, phylogeny-based trait prediction would

benefit from trait databases that include environmental context,
especially for abiotic factors, such as pH, temperature, and soil
texture, that are known to explain biogeography of soil
microbiomes [1, 20, 30]. In our study, phylogeny explained 38%
of variance at best, and averaged just 14%, when predicting
relative growth rate across ecosystems. As traits are a function of
gene expression (phenotypes), a modeling effort that includes
basic environmental parameters (e.g., pH and temperature) may
be able to greatly improve our predictive power of phylogeneti-
cally conserved traits, like relative growth rate. Determining which
microbial traits are appropriate for these methods will require
substantial testing, but patterns of phylogenetic organization in
both trait values and the abundance of genes associated with
traits of interest indicates that phylogeny can inform ecologically
relevant microbial functions [24, 51]. Modeling the interaction of
environmental factors and phylogeny was beyond the scope of
this project, but the data from this and similar experiments is ideal
for developing such a model. As quantitative trait measurement is
applied to more diverse ecosystems and processes, the increase in
data will provide more reliable trait estimates. Experiments that
measure bacterial traits in situ are particularly important, as results
from microcosm experiments may not adequately represent
ecosystem processes as they naturally occur. Increased under-
standing of the influence of evolutionary history on trait
distribution under different environmental conditions will help
determine the traits and ecosystems that would be most suitable
for phylogeny-based trait prediction.
In summary, our results suggest that bacterial growth, a

complex trait influenced by many heritable features, exhibits
phylogenetic organization and phylogeny-based prediction can

explain a substantial amount of the variation in this trait within
and across ecosystems. Microbial traits such as growth rate impact
how microbes transform elements within ecosystems, indeed
estimates of microbial growth are often tied to rates of carbon
mineralization [19, 52]. Given this, phylogeny-based predictions of
microbial traits such as growth rates may help bridge the divide
between phylogenetic microbial community composition and
ecosystem function.
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