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Mining-impacted rice paddies select for Archaeal methylators
and reveal a putative (Archaeal) regulator of mercury
methylation
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Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice
represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains
elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21−513 mg kg−1 dry wt. soil;
MeHg: 1.21−6.82 ng g−1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg
production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes,
were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging
to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic
metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that
influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB
and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally,
assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-
antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of
distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under
mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation
between Archaea and Bacteria.

ISME Communications; https://doi.org/10.1038/s43705-023-00277-x

INTRODUCTION
Rice is an essential staple crop cultivated worldwide, roughly
constituting 19% of the global calorie intake and occupying 10% of
the global cropland [1, 2]. Rice consumption has been identified as a
major source of human exposure to methylmercury (MeHg) [3, 4]
that is a potent neurotoxin [5]. MeHg production is predominantly
conducted by a group of microbes which genomes harbor two
genes, hgcA and hgcB, coding for a putativemethyltransferase and a
ferredoxin, respectively [6, 7]. This gene pair exists in diverse
microbial lineages, inhabiting a broad range of anoxic and hypoxic
environments, suggesting extensive Hg methylation potential
across the globe [8–10]. Considering the global biogeochemical
cycling of Hg [11], and the prevalence of hgcAB genes, MeHg
formation in rice paddies represents a worldwide issue affecting
human health. Therefore, reducing the accumulation of MeHg in the
environment, and thus human exposure to this contaminant,
requires a comprehensive understanding of the various variables
influencing the fluctuation of environmental MeHg concentrations
(i.e., MeHg dynamics). One essential aspect that would contribute
to our understanding of MeHg dynamics is to unravel the role

of microbes in Hg transformation under diverse physiochemical
constraints [12]. However, in rice paddy systems, particularly those
impacted by mining activities releasing Hg-bearing residues and
where Hg transformations occur, knowledge gaps remain regarding
the microbial constraints on MeHg production.
Several studies have examined the distribution (i.e., diversity

and relative abundance) of Hg-methylating microbes (i.e., using
hgcA as a proxy) and their co-inhabiting microbial communities in
Hg-impacted rice paddies due to mining activities [13–17]. This
previous work has improved our understanding on how Hg
influences the microbial community structure and how environ-
mental variables affect the distribution of Hg methylators in such
systems. However, rice paddies represent agricultural wetlands
with extensive anthropic disturbances, such as the use of fertilizers
and pesticides [18], straw amendments [19], and intermittent
flooding and drying cycles [20]. These factors set rice paddies
apart from other non-agricultural wetlands, and may contribute to
higher Hg levels as well as substantial variation in microbial
community structure, altogether leading to Hg buildup in rice [21].
Furthermore, an association between microbial methane and
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MeHg cycling is quickly emerging [22–24], as rice paddies are a
non-negligible source of methane emission [25]. Yet, a thorough
examination of the microbial functional potential is currently
lacking for Hg-impacted rice paddies. Thus, a continued explora-
tion of the rice paddy microbial and functional variations,
especially the interplay between Hg and carbon cycling via
methane production and degradation, considering the other
geochemical parameters, is of practical significance in discerning
the microbial constraints on MeHg accumulation.
Utilizing (meta)genomics and (meta)transcriptomics, previous

studies attempted to explain MeHg dynamics using hgc gene
abundance or expression levels (i.e., correlating MeHg concentra-
tion with the abundance of hgc genes and transcripts) [26–30].
However, it remains unclear whether hgcA abundance alone can
reliably predict / correlate with MeHg levels. For instance, hgcA
gene abundance was shown to poorly correlate with total Hg
(THg) and/or MeHg concentrations in numerous environments the
biogeochemical cycling of Hg, such as freshwater, wetland and
organic-rich permafrost sediments [26, 27]. Inconsistent results
have also been found in Hg-impacted rice paddies [15–17]. At the
transcript level, incubation experiments conducted under sulfido-
genic conditions using methylator Desulfovibrio dechloroacetivor-
ans BerOc1 found no relationship between transcript abundance
and net Hg methylation potentials [29]. Critically, our under-
standing of MeHg formation improves when coupling omics data
with geochemical variables,. This has been demonstrated in two
recent studies that showed 1) the synergistic effects of both hgcA
abundance and soil DOM SUVA254 (i.e., as an indicator for Hg(II)
bioavailability) explained the MeHg production in peat soil
collected along a sulfate gradient [30]; and 2) the abundance or
expression of hgcA and the concentration of dissolved Hg(II)-
sulfide species collectively constrain Hg(II) methylation and MeHg
accumulation in natural brackish water [28]. However, whether
such relationships exist in Hg-impacted rice paddies is yet to be
tested. An essential preliminary step is to estimate the abundance
of hgc genes using improved bioinformatic methods, such as
following a consensus protocol for hgc recovery [31] and
employing hidden Markov models (HMMs) built with an updated
collection of hgc sequences [32], which have not been done in
previous rice paddy studies that have determined hgc abundance
[15–17, 33].
The physiological role of Hg methylation represents another

major knowledge gap. Several hypotheses have been formulated
about the role of Hg methylation, including it being a metabolic
accident that serves no selective advantage [34, 35], a detoxifica-
tion mechanism [36], and an antimicrobial-producing process
helping microbes compete in the primordial ocean [37]. Clearly,
there is a need for additional evidence to explain the native role of
Hg methylation, possibly through an evolutionary perspective
[37, 38]. Furthermore, determining the regulatory system control-
ling the expression of hgcAB may inform on their functions in
microbes. Recently, a study identified an arsR gene, co-transcribed
with and upstream of hgcAB of several Hg methylators [39] It was
later experimentally verified that a putative ArsR regulates the
transcription of hgcAB and responds to arsenic, suggesting a link
of Hg methylation to arsenic cycling [40].
Here, using marker-gene based and genome-resolved metage-

nomics, integrated with geochemical analysis, we investigated the
community and functional composition of Hg methylators and their
co-occurring microbiomes in mining-impacted rice paddies. Our
sampling sites included a control site, an artisanal Hg mining site,
and an abandoned Hg mining site, and represent paddy fields with
unique contamination histories, which have resulted in distinct
levels of Hg. In parallel, we tested whether THg exerted a selective
pressure on hgcA by leveraging the contamination gradient using
statistical phylogenetic analysis. Lastly, by pairing our metagenome-
resolved genomes with the genomes of confirmed Hg methylators
obtained from pure culture or environmental microbial isolates, we

provided evidence showing that Hg methylators of bacterial and
archaeal origin likely have different regulator genes controlling
hgcAB expression—a finding that has a broader implication, beyond
Hg-impacted rice paddies.

MATERIALS AND METHODS
Site and sampling
Wanshan region in Guizhou province, Southwestern China, is known for
its Hg mining and smelting, characterized by long-term, large-scale
operations which have now ceased and short-term, small-scale artisanal
Hg production, whose activities are poorly documented [41].
Such operations, depending on their duration and intensity, have led
to local Hg contamination to various extents, which have created a
gradient of Hg concentrations in the lands nearby, including rice
paddies. Here it is such contemporary Hg gradients that we leveraged
by targeting three sites with unique histories of mercury exposure
(THg: 0.21−513 mg kg−1 dry wt. soil; MeHg: 1.21−6.82 ng g−1 dry wt.
soil); Huaxi (denoted HX hereafter; 26°25′06.4′′N 106°30′50.6′′E), Gouxi
(GX; 27°33′50.3′′N 109°11′29.5′′E), and Sikeng (SK; 27°30′50′′N 109°11′58′
′E; Fig. 1a), as previously described [24]. We took six soil samples
(1–20 cm below the soil-water interface) from each site and measured
their physicochemical properties (Table S1). Soil sampling was con-
ducted in August 2020, near the end of local rice cultivation period,
where active Hg methylation had been observed [42]. Detailed
descriptions of the mercury profiles across the sites can be found in
Supplementary Text 1. Sample collection, preparation, paired-end
metagenomics sequencing, and geochemical analyses can be found in
Supplementary Text 2.

Metagenomic assembly
Metagenomic short reads were trimmed using FastP (v0.20.1) [43] with
default parameters to remove low-quality reads, adapters, and polyG
sequences. Quality control checks of the trimmed reads were conducted
using FastQC (v0.11.9) [44]. Trimmed reads from each sample were
individually assembled into contigs with MEGAHIT (v1.2.9) [45]. Contigs
were processed using Anvi’o (v7.1) for microbial taxonomic and
functional diversity analyses [46]. Briefly, we used “anvi-script-reformat-
fasta” to retain contigs with length greater than 1 kb from each sample
for downstream analyses, and “anvi-gen-contigs-database” to calculate
k-mer (k= 4) frequencies in contigs. Open reading frames (ORFs) were
identified using Prodigal (v2.6.3), and prokaryotic single-copy core genes
(SCGs) [47, 48] with “anvi-run-hmms” using HMMER (v3.2.1) [49]. To
associate taxonomy information with the SCGs, we used “anvi-run-scg-
taxonomy”, which searches the SCGs against the Genome Taxonomic
Database (GTDB, release 202) using GTDB-tk (v1.5.0) [50, 51]. Functional
annotation of the ORFs was conducted using “anvi-run-ncbi-cogs”, “anvi-
run-kegg-kofams” and “anvi-run-pfams” against Clusters of Orthologous
Groups released in 2020 (COG20) [52], Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthologs (or KOs) [53, 54] and Pfam (v35.0) [55],
respectively. To calculate the coverage of the single-copy and the
functional genes, we conducted metagenomic short read recruitment of
the contigs greater than 1 kb using BWA MEM (v0.7.17) [56], and the
subsequent SAM to BAM format conversion using samtools (v1.13) [57].
We sorted the BAM files using “anvi-init-bam” and profiled the sorted
BAM files using “anvi-profile”.
We determined the abundance of SCGs in each sample with coverages

as proxies using “anvi-estimate-scg-taxonomy”. The SCG with the highest
total coverage across all samples was chosen to infer the taxonomic
distributions and facilitate across-sample comparisons (Table S2, SCG
frequency). The abundance of functional genes was obtained using “anvi-
estimate-metabolism”, which utilizes the annotated KOs in the contigs-
database and calculates the coverage of each KO as a proxy for
abundance. To account for varying sequencing depth across samples,
we normalized the coverage of the KOs using the coverage of previously
selected SCG. To minimize batch effects in metagenomic data, we used the
“frequency” method of the “isContaminant” function in the Decontam R
package [58], which identifies potential contaminants by exploiting the
frequency of each feature in relation to the input DNA concentration. The
algorithm relies on a statistical model to identify contaminated features in
metagenomic data based on the assumption that the frequencies of
contaminated features are inversely proportional to input DNA concentra-
tion. Overall, 33 features out of 6300 in our KO tables (Table S4) were
identified.
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Genome-resolved metagenomics
To facilitate the binning algorithms with differential coverage signals, we
conducted read recruitment using BWA MEM (v0.7.17) [56]. Read files of
the same sampling site were independently mapped to the contigs of the
corresponding site, resulting in six SAM files per sample, for a total of 108
files. We converted the resulting SAM files into BAM formats using
samtools (v1.13), and sorted the BAM files using “anvi-init-bam”. We then
profiled each BAM file using “anvi-profile” and combined profile databases
of each sample using “anvi-merge”, which resulted in 6 × 3= 18 merged
profile databases. We exported the coverage information stored in the
merged profile databases using “anvi-export-splits-and-coverages”. Bin-
ning was conducted using CONCOCT(v1.1.0) [59], Maxbin2(v2.2.7) [60], and
Metabat2(v2.15) [61], and integrated using DASTool (v1.1.3) [62]. Bins were
manually refined using “anvi-refine” based on the tetranucleotide
frequency of the contigs within each bin, differential coverage signals
of contigs across samples at the same sampling site, and taxonomic
information assigned to the contigs. We retained bins with greater than
50% completeness and less than 10% redundancy based on SCGs, and
referred to them as metagenome-assembled genomes (MAGs). The
program dRep (v3.3.0) was used to calculate average nucleotide identity
between MAGs among sites and form clustering dendrograms [63].
Taxonomic classification of the MAGs was conducted using GTDB-tk
(v2.1.0) against GTDB (release 207v2) [50, 51]. An explanation of why two
GTDB releases were used was provide in supplementary text 4. We

annotated the MAGs using “anvi-estimate-metabolism”. The phyloge-
nomic tree was constructed with GToTree v1.7.06 [64], using the
prepackaged single-copy gene-set for all domains of life (16 target
genes) [65]. For the construction of the phylogenomic tree, we
incorporated one representative genome of each Order in GTDB using
the “gtt-subset-GTDB-accessions” functions of GToTree, which included
1521 genomes, along with the 230 MAGs recovered in our study.
Genomes containing less than 50% of the target single-copy genes were
dropped upon phylogenomic reconstruction by setting “-G” to 0.5,
resulting in a total of 1368 representative genomes and 159 MAGs
utilized in the final tree.

Taxonomic, phylogenetic, and gene neighborhood analyses
To retrieve HgcAB sequences, we imported HMMs of HgcAB from the Hg-
MATE-Db (v1.01142021) [32] using “anvi-run-hmm” into Anvi’o contigs
databases with E-values of 1 × 10−50 and 1 × 10−30, respectively [66]. We
exported the HMM hits of HgcA from the contigs databases using “anvi-
get-sequences-for-hmm-hits”. A multiple sequence alignment of retrieved
HgcA sequences was created using MAFFT (v7.471; --auto) [67]. To
eliminate paralogs of HgcA, we removed the sequences without the
conserved putative cap helix motif [N(V/I)WCA(A/G)GK] reported previously
[6]. We further filtered the sequences by retaining only sequences with
more than four transmembrane domains as identified by TMHMM (v.2.0)

Fig. 1 An overview of the microbial taxonomic diversity and soil geochemistry in the sampling sites. a Map of the sampling area showing
the locations of the sites and their relative locations in Asia. b Relative abundance of bacteria and archaea at the phylum inferred using rps11
gene coverage across the metagenomic assemblies. c A PCA biplot demonstrating the differences in paddy soil chemistry, plotted using data
presented in Table S1. d PCoA of Bray-Curtis dissimilarity between microbial communities across the sampling sites at the phylum level,
plotted using data shown in Table S2. e An unrooted phylogenomic tree of GTDB representative genomes and MAGs recovered in this study.
MAGs from different rice paddies are assigned colored dots at the end of the tree branches (red: HX; green: GX; blue: SK). Hg methylator MAGs
are indicated by the yellow star symbols. The tree includes 1368 representative genomes from GTDB and 159 MAGs retrieved from mining-
impacted rice paddies. Major lineages (i.e., phylum), as well as lineages where our MAGs belong, are assigned colors arbitrarily. See Methods
for details on genome inclusion and tree inference. (E Edwardsbacteria, K Krumholzibacteriota, G Gemmatimonadota).
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[68]. See Table S3 for details regarding the number of sequences retained
through each of these steps. We classified HgcA taxonomy following a
previously described method [69]. Briefly, the query sequences were
placed on a pre-built reference HgcA phylogenetic tree and taxonomy was
assigned based on each queried branch’s lowest common ancestor [69].
We obtained the coverage value of each HgcA sequence stored in contigs
databases according to their gene caller ID using “anvi-export-gene-
coverage-and-detection”. We used single-copy gene (SCG)-normalized
sequence coverage of HgcA as a proxy for the absolute abundance of
Hg methylators (i.e., absolute HgcA abundance = unnormalized HgcA
coverage/SCG coverage), to account for variations in sequencing depth.
The relative abundance of HgcA belonging to specific taxa was determined
by dividing the taxon-specific abundance by the total absolute abundance,
and then multiplying by 100 to express the result as a percentage (i.e.,
taxon-specific relative abundance= taxon-specific absolute abundance/
total absolute abundance × 100). We dereplicated the HgcA sequences
belonging to the same site using CD-HIT (v4.8.1) [70] with a 99% sequence
identity cutoff. A maximum-likelihood phylogenetic tree of resulting HgcA
sequences was constructed using PhyML (v3.3.2) [71] with 1000 bootstrap
replicates. The evolutionary model, LG+ Γ4, was selected according to the
Bayesian Information Criterion using the phangorn package (2.7.0) in R
[72]. Tree multifurcations were resolved using the “multi2di” function in
the phangorn package. Phylogenetic clustering analysis of the HgcA was
subsequently conducted using BaTS [73]. For this, 1000 bootstrapped
phylogenetic trees of rpoB, glnA, and merA amino acid sequences were
obtained by first creating ten individual 100 bootstrapped alignments
using seqboot from the phylip package (v3.698) [74] with distinct random
number seeds. The 10 × 100 bootstrapped alignments were analyzed with
fasttree (v2.1.11) [75] to build bootstrapped phylogenetic trees, which
were then concatenated and fed into BaTS for phylogenetic clustering
analysis.
To identify genes located next to hgcAB in our metagenomic assemblies

and genomes of confirmed Hg methylators, we used `anvi-export-locus`.
We retained contigs that have both hgcAB and at least one more gene. Out
of a total of 5.78 million contigs greater than 1 kb across the metagenomic
assemblies, 511 contigs met the above criteria (~0.009%). Taxonomic
classification of the hgcAB + contigs was conducted using Kaiju (v1.9) [76]
against the NCBI RefSeq (release 210) [77] and `anvi-import-taxonomy-for-
genes` for integration of the classification results into Anvi’o contigs
databases.

Ordination and statistical analyses
We performed principal component analysis (PCA) using the prcomp
function in the Vegan (2.5-7) R package [78] on geochemical measure-
ments and standardized the variance within geochemical measurements
using the “scale” argument before conducting PCA. We performed
principal coordinate analysis of the whole microbial community and Hg
methylators community at the phylum level with Bray–Curtis dissimilarity
using the Phyloseq package [79]. The percentage relative abundance of
the microbial community was used for constructing the dissimilarity matrix
for beta diversity analyses. Differential abundance analysis of the
functional genes was conducted using the differential gene expression
analysis based on the negative binomial distribution (DESeq2) method [80]
Briefly, we compared the unnormalized abundance of the functional genes
from the three sites to obtain log2 fold changes (LFC) and
Benjamini–Hotchberg (BH) adjusted P values with a significance threshold
of 0.01. Pairwise comparisons between sites were conducted using the
‘contrast’ function in the DESeq2 R package. A positive LFC for a
comparison of a gene between site A and site B indicates that the gene in
site A is more abundant than in site B, and vice versa. The distance-based
redundancy analysis (dbRDA) examining the relationship between Hg
methylator community compositions and geochemical variables was
conducted using the capscale() function in the Vegan (2.5–7) package
[78]. The model was constructed based on a Bray-Curtis dissimilarity matrix
calculated from the relative abundance of the Hg methylators
across the samples after square-root transformation and Wisconsin double
standardization (i.e., capscale(formula = species ~ THg+ MeHg+
MeHg/THg + Chloride + Nitrate + Sulfate+ pH+ EC+ TDS,
data = environment, distance= "bray", sqrt.dist= TRUE,
metaMDSdist= TRUE)). The overall significance of the test and the
significance of individual explanatory variables were assessed with
permutation using the anova() function. Spearman’s rank correlation
coefficients (ρ) and the corresponding P-value were calculated using the
rcorr() function of the Hmisc package (4.7-2) [81] in R.

RESULTS AND DISCUSSION
Archaea as potential key players in Hg transformations
We profiled metagenomic data at the contigs level to infer
microbial diversity and abundance in rice paddies using a SCG,
rpS11, coding for the prokaryotic ribosomal protein S11, as it was
the most abundant SCG across the samples. The three sites
sampled were abbreviated as HX, GX, and SK, ordered by
increasing THg concentrations.
Across all three sites, Proteobacteria and Desulfobacterota were

prevalent, occupying 18.6–35.9% and 8.0–28.5% of the commu-
nities, respectively (Fig. 1b, Table S2). Other major bacterial taxa
found at HX and GX include Chloroflexota, Acidobacteriota,
Eisenbacteria, and Actinobacteriota, each representing over 5% of
the microbial abundance. At GX, we observed a unique enrichment
of Nitrospirota (mean abundance: 7.84 ± 1.31%, pairwise Wilcoxon
test, FDR corrected P < 0.005, Table S5). Importantly, our data
revealed significant archaeal presence at SK (pairwise Wilcoxon test,
FDR corrected P < 0.05, Table S5), accounting for on average
21.68 ± 3.91% of the relative abundance and is primarily constituted
by Halobacteriota (mean abundance: 9.58 ± 1.05%), Thermoplasma-
tota (mean abundance: 6.08 ± 1.18 %) and Thermoproteota (mean
abundance: 5.14 ± 2.87%),whereas on average less than 5% of the
microbial communities at HX and GX were of archaeal origin
(Table S2). An increase in archaeal relative abundance at SK was
associated with a significant drop in the abundance of several other
phyla compared to HX and GX, including Eisenbacteria, Gemmati-
monadota, Methylomirabilota and Nitrospirota (pairwise Wilcoxon
test, FDR corrected P < 0.05, Table S2). A positive correlation
between Hg content and Archaeal abundance, is to be taken
carefully as that it might be context-dependent, with the observed
archaeal enrichment resulting from differences in Hg speciation (i.e.,
the nature and abundance of ligands Hg is bound to), among other
variables in these environments. Other heavy metals (i.e., Cd, Cr, Cu,
As, and Pb) did not covary with Hg concentrations (see Table S2 in
Pu et al. [13] for details on these heavy metals).
Through metagenomic binning and refinement, we generated 35

high-quality MAGs (>90% completeness, <10% redundancy) and
195 medium-quality MAGs (>50% completeness, <10% redundancy)
(Table S6). MAGs identified at HX, GX, and SK were recovered from
12, 8, and, 14 phylum-level lineages according to GTDB classifica-
tions (Fig. 1e; Table. S5). Mirroring that in the contigs-level taxonomy,
35% of MAGs recovered at SK are classified to archaeal phyla,
whereas archaeal MAGs only constitute around 4% and 13% at HX
and GX, respectively. We assessed genome novelty using taxo-
nomies assigned by GTDB-tk [50] based on concatenated protein
reference trees and average nucleotide identity (ANI) [63]. Nearly all
MAGs were unclassified at the species level (97%), while 12% and 3%
of the MAGs were unclassified at the genus and family level,
respectively (Table S7). Our analyses thus expanded the genomic
archive of microbes found in mining-impacted rice paddies. Based
on ANI [63], genomes recovered from different sites share no
similarities at the strain level (>99% ANI), whereas only one common
species (>95% ANI) was shared between GX and SK (Myxococcota
FEN-1143, see cluster 17_1 in Fig. S1). The lack of genome similarity
among paddy communities across the three sites, together with the
observation that microbial community structures were distinctive
according to the geochemical heterogeneity in the soil (Figs. 1c,
d, S2) indicate an environmental filtering effect on the microbes by
the unique geochemical conditions of the paddy systems; Hg
concentration may be one of such geochemical variables.

Methanogens likely prevail under severe Hg concentrations
We characterized the abundance of functional genes participating
mostly in catabolic pathways, at the contigs level, relevant to carbon,
sulfur and nitrogen associated compounds, as well as oxidative
phosphorylation and Hg-cycling genes (Fig. 2), to understand site-
specific microbial metabolism and physiology.
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Notably, we observed evidence of a thriving methanogenic
community at highly-contaminated SK, demonstrated by a
significantly greater relative abundance of genes associated with
methanogenesis (mcrA, mttB, fwdABCD, hdrABC; BH adjusted
P < 0.01, LFC < 0, Table S8, supplementary Text 3). We found that
Methanomicrobiales, a hydrogenotrophic methanogen [82], were
present across all sites but represented a non-negligible proportion
of the microbial community at SK (6.6%; Table S6), which is in
accordance with the abundance of hdrABC (Fig. 2), coding the
heterodisulfide reductase specifically present in hydrogenotrophic
methanogens [83]. Furthermore, SK exhibited significantly more
mttB gene (encoding for trimethylaminemethyltransferase, K14083)

compared to the other sites, suggesting that methylotrophic
methanogens that utilize trimethylamine as a substrate for
methanogenesis were abundant. However, the low abundance of
mtmB (monomethylamine methyltransferases, K16176), mtbB1
(dimethylamine methyltransferases, K16178), and mtaB (metha-
nol:MtaC protein Co-methyltransferase, K04480; Table S4) implies
that monomethylamine, dimethylamine and methanol were not
major substrates for methylotrophic methanogens at SK [84]. Genes
associated with acetoclastic methanogenesis were almost uniformly
abundant across sites, including ackA (acetate kinase, K00925),
pta (phosphate acetyltransferase, K00625), and acs (acetyl-CoA
synthetase, K01895), indicating that acetoclastic methanogens were

carbon metabolism

nitrogen metabolism

sulfur metabolism oxidative phosphorylation

iron metabolism

selenium metabolism mer-operon

Hg methylation

anaerobic carbon fixation

Fig. 2 Normalized abundance of functional genes related to various metabolic pathways. (Abundance is normalized by dividing the
coverage of the gene by the coverage of the most abundant single-copy core genes, rpS11, across samples.) Feature names are shown on the
right side of the Y-axis. Features with their name starting with K are genes retrieved from the KEGG ortholog database based on HMMs. The
iron-cycling genes starting with FeGenie were recovered using HMMs from the FeGenie [110] database. The hgcAB genes were recovered
using HMMs built previously [32]. The values inside the bubble represent the normalized coverage values. Bubble sizes reflect normalized
abundance of each feature in a way that maximize the across-sample contrast (Bubble sizes were determined by subtracting the coverage
value of each feature in each row from the smallest coverage value at the same row).
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universally present in paddy soil regardless of Hg content. Our
previous work conducted using paddy soil at the abandoned Hg
mining site showed that the addition of methanogenesis inhibitor
significantly increased MeHg production and decreased demethyla-
tion, suggesting that methanogens played a major role in MeHg
degradation as THg concentration ([THg]) increased [24]. These
observations were attributed to increased 1) oxidative demethyla-
tion performed by methanogens and 2) competition of methano-
gens for substrates with other Hg methylating guilds, as Hg
contamination increased [24]. Here, combined with genomic
evidence presented in this study, it is likely that methanogens
associated with MeHg degradation or competition with other Hg-
methylating methanogens under high Hg concentrations are
hydrogenotrophic or methylotrophic, although further investiga-
tions are warranted. Critically, a previous study showed that
acetoclastic methanogens might be associated with MeHg degra-
dation in alder swamps, a net sink for MeHg [85]. These speculated
substrate-dependence of important MeHg degradation pathways
(here via trimethylamine-dependent methanogenesis) may offer
tractable insights (i.e., by adjusting the concentration of the
substrate) into managing MeHg contamination in Hg-impacted
systems. Importantly, our findings implied that SK could be a
potential site for exploring the metabolic pathways involved in
oxidative demethylation, possibly by using Hg and carbon isotope
fractionation to find a joint isotope signature in potential enzymes
[86], and then using transcriptomics to detect changes in the

expression of specific genes in response to MeHg degradation
assays under various exposure conditions.

Increasing dominance of archaeal Hg methylators at high Hg
concentrations
Identifying the microbial players involved in Hg methylation under
various Hg concentrations is crucial to understanding the
controlling factors on environmental MeHg dynamics. Phyloge-
netic analysis based on hgcA showed that Hg methylators belong
to ten distinct phyla (NCBI taxonomy). Syntrophobacterales and
Desulfobacterales order of Deltaproteobacteria dominated nearly
all samples (Fig. 3a), suggesting that fermentative and sulfate-
reducing Hg methylators are prevalent across paddy soils
regardless of [THg] and [SO4

2-] (Table S1). We noticed that
unclassified Nitrospirae (i.e., Nitrospirota) are virtually exclusively
present at GX, occupying 14.2% of the read coverages on average.
At the family level, Desulfuromonadales-like hgcA were all classified
as Geobacteraceae (Table S9), a group of iron(III)-reducing bacteria
that methylates Hg in diverse environments including rice
paddies, and mercury-affected freshwater sediments [16, 87–89].
We show that the relative abundance of Geobacteraceae-like hgcA
comprises, on average, only a very small proportion (<5%) of all
hgcA sequences and was not uniformly present across sites. This
finding corroborates a previous experimental result showing that
iron amendment in the form of FeOOH at SK seldom affected
Hg methylation rate [24]. Therefore, evidence suggests that
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iron-reducing Hg methylators might only play a minor role in
MeHg production in these contaminated rice paddies.
Hg methylators of Euryarchaeota phylum occupied, on average,

5.3%, 4.8%, and 18.9% of Hg methylators abundance at HX, GX,
and SK, respectively (Fig. 3a). Specifically, Methanomicrobiales-
associated Hg methylators, an order within Euryarchaeota that
performs hydrogenotrophic methanogenesis [90], were ubiqui-
tously present at SK (13.0% of the relative abundance), which is in
line with Methanomicrobiales-associated rpS11 gene occupying a
substantial proportion SCG coverage (Table S6) and significantly
greater abundance of hdrABC genes (Fig. 2) at the abandoned
mining site. Overall, the ordination plot (Fig. 3b) based on the
Bray-Curtis dissimilarity shows the mining-impacted sites (i.e., GX
and SK) tended to cluster together in terms of the taxonomic
composition of Hg methylators. In contrast, taxonomic composi-
tion of Hg methylators from the control site are more dispersed.
Here, we show that 1) the taxonomic distribution of Hg
methylators (Fig. 3b) does not follow that of the whole microbial
community (Fig. 1d), 2) the taxonomic distribution of Hg
methylators tend to be more homogenized in paddy soil as
[THg] increases, and 3) archaeal Hg methylators become increas-
ingly dominant as [THg] increased. Again, the implications of the
above observations should be considered under the constraints
that THg might not be the only geochemical variable affecting
community structure.

hgcAB abundance positively correlates with both [THg] and
[MeHg]
The ordination analysis (dbRDA) showed that 54.35% of the total
variance in the taxonomic composition of Hg methylators was
explained by the measured geochemical variables (Fig. 3b). Permu-
tation test indicates that THg was the only geochemical variable that
exhibited a significant effect in shaping the composition of Hg
methylators (F= 2.3215, P= 0.006), although the constraints are not
overall significant (F= 1.0581, p= 0.331). We conducted Spearman’s
ranked correlation analysis to examine the correlation between
hgcAB abundance and [THg], as well as with [MeHg] in our samples.
hgcAB abundance exhibited strong positive correlations with both
[THg] (hgcA: ρ= 0.88, P= 2.2 × 10−16; hgcB: ρ= 0.89, P= 2.2 × 10−16)
and [MeHg] (hgcA: ρ= 0.64, P= 0.0055; hgcB: ρ= 0.68, P= 0.0023)
across the sites (Figs. 2, 3c). While some studies found that the
abundance of hgcA poorly correlated with [THg] and [MeHg] [26, 27],
only one study reported that in rice paddies a greater abundance of
hgcAB was associated with increasing [THg] and [MeHg] [17], and
another found that Geobacter-associated hgcA positively correlated
with [MeHg] [16]. These discrepancies between hgcAB abundance
and environmental Hg content could possibly be attributed to
several methodological limitations. For instance, the qPCR-
based approaches [17, 33] are prone to primer bias, resulting in a
preferential recovery of hgcA from Deltaproteobacteria [91]. Further-
more, metagenomic studies implementing HMM could under-
estimate the diversity of Hg methylators [16] when the HMM was
built with a limited number of sequences [69]. Finally, the
unstandardized gene abundance estimation method could lead to
controversial results [92].
Although not impartial, our approach to estimating hgcA

abundance is likely less biased because we extracted full-length
HgcA from contigs using an HMM built from an improved HgcA
database with more than a thousand known sequences [32]. We
recovered HgcA with a recently published consensus protocol [31]
and used gene coverage as a proxy for abundance. However, due
to a relatively small sample size here (n= 18), the results may not
be generalizable to other environments, even with an improved
methodology. Considering the constitutive expression of hgcAB
[93], and the dramatically different methylation rates among Hg
methylators [8], elucidating the controlling factors of [MeHg] in
the environment still requires a multifaceted approach combining
investigations on transcript and protein abundances, enzymatic

capacities of methylation and demethylation proteins (i.e., HgcAB
and MerB) associated with different genotypes, as well as Hg
bioavailability [27, 87, 94].

Enhanced demethylation potential points to alternative
mechanisms of Hg resistance
MeHg demethylation represents a non-negligible reaction con-
tributing to limit net MeHg accumulation in the environment. As
such, we also examined the occurrence of merB, coding the
alkylmercury lyase (MerB). The abundance of merB was signifi-
cantly greater at HX, the control site, than at SK, the most
contaminated site (BH adjusted P= 3.54 × 10−4, LFC= 1.21 Fig. 2,
S3). Additionally, merB at HX was also more abundant than at GX,
indicated by a positive LFC, (BH adjusted P= 0.014, LFC= 0.41
Fig. 2, S3), although without statistical significance, which might
be a result of an insufficient sample size. Consistent with our
genomic results showing an excessive occurrence of merB at HX, a
previous study showed that HX exhibited the highest microbial
degradation of MeHg among the three sites [24], indicating that,
in rice paddies with lower [THg], MerB-facilitating aerobic
reductive demethylation might be the dominant MeHg degrada-
tion pathway.
We show that at HX, the normalized abundance of merB is, in

general, greater than that of merA (Fig. 2), suggesting that merB at
the control site might be expressed independently of the mer-
operon, a phenomenon that has been suggested previously [95].
The activity of MerB alone could pose considerable cellular
cytotoxicity to microbes due to the lack of subsequent Hg(II)
reduction typically conducted by the mercuric reductase, MerA [95].
Therefore, it is plausible that amerB:merA > 1 suggests the existence
of alternative Hg(II) reduction processes, unrelated to the mer-
operon. Such process may involve fermentative Hg(II) reduction [96]
or anaerobic metal reduction [97], which warrants further investiga-
tion. Reliance on merB-only coupled to co-metabolic pathways to
remove Hg(II) from the cells, may prove less costly for the cell. Here,
our results imply the presence of demethylating microbes that lack
merA, making HX an ideal site to screen for such organisms, which
we intend to do.

Nitrospinota UBA7883—a novel facultative anaerobic mercury
methylator
The metabolic potential of hgcA-bearing MAGs was investigated
by annotating them using KEGG modules (Fig. 3d, Table S10).
Nearly all hgcA-bearing MAGs demonstrated complete or partial
pathways of dissimilatory nitrate reduction (M00530), dissimilatory
sulfate reductions (M00596), glycolysis (M00002), and TCA cycle
(M00009; Fig. 3d), indicating an anaerobic chemoheterotrophic
lifestyle, possibly due to selection of these anaerobes from the
community as a result of the prevalence of electron acceptors
(e.g., nitrate, sulfate; Table S1) and carbon sources. All Syntropho-
bacteria and some DSM4660 (Desulfatiglans anilini) Hg methylators
carried genes encoding the cytochrome bd ubiquinol oxidase
(M00153), potentially allowing them to survive in sub-oxic
environments [98]. Notably, another study recovered hgc+MAGs
belonging to Marinimicrobia and encoding several terminal
oxygenases from suboxic ocean water, further supporting the
potential oxygen tolerance of some Hg methylators [9].
We observed two novel hgcA-bearing MAGs (sk3a_MAG64,

sk2a_MAG38) associated with UBA7883 class of Nitrospinota in the
abandoned mining site SK. Nitrospinota-like (or Nitrospina) hgcA
have been previously identified primarily in oceanic and micro-
aerophilic settings, including the Antarctic Sea ice [99], equatorial
North pacific [10], mesopelagic zone of the East China sea [100]
and subsurface water of the global ocean [9, 101]. To our
knowledge, this is the first time potential Nitrospinota Hg
methylators have been discovered in rice paddies. These MAGs
showed exceptional completeness (at >97%) and contamination
scores (<3%; Table S6). Taxonomic classification only resolved to
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the order level, indicate the lack of representative genomes in
public databases and the novelty of these microbes. The UBA7883
MAGs encode complete or nearly complete dissimilatory sulfate
reduction pathways (M00596), denitrification pathways (M00529),
and a terminal oxidase, cytochrome c oxidase cbb3-type (M00156;
Fig. 3d, Table S10), making them a potential facultative anaerobe.
Various catabolic pathways indicates that UBA7883 can switch
between energy generation strategies under a wide range of
redox potentials utilizing sulfate, nitrite, and oxygen as terminal
electron acceptors, enabling them to survive in the fluctuating
water levels characterizing paddy systems. Curiously, the com-
plete nitrogen fixation pathway (M00175) is also detected in
UBA7883 MAGs. Given the lack of the nodulation module
(M00664), these putative nitrogen-fixers may represent non-
symbiotic diazotrophs, which benefit from the anaerobic nature
of flooded paddy soil (i.e., as anoxic environments could protect
the nitrogenase of the nitrogen-fixation pathway from oxygen
toxicity), and contribute significantly to the organic nitrogen pool
in rice paddies [102]. Additionally, Hg methylators encoding
nitrogen-fixing ability have been suspected to be important
contributors to MeHg accumulation in sediments impacted by
acid mine drainage, potentially because such an ability increased
their competitiveness under nitrogen-limiting conditions [103].
Here, the symbiotic status of the putative nitrogen-fixing Hg
methylators, and whether they feed crops with ammonia and
MeHg simultaneously, remain to be answered.

Did hgcA evolve under the selective constraint of Hg?
One outstanding question pertains to the role of Hg methylation.
Hg methylation could be 1) a way to purposefully limit the
accumulation of intracellular Hg(II), as the methylation of Hg(II) is

possibly coupled with the export of MeHg out of the cell [36], or 2)
a co-metabolic process occurring accidentally [34, 35]. A recent
study, based on an evolutionary analysis of hgc genes, suggested
that Hg methylation may have provided microbes with a
competitive advantage in the primitive ocean, with MeHg acting
as an antimicrobial compound [37].
In the context of our study, we assessed if hgcA exhibited

divergent genotypes under various [THg], as a change in gene
sequences could lead to altered protein structure, potentially
influencing methylation rate, a sign that THg might have
influenced hgcA evolution. Accordingly, we predicted that should
[THg] influence the genotypic makeups of hgcA, we would
observe phylogenetic clustering of hgcA according to THg
content. Such clustering pattern would not be expected to exist
for housekeeping genes such as rpoB, because rpoB phylogenies
should not be directly affected by Hg pressure [38, 104]. For this,
we employed the Bayesian Tip-association Significance testing
(BaTS) [73] on bootstrapped maximum likelihood (ML) phyloge-
netic trees constructed with translated hgcA, merA, and two
housekeeping genes, glnA (encoding glutamine synthetase) and
rpoB (encoding β-subunit of the bacterial RNA polymerase) across
the three sites (Table 1). BaTS tests the null hypothesis that sites
are associated randomly with the phylogenetic tips using a
Bayesian MCMC approach [73]. We found that all tested genes
exhibited significant clustering by geographic locations (i.e.,
sampling site), with P < 0.001 for the association index (AI) and
the parsimony score (PS). However, the result is not congruent
with our prediction, because all genes exhibited phylogenetic
clustering, including the housekeeping genes. Our observation
could be explained by a strong environmental filtering effect
present across the sites that structured the microbial community

Table 1. Phylogeny-trait analysis results for hgcA, merA, rpoB and glnA.

Statistic Observed mean Null mean P value (BaTS null hypothesis test)

(95% HPD CIs) (95% HPD CIs)

hgcA

AI 2.79 (2.17–3.44) 11.48 (10.07–12.90) <0.001

PS 40.53 (39–42) 68.87 (64.15–72.76) <0.001

MC (Huaxi) 3.0 (3–4) 1.79 (1.03–2.90) 0.02

MC (Gouxi) 5.09 (5–6) 2.76 (2.00–4) 0.008

MC (Sikeng) 12.23 (9–18) 4.80 (3.31–6.94) 0.002

merA

AI 1.98 (1.56–2.36) 7.37 (6.25–8.44) <0.001

PS 20.21 (19–22) 42.96 (39.63–46.01) <0.001

MC (Huaxi) 7.33 (5–8) 2 (1.17–3) 0.001

MC (Gouxi) 3.44 (3–4) 2.16 (1.35–3.00) 0.125

MC (Sikeng) 39.57 (35–43) 4.12 (3.01–5.92) 0.001

rpoB

AI 13.49 (12.03–15.01) 48.39 (45.55–51.18) <0.001

PS 157.35 (153–162) 308.44 (297.64–318.10) <0.001

MC (Huaxi) 15.00 (15–15) 5.15 (3.88–7.01) 0.001

MC (Gouxi) 7.32 (5–8) 3.28 (2.38–4.45) 0.002

MC (Sikeng) 10.87 (9–11) 3.33 (2.53–4.77)) 0.001

glnA

AI 62.24 (58.38–66.01) 182.49 (177.44–187.44) <0.001

PS 658.63 (645–672) 1229.89 (1209.61–1249.89) <0.001

MC (Huaxi) 24.90 (25–26) 5.63 (4.57–7.11) 0.001

MC (Gouxi) 10.21 (9–13) 4.80 (4.01–6.03) 0.001

MC (Sikeng) 21.52 (13–31) 4.06 (3.24–5.14) 0.001

AI Association index, PS Parsimony score, MC Monophyletic clade, HDP Cis highest posterior density confidence intervals.
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Fig. 4 Gene neighborhoods of selected confirmed Hg methylators illustrating the association of arsenic-related genes and the TA-gene
with hgcAB in bacteria and archaea, respectively (see Fig. S4 for the full list of hgcAB gene neighborhoods in confirmed Hg methylators).
The same association between the TA-gene and hgcAB was also demonstrated in selective contigs recovered in our metagenomic assemblies
across the sampling sites. On top of each gene neighborhood plot, strain and phylum were indicated for the confirmed Hg methylators, and
the contig numbers were specified.
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and the genetic makeup of genes, independent of Hg. Useful
insights into the role of Hg on the evolution of hgcA could be
gleaned from a reductionist approach relying on experimental
evolution conducted in the lab.

A putative hgcAB regulator in Archaeal Hg methylators
The variables controlling the expression of hgcAB are important
insights into the environmental controls of Hg methylation.
Recently, the role of the microbial arsenical resistance operon,
particularly the arsR gene that codes a transcriptional repressor
[105], was hypothesized to be coupled to the expression of hgcAB.
Subsequent genomic studies investigating synteny at hgcA loci of
various methylating strains found a co-transcribed putative arsR
gene upstream of hgcA [39], as well as several other ars-associated
genes (e.g., acr3/arsB, arsM, arsC) located near hgcAB in genomes
of Hg methylators [66, 106]. Notably, the transcriptional regulation
of hgcAB by an ArsR-like regulator (Pfam PF01022) and the arsenic-
induced transcriptional changes of hgcAB was later experimentally
confirmed in Pseudodesulfovibrio mercurii ND132, implying a
close association of arsenic metabolism with Hg methylation
[107]. To evaluate whether methylating genes recovered here
show comparable genomic signatures in association with arsenic
metabolism, we analyzed contigs containing both hgcAB and at
least two additional cooccurring genes. Our result shows that out
of all contigs (i.e., 35) that met the criteria, four contigs contain at
least one ars-associated gene such as arsC, acr3/arsB, arsA, and
arsD (Fig. 4, Table S9). However, we failed to retrieve arsR in any
selected contigs.
Critically, we noticed that 14 hgcAB-bearing contigs (i.e., ~39%

of all contigs) have a gene associated with the microbial toxin-
antitoxin (TA) system directly upstream of hgcA (Fig. 4). Annota-
tion of the TA gene based on different databases returned
inconsistent results, from which the Clusters of Orthologous Genes
(COGs) identified it as the antitoxin component (prlF) of the YhaV-
PrlF toxin-antitoxin module and abrB, coding a bifunctional DNA-
binding transcriptional regulator (COG2002) (Table S11). The gene
was also identified as prlF (antitoxin PrlF, K19156) and mazE
(antitoxin MazE, PF04014.21) by KEGG and Pfam, respectively,
although with less convincing e-values (Table S11). Taxonomic
classification revealed that 50% of the TA-related hgcAB+ contigs
have an archaeal origin, all belonging to the Methanomicrobia
class (Table S12). Conversely, only a small proportion (i.e., ~10%;)
of the non-TA encoding hgcAB+ contigs were identified as
archaeal (Table S12).
To further examine whether different regulators of Hg methyla-

tion likely exist between bacteria and archaea, we analyzed 31
genomes of experimentally confirmed Hg methylators obtained
from axenic cultures. We created neighborhood gene plots to
demonstrate the relatedness among genes (Table S11). We
observed that 14 genomes have the putative arsR gene upstream
of hgcA within three ORFs (Figs. 4, S4), from which 13 (or 92.8%) are
bacterial genomes, whereas only one archaeal genome, resolved to
genus Methanosphaerula, contains arsR-like gene upstream of
hgcA. In contrast, eight genomes have the TA-associated prlF gene
directly upstream of hgcA, and 6 (or 75%) are archaeal, consistent
with that found in the contig-level data showing archaeal Hg
methylators tend to have the TA gene alongside hgcA. Note that
some bacterial Hg methylators have putative regulators upstream
of hgcA that are neither associated with the ars-operon nor the TA
system. For example, we identified genes coding a transcriptional
regulator of the GntR family (COG2188) on Desulfitobacterium
metallireducens 853-15A, a transcriptional regulator of the MarR
family (COG184) on Dethiobacter alkaliphilus AHT1, and Geobacter
daltonii FRC-32.
Here, the TA-associated gene was identified as prlF and mazE,

homologous genes encoding antitoxins of the type II TA system,
typically organized as operons [108, 109]. Expression of type II TA
operons is generally autoregulated at the transcriptional level by

the toxin-antitoxin complex to maintain a homeostatic state
within the cell [109], and it is plausible that hgcAB might be co-
regulated with the TA operon in archaea. The finding of the TA
gene also raises an important question as to whether bacteria and
archaea have incorporated hgcAB into different regulatory
systems. Further investigation into whether these putative
transcriptional regulators are co-transcribed with hgcAB and their
controlling factors might offer new insights into the evolution and
expression of hgcAB in archaea, and ultimately, the biochemical
constraints of Hg methylation.
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