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Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the
dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of
resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem
stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide
experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-
mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization)
exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes.
However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was
never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S
gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying
taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that
other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the
biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of
microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that
are critical for understanding and predicting ecosystem responses to global change.

ISME Communications; https://doi.org/10.1038/s43705-023-00273-1

INTRODUCTION
Soils are the foundation of terrestrial ecosystems and support
many ecosystem functions and services, including plant produc-
tivity, carbon storage, and nutrient cycling [1]. These functions are
performed primarily by microorganisms (e.g., bacteria, fungi) that
inhabit soil environments [2]. However, soil ecosystems and the
microbial communities they host are experiencing intensifying
stress associated with anthropogenic activities, including land use
change, climate change, and agricultural inputs (e.g., fertilizers,
pesticides, antibiotics) [3, 4]. These anthropogenic stressors are
destabilizing terrestrial ecosystems globally [3, 5]. Given the key
role of microorganisms in underpinning ecosystem functions, it is
imperative to understand how microbial communities influence
ecosystem stability under anthropogenic stress.
Ecosystem stability can be defined as the ability of an

ecosystem to defy change or return to equilibrium following a
disturbance [6]. The stability of ecosystems is thought to be
dependent upon the diversity and composition of the resident
biotic communities [6, 7]. This relationship is well studied in plant
communities, where species diversity has been shown to buffer
ecosystem productivity against anthropogenic global change
drivers, including heat stress, drought, and nutrient additions
[8, 9]. In contrast, the role of microorganisms in contributing to

ecosystem stability is poorly understood. This is due in part to the
exceptional diversity of microbial communities [10] along with the
fact that microorganisms are difficult to observe and have been
historically neglected in biodiversity surveys [11]. As a result,
relationships among anthropogenic stress, microbial communities,
and ecosystem stability are uncertain.
Indeed, rigorous evaluations of relationships between microbial

communities and the ecosystem-scale processes they facilitate
have only started to emerge in the past decade – these studies
have shown soil microbial α diversity to be positively associated
with several ecosystem functions, including C mineralization [12],
C use efficiency [13], denitrification [14], plant productivity [15],
and overall ecosystem functioning, i.e., multifunctionality [16–18].
In contrast, other studies have shown that composition of the
constituent microbial taxa (i.e., community ‘membership’) to be
more important than diversity per se in accounting for variation in
ecosystem functions [4, 19, 20]. Regardless, it is now clear that
ecosystem functions can be attributed to specific, measurable
characteristics of the microbial communities that inhabit those
environments. Because of the importance of microorganisms in
facilitating ecosystem functions, microbial communities will also
be important in stabilizing ecosystems against anthropogenic
stress. However, specific characteristics of microbial communities
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that confer ecosystem stability are unknown. Indeed, very few
studies have explicitly examined stability of ecosystem processes
(e.g., respiration) across microbial community gradients [21–23],
and those that do exist focused on influences of microbial α
diversity and not other microbial community characteristics that
may influence ecosystem stability, e.g., microbial biomass, func-
tional group abundances, community membership.
Though it is difficult to generate specific predictions regarding

microbial contributions to ecosystem stability, we note that
microbial diversity and community membership are highly
variable among ecosystem types [24, 25], and therefore different
ecosystems are likely to exhibit distinct microbial-mediated
ecosystem stress responses. This high natural variation in
microbial communities is compounded by the fact that commu-
nities are already being influenced by anthropogenic stress
globally. For example, warming, nitrogen (N) fertilization, and
increased salinity all have reduced soil microbial α diversity in
multiple ecosystems [26–28], and, similar to plants, these lower
diversity communities may result in reduced ecosystem stability
following additional stress. In this study, we experimentally
generate wide gradients in soil bacterial diversity, induce stress
in those soils, and then measure many soil ecosystem processes,
with the goal of identifying specific characteristics of bacterial
communities that confer stability.
Our study includes soils from contrasting ecosystems (undis-

turbed prairie vs. cultivated field) that host dramatically different
soil bacterial communities (Supplementary Fig. S1). We generated
additional variation in bacterial communities using sterilization-
dilution and induced stress in the soils using oxytetracycline, a
widely used agricultural antibiotic [29, 30]. We applied this
particular stressor because antibiotics are a contaminant that
enter both agricultural and natural soils via multiple routes, e.g.,
direct application of manure, runoff, wind deposition [29, 31]. We
then measured many microbial-mediated soil ecosystem pro-
cesses, including rates of C and N cycling, soil enzyme activities,
and overall biogeochemical functioning (i.e., multifunctionality).
Finally, we quantified the importance of bacterial community
characteristics in accounting for variation in ecosystem functions
using random forest modeling. To enhance the external validity to
our findings, we additionally applied our analytical approach to
data from a previous study from another continent that used a
similar dilution approach and also exposed soils to anthropogenic
stressors (up to ten, including antibiotics) [23]. We hypothesized
that, like plant communities, soils with higher bacterial diversity
would exhibit greater stability of ecosystem functions following
application of stress.

MATERIAL AND METHODS
Soil sampling and experimental design
We collected soils from two contrasting ecosystems that vary in manage-
ment history, soil properties, and resident microbial communities
(Supplementary Fig. S1, Supplementary Table S1). The first sampling site
was the Dave Skinner Preserve in Moscow, ID (46°40′ 39.8“N, 116°58′
36.1“W), an undisturbed prairie remnant characterized by a diverse native
plant community comprised primarily of herbaceous plants, small shrubs,
and bunchgrasses (e.g., Pseudoroegneria spicata). The prairie site is at an
elevation of 1128m and receives 685.8 mm of precipitation per year. The
second site was a cultivated field at the NRCS Plant Materials Science
Center in Pullman, WA (46° 43’ 21.3276“N, 117° 8’ 27.9198“W), which is at
an elevation of 767m and receives 516.9 mm of precipitation per year. This
site has a legacy of N fertilization and is intensively managed via annual
tillage and a winter wheat-fallow crop rotation. The cultivated soils have
lower pH, higher NO3-N, lower NH4-N, and lower C:N compared with the
undisturbed prairie soils (Supplementary Table S1). In both sites, soil was
collected as ten 0–10 cm depth cores and composited by site. The
composite samples were sieved (4 mm) and stored at 4 °C.
A 1 kg subsample of both soils was sterilized by 40 kGy gamma

radiation. Sterility was verified by monitoring microbial activity (i.e.,

respiration) of the irradiated soils. Sterilized soils (30 g dry weight) were
added to autoclaved mason jars and sterile microcosms were inoculated
with suspensions originating from the same nonsterile soil. Inoculum
suspensions were extracted by shaking 6 g of nonsterile soil in 50ml sterile
1X PBS solution for 1 h, with the two soils extracted in quadruplicate and
then the replicates pooled. To create a gradient of diversity, three levels of
dilution were then used as inocula: undiluted suspension (D0), 1 × 10−3

diluted suspension (D1), and 1 × 10−6 diluted suspension (D2). We adjusted
soils to 65% of water holding capacity and incubated soils at 20 °C for six
weeks to allow for microbial establishment. At the end of the six weeks, we
verified that microbial activity had stabilized in all microcosms by
measuring respiration using a LI-COR 8100 A (LI-COR Biosciences, Lincoln,
Nebraska, USA). The respiration data showed that the dilution treatments
within each land use had indistinguishable microbial activity (Supplemen-
tary Fig. S2), indicating that biomass recovery had likely occurred at
this time.
After community establishment, we induced stress in communities by

adding oxytetracycline, an agricultural antibiotic used in livestock
production and commonly found in soils [29, 30]. We added oxytetracy-
cline once weekly for one month at a rate of 50 µg g soil−1, which is within
the range detected in soils [29]. Therefore, our treatments represent
realistic levels of stress experienced by soil communities. Control soils
received an equal volume of sterile water. Each land use ×microbial
diversity × stress treatment was replicated 5 times (2 land uses × 3 diversity
levels × 2 stress levels × 5 replicates = 60 experimental units). As additional
controls, we also incubated 5 replicates of both original nonsterile soils
along with 5 replicates of both sterilized soils that were inoculated with
only sterile water, resulting in a grand total of 80 experimental units.

Microbial community analyses
At the conclusion of the experiment, we measured several bacterial
community characteristics in soils. We measured total microbial biomass in
all soils using a chloroform extraction technique [32] and as an additional
metric of microbial biomass, we extracted DNA from samples using the
Qiagen PowerSoil kit (Qiagen, Valencia, CA, USA) and quantified DNA yield
using a Qubit fluorometer (Thermo Fisher Inc., Waltham, MA, United States)
[12, 21]. We quantified total bacterial and fungal abundance in samples by
qPCR amplification of the 16S rRNA gene and ITS region, respectively [33].
The ITS qPCR data indicated extremely low fungal abundance in the
sterilized-inoculated soils, particularly the D1 and D2 treatments (Supple-
mentary Fig. S3). Because of the apparent lack of fungal establishment in
these microcosms, likely because of absence (or very low abundance) of
fungal cells in the inocula, we chose to not consider fungal communities
any further. We also used qPCR to quantify the abundance of nitrifying
microorganisms, i.e., ammonia-oxidizing bacteria (AOB) and archaea (AOA)
[34, 35], as well as two tetracycline antibiotic resistance genes (ARGs): tetW
and tetM [36, 37]. Complete information on qPCR assays is provided in the
Supplementary information.
We characterized bacterial communities by amplicon sequencing of the

V4 region of the 16S rRNA gene using the 515 F/806 R primer pair [38].
Amplicons were sequenced on an Illumina MiSeq using 250 bp paired-end
reads. Raw reads were deposited in the NCBI archive under accession
number PRJNA853373. Raw sequences were processed with DADA2 [39]
and taxonomy was assigned to the processed sequences (i.e., amplicon
sequence variants, ASVs) using a soil-specific naïve Bayes classifier [40]
trained on the SILVA database (version 138.1) [41]. We calculated bacterial
α diversity metrics (Shannon index, ASV richness) following repeated
rarefaction (1000 iterations), a robust method of accounting for variation in
sequence depth among samples [42]. We repeatedly rarefied at a
sequence depth of 15,418, which rarefaction curves indicated to be
adequate coverage for our samples (Supplementary Fig. S4). We identified
bacterial genera that were differentially abundant among the diversity and
stress treatments using DESeq2 [43]. As an indicator of community-level
bacterial life history traits (e.g., growth rates, nutrient use), we estimated
average 16S rRNA operon number for each community using rrnDB [44].
Detailed information on all sequencing methods is provided in the
Supplementary Information.

Microbial-mediated ecosystem processes
At the end of the experiment, we measured basal respiration rates (i.e., C
mineralization) of all soils using a 24-hour static incubation method [45]
and we simulated soil responses to labile C inputs (e.g., root exudates)
using substrate-induced respiration (SIR) [46]. As an index of microbial
efficiency, we calculated a metabolic quotient for each sample (i.e.,
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biomass-specific respiration, qCO2) [47]. To measure net N mineralization
rates, we calculated the rate of total inorganic-N (NH4-N+ NO3-N)
accumulation in the soils [48–50] and to measure net nitrification rates
we calculated the rate of NO3-N accumulation [48]. We also measured rates
of four hydrolytic extracellular enzymes involved in C cycling (β-
glucosidase), N cycling (leucine aminopeptidase and N-acetyl-β-glucosa-
minidase), and phosphorus cycling (acid phosphatase) using a fluorometric
microplate method [51]. Because the four enzymes exhibited generally
similar patterns across treatments (Supplementary Fig. S5), as an index of
overall enzymatic function, we summed the four rates to calculate total
enzyme activity for each sample [52]. To quantify stability of the above
processes, we used the ‘resistance’ index of Orwin and Wardle [53] where
resistance = 1 − (2 | D0 | /(C0+ | D0 | )). D0 represents the value of stressed
soils while C0 is the value of controls. This index is bounded between −1
and 1 with a value of ‘1’ indicating no change in an ecosystem process
following stress. To assess overall biogeochemical ecosystem function, i.e.,
multifunctionality, we conducted multivariate analyses considering all the
microbial-mediated functions (see below).

Data analyses
All statistical analyses were performed in R [54]. For all univariate analyses
we determined effects of land use, diversity (i.e., dilution) treatment, and
stress (i.e., antibiotic) using linear models (‘lm’ function) or generalized
linear models (‘glm’ function, Gamma distribution, log-link) when linear
models did not meet assumptions of normality of residuals. We tested for
pairwise differences between control and stress treatments within each
land use × diversity combination using the ‘contrast’ function (Tukey
method) in the emmeans R package [55]. We performed multivariate
analysis of bacterial communities and ecosystem multifunctionality using
the vegan R package [56]. Because our experiment involved large changes
in α diversity (Fig. 1A) and because typical dissimilarity metrics are
confounded with α diversity [57], we used a Raup-Crick null model to
generate a dissimilarity matrix that is independent of differences in α
diversity between samples. The Raup-Crick approach standardizes the
observed dissimilarity matrix (Bray-Curtis) against probabilistically
assembled null communities (1000 iterations) where the overall relative
abundance of each ASV and ASV richness for each sample are held constant
[57, 58]. We used the resulting RCBray dissimilarity matrix for all downstream
analyses. We visualized community composition using principal coordinates
analysis (PCoA, ‘cmdscale’ function) and determined effects of land use,
dilution, and stress using PERMANOVA (‘adonis2’ function). We visualized
multifunctionality by performing principal components analysis on the
scaled rates of the individual processes (‘princomp’ function) and
determined effects of land use, diversity treatment, and stress on
multifunctionality using PERMANOVA with Euclidean distances.
We quantified the importance of microbial variables in accounting for

variation in ecosystem process rates using random forest regression
(randomForest R package) [59]. The random forest model for each process
rate was tuned such that the number of predictors randomly sampled as
candidates at each split minimized the out-of-bag error rate of the model.
All random forest models were run with 10,000 trees. The ‘Importance’ of
predictor variables was calculated by determining the increase in model
error after randomly shuffling each candidate predictor across the data set.
For each ecosystem process, we considered a range of potential microbial
predictors: 16S ASV richness, 16S Shannon diversity, ASV membership (i.e.,
PCoA axis scores), total microbial biomass, 16S gene abundance, average
16S operon numbers, and tetracycline ARG abundances. For nitrification
rates, the abundances of nitrifying organisms (AOA, AOB) were also
considered as candidate predictors. To explore influences of broad
taxonomic shifts on ecosystem processes, we also considered Proteobac-
teria:Actinobacteria ratios, as these two dominant lineages exhibited
opposite responses to stress in our study (Fig. 1C, D). While we recognize
that functional traits of specific bacterial taxa cannot be predicted based
on their phylum-level taxonomy [60], several prior studies have associated
Proteobacteria and Actinobacteria with different community-scale func-
tioning [19, 61, 62]. To determine if finer-scale taxonomic information
improved model results, we ran alternative random forest models using
the relative abundances of six genera identified by DESeq2 to be
differentially abundant among our treatments. For the random forest
model with multifunctionality as a response variable, we calculated
multifunctionality for each sample by scaling each of the individual rates
and calculating the mean scaled rate for each sample [16, 19].
For external validation, we applied the same analytical approach to

data from a recent study that also examined ecosystem responses to

anthropogenic stressors across microbial diversity gradients and included
similar ecosystem functions (e.g., C mineralization, enzyme activities) and
microbial variables (e.g., bacterial abundance, α diversity and membership)
to our experiment but also included fungal abundance, α diversity, and
membership metrics [23].

RESULTS
Effects on microbial communities
Our sterilization-dilution scheme successfully reduced soil bacter-
ial α diversity – on average, D1 (1 × 10−3 diluted) soils had 19%
lower 16S Shannon diversity than D0 soils while D2 (1 × 10−6

diluted) soils had 49% lower Shannon diversity than D1 soils and
58% lower diversity than D0 soils (Fig. 1A). This corresponded to a
loss of 178 bacterial taxa from D0 to D1 on average (46% loss in
richness) and an additional 92 taxa from D1 to D2 on average
(45% additional loss in richness, Supplementary Fig. S6). Shannon
diversity was also 15% higher in prairie soils than cultivated soils
on average (Fig. 1A). Stress application (i.e., antibiotic) did not
affect bacterial α diversity at any level of dilution (Fig. 1A). The
diversity treatments also significantly altered 16S ASV community
membership independently of α diversity, though the effects
differed between land uses – in the prairie soils, all diversity
treatments were distinct, while in the cultivated soils D2 formed a
distinct cluster from D0 and D1 (Fig. 1B). In general, lower diversity
communities exhibited increasing dissimilarity from the original
nonsterile soil communities but remained distinct from sterile
negative controls (Supplementary Fig. S7). Antibiotic stress only
marginally affected 16S ASV membership and only in the prairie
soils (land use × stress interaction, Fig. 1B), likely because we used
low, environmentally relevant concentrations of the antibiotic.
Though communities showed only minor responses to anti-

biotic stress at the ASV level, aggregating sequences at higher
taxonomic levels revealed clear responses (Fig. 1C, D). Notably,
these bacterial community responses to stress only occurred in
low diversity soils (1 × 10−6 diluted, D2) (Fig. 1C, D). For example,
stress reduced abundance of Proteobacteria in the D2 soils by
43% on average (Fig. 1C, D). Antibiotic stress also promoted Gram
positive taxa in D2 soils – relative abundance of Actinobacteria
was 142% higher in stressed D2 soils (Fig. 1C, D), while in the
prairie ecosystem, relative abundance of Firmicutes was >9-fold
higher in the stressed D2 soils (Fig. 1D). Further, DESeq2 identified
six abundant genera to be responsive to our treatments:
Pseudomonas, Bacillus, Arthrobacter, Flavobacterium, Massilia, and
Rhodanobacter. Similar to the phylum-level results, these genera
exhibited stress responses only in reduced diversity soils – for
example, in D2 soils, antibiotics reduced the relative abundances
of Bacillus and Pseudomonas by 71% and 97%, respectively, and
increased the relative abundance of Arthrobacter by 109%
(Supplementary Figs. S8, S9). Similar to the taxonomic responses,
microbial biomass only responded to stress in D2 soils, though
biomass unexpectedly increased by 69% in those soils (Supple-
mentary Fig. S10). This could be due to bacterial production of
defense compounds (e.g., exo-polymeric substances, EPS) in
response to the antibiotic additions [63]. 16S gene copy
abundance did not exhibit stress responses (Supplementary
Fig. S10).

Effects on microbial-mediated ecosystem processes
Antibiotic stress influenced nearly all microbial-mediated ecosys-
tem process rates (Fig. 2) – of all measured ecosystem functions,
only C mineralization rates exhibited no stress responses (Fig. 2A).
However, similar to effects on bacterial taxa, stress only affected
ecosystem functions in reduced diversity soils, particularly the
lowest diversity D2 soils (Fig. 2). For example, stress application
reduced substrate-induced respiration (SIR) by 64% on average in
D2 soils (Fig. 2B). In the prairie D2 soils, we also observed 3.8-fold
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higher biomass-specific respiration (qCO2) and 25% higher
enzyme activity in stressed than control treatments (Fig. 2C, D).
N-cycle processes were also affected by stress. N mineralization
rates were 23% lower in the cultivated D2 soils under stress
(Fig. 2E) and nitrification rates were 21% lower on average in
stressed D2 soils (Fig. 2F). The nitrification responses reflect
reduced abundance of nitrifying bacteria (AOB) and nitrifying
archaea (AOA), which were 25% and 29% lower in abundance,
respectively, in stressed D2 soils (Supplementary Fig. S11). In
addition to analyzing effects of stress treatments on the
ecosystem process rates directly, we quantified stability of each
process using a ‘resistance’ index [53]. This analysis confirmed that
all ecosystem functions other than C mineralization exhibited
reduced stability (i.e., significantly lower resistance) in low diversity
D2 soils (Fig. 3).

Relationships between microbial communities and ecosystem
processes
Bacterial α diversity metrics were significantly correlated with
some ecosystem process rates – for example, 16S Shannon diversity
was positively correlated with C mineralization while 16S ASV
richness was positively correlated with C mineralization and N

mineralization rates (Supplementary Figs. S12, S13). However, in
contrast to expectations, random forest regression revealed that
microbial α diversity metrics were never among the strongest
statistical predictors of ecosystem function, despite the large
variation in α diversity among our treatments and despite the
presence of significant correlations between α diversity and
functions (Fig. 4). Indeed, C mineralization, SIR, and enzyme activity
were all best predicted by bacterial ASV membership, i.e., PCoA axis
1 (Fig. 4A, B, D), which was quantified independently of α diversity
and along which communities varied according to land use and
diversity treatments (Fig. 1B). Taxonomic shifts were the best
predictor of qCO2, where higher qCO2 (i.e., lower efficiency) was
associated with lower Proteobacteria:Actinobacteria ratios (Fig. 4C).
For nitrification rates, abundance of nitrifying taxa was the most
important predictor (Fig. 4F). For most processes, microbial
abundance metrics (i.e., biomass, 16 S abundance) were also among
the most important predictors, as were microbial life history
indicators (i.e., average 16 S operon number) (Fig. 4). Alternative
random forest models containing differentially abundant genera as
predictors improved predictions for SIR and qCO2 – SIR was strongly
positively linked to Pseudomonas while Bacillus relative abundance
was a strong predictor of qCO2 (Supplementary Fig. S14).

Fig. 1 Effects of land use, diversity, and stress treatments on bacterial α diversity and community membership. Panels show bacterial α
diversity (A), 16S ASV membership (B), and relative abundances of bacterial phyla in the cultivated (C) and prairie (D) ecosystems. The PCoA
ordination in (B) is based on the RCBray dissimilarity matrix. In (A), symbols represent treatment means while error bars represent the standard
error of the mean. P values in (A) are from (generalized) linear models and in (B) are from permutational analysis of variance (PERMANOVA)
based on RCBray dissimilarity (B). Asterisks in (C) and (D) indicate significant pairwise differences in relative abundance (Tukey method)
between stress treatments within a particular land use × diversity combination at the following levels: † P < 0.1, * P < 0.05, ** P < 0.01, ***
P < 0.001. Diversity treatments are as follows: inoculated with undiluted soil suspension (D0), 1 × 10−3 diluted suspension (D1), and 1 × 10−6

diluted suspension (D2).

E.D. Osburn et al.

4

ISME Communications



Multifunctionality
As a final assessment of ecosystem stress responses across our
microbial community gradients, we determined responses of
ecosystem multifunctionality, i.e., responses of all six biogeo-
chemical processes considered simultaneously. This analysis
showed that the cultivated and prairie soils were functionally
distinct and that the prairie soils were overall more responsive to
changes in diversity and stress treatments compared with the
cultivated soils (Fig. 5A). Further, our random forest model with
multifunctionality as a response confirms the results from
individual functions – that bacterial community membership
and abundance, and not α diversity, emerge as the strongest
statistical predictors of soil ecosystem function (Fig. 5B).

Re-analysis of a prior microbial diversity—ecosystem stress
experiment
To seek additional support for these results, we applied our
analytical approach to data from another recent study, using soils
from northern Germany, that also examined effects of global
change stressors on soil ecosystem functions across microbial
diversity gradients [23]. This study measured similar ecosystem
processes to ours (e.g., C mineralization, enzyme activities) but
examined a range of different anthropogenic stressors (e.g.,
warming, drought, salinity) as well as number of stressors (up to
10 applied simultaneously). Re-analysis of this data set revealed
similar results to ours – that ecosystem responses were best
explained by microbial membership and abundance metrics, while
microbial α diversity was not a strong statistical predictor (Fig. 5C).

This pattern held when examining functions individually (Supple-
mentary Fig. S15) and when combining all functions into a
multifunctionality index (Fig. 5C). The German experiment also
revealed the importance of fungal community membership for
some functions, e.g., phosphatase enzyme activity (Supplementary
Fig. S15).

DISCUSSION
Our results clearly demonstrate the importance of microbial
abundance and bacterial community membership in driving
ecosystem functioning and stability, whereas bacterial α diversity
was not a strong predictor of the measured processes. Impor-
tantly, while some microbial metrics may be confounded with α
diversity, the most consistently important microbial variable in our
study was ASV-level community membership (i.e., PCoA scores),
which we quantified independently of α diversity. This is striking
because, at face value, our experimental results do suggest strong
influences of α diversity; stress responses of ecosystem processes
were only seen in low diversity treatments and we also observed
significant bivariate relationships between bacterial α diversity
and some processes, e.g., between Shannon diversity and C
mineralization rates. Multiple prior studies have inferred mechan-
istic importance of microbial α diversity to ecosystem functioning
on the basis of similar observations [12–14, 16–18, 21]. Our results
demonstrate the limitations of such inferences – changes in
microbial α diversity are likely to be accompanied by other
changes to microbial communities, e.g., community membership,

Fig. 2 Effects of land use, diversity, and stress treatments on six microbial-mediated soil ecosystem functions. Panels show C
mineralization (A) potential microbial activity (SIR) (B), metabolic quotient (qCO2) (C), total hydrolytic enzyme activity (D), N mineralization (E),
and nitrification (F). Symbols represent treatment means while error bars represent the standard error of the mean. Asterisks indicate
significant pairwise differences (Tukey method) between stress treatments within a particular land use × diversity combination at the
following levels: *P < 0.05, **P < 0.01, ***P < 0.001. Diversity treatments are as follows: inoculated with undiluted soil suspension (D0), 1 × 10−3

diluted suspension (D1), and 1 × 10−6 diluted suspension (D2).
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which may also involve shifts in microbial life history strategies or
specific functional groups. We show that these microbial
community membership and abundance characteristics, rather
than α diversity, most strongly predict ecosystem functions and
therefore are more likely to represent the direct microbial drivers
of functional changes at the ecosystem scale. This conclusion is
also supported by the fact that abundance metrics (e.g., 16S
abundance, total biomass) were not correlated with bacterial α
diversity metrics in our study (Supplementary Fig. S13), indicating
that influences of abundance were not confounded with α
diversity. These results support prior work that found stronger
relationships between microbial community composition and
ecosystem function compared with microbial α diversity
[4, 19, 20].
Some prior studies focused on plant communities have similarly

found ecosystem functioning to be incorrectly attributed to plant
α diversity when other characteristics of plant communities (e.g.,
biomass, functional groups) were omitted from analyses [64, 65].
Indeed, a recent analysis demonstrated that plant diversity – eco-
system function relationships are noncausal associations and that
ecosystem functions are instead driven by functional traits of the
resident species [66]. We suggest that similar misattribution of α

diversity effects may also occur in microbial studies if other
community responses that accompany diversity changes are not
considered. This consideration is particularly important in extra-
ordinarily diverse soil microbial communities – indeed, even our
dramatically reduced diversity D2 communities hosted ~100
unique bacterial ASVs, an α diversity level much greater than that
seen in studies focused on macrobiological biodiversity [8, 9, 67].
Though α diversity was not a strong predictor of ecosystem

processes, we did observe that specific bacterial taxa only
exhibited stress responses in low diversity treatments, which
suggests that diversity begets compositional stability of commu-
nities under stress. This result suggests indirect influences of
bacterial α diversity on ecosystem function and stability. For
example, it is likely that α diversity indirectly supported soil
function and stability in our experiment via increased functional
redundancy in the more diverse bacterial communities [20, 67, 68].
In other words, the more diverse communities contained multiple
populations with redundant phenotypes that allow for normal
community-aggregated function to persist even if some of those
populations were lost following stress. It is also possible that α
diversity played other indirect roles in supporting ecosystem
functions and stability, e.g., by altering ecological interactions

Fig. 3 Stability of ecosystem functions calculated according to the ‘resistance’ index of Orwin and Wardle [53] where resistance = 1 −
(2 |D0 | /(C0+ |D0 | )). D0 represents the value of stressed soils while C0 is the value of controls. Panels show the resistance of C mineralization
(A), potential microbial activity (SIR) (B), metabolic quotient (qCO2) (C), total hydrolytic enzyme activity (D), N mineralization (E), and
nitrification (F). Symbols represent treatment means while error bars represent the standard error of the mean. Lower values indicate reduced
stability. Different letters indicate significant pairwise differences in resistance between diversity treatments within a particular land use
(P < 0.05, Tukey method). Diversity treatments are as follows: inoculated with undiluted soil suspension (D0), 1 × 10−3 diluted suspension (D1),
and 1 × 10−6 diluted suspension (D2).
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within and among taxa. These indirect influences, along with the
observation that only low α diversity soils exhibited reduced
stability, suggest that bacterial α diversity may be a useful and
easily generalizable indicator of the functioning and stability of
soil ecosystems. However, our results also suggest that bacterial
community membership (i.e., ASV composition) better reflects the

direct microbial drivers of ecosystem function, though this metric
is difficult to generalize across environmental contexts. Our
results also show, however, that coarser taxonomic information
can be informative – for example, phylum-level taxonomy was a
strong predictor of biomass-specific respiration (qCO2) and genus-
level taxonomy improved some models (SIR and qCO2) and

Fig. 4 Random forest models for each soil ecosystem function. Shown are the top six microbial predictors for C mineralization (A) potential
microbial activity (SIR) (B), metabolic quotient (qCO2) (C), hydrolytic enzyme activity (D), N mineralization (E), and nitrification (F). The
‘Importance’ of predictor variables was calculated by determining the increase in model error after randomly shuffling each candidate
predictor across the data set. The random forest model for each process rate was tuned such that the number of predictor variables randomly
sampled as candidates at each split minimized the out-of-bag error rate of the model. All random forests models were run with 10,000 trees.
Models for SIR and qCO2 were improved by including genus-level taxonomic information, shown on Supplementary Fig. S14.

Fig. 5 Ecosystem multifunctionality and its microbial drivers. Multifunctionality is represented by principal components analysis of all six
soil functions (A). P values in (A) are from PERMANOVA with Euclidean distances. Symbols represent centroids while error bars represent one
standard error of the mean. For the random forest regression model with multifunctionality as the response (B), multifunctionality was
calculated by scaling each of the individual ecosystem functions and calculating the mean scaled rate for each sample. Diversity treatments
are as follows: inoculated with undiluted soil suspension (D0), 1 × 10−3 diluted suspension (D1), and 1 × 10−6 diluted suspension (D2).
(C) displays the random forest regression model with multifunctionality from Yang et al. 2022 as the response (R2= 0.56). Models for each of
the nine individual functions are provided on Supplementary Fig. S15. Models were run as described on Fig. 4 and multifunctionality was
calculated as described in (B).

E.D. Osburn et al.

7

ISME Communications



suggested important C-cycle functions for Pseudomonas and
Bacillus. Our results also demonstrated that information about
specific functional groups will be important for predicting
ecosystem functions that are performed by phylogenetically
narrow groups [68], evidenced by the strong relationship
observed between nitrification rates and nitrifier abundance.
Overall, our study demonstrates the central importance of
community membership for supporting ecosystem functioning
and stability and identifies some specific bacterial taxa that are
important for predicting ecosystem responses. Nevertheless,
identifying generalizable aspects of microbial community mem-
bership that are informative at the ecosystem scale remains a
challenge in microbial ecology [2].
While our focus was on influences of bacterial diversity on

ecosystem stress responses, we also observed that stress
responses were distinct between the two ecosystem types.
Specifically, C-cycle metrics (e.g., SIR, qCO2) were more impacted
by stress in prairie soils while N-cycle metrics (i.e., N mineralization,
nitrification) were more impacted by stress in cultivated soils. This
further demonstrates that ecosystem responses to anthropogenic
stress are strongly dependent upon microbial community
membership – these two ecosystems hosted different initial
bacterial communities and thus exhibited distinct responses to
stress. The stress responses of the prairie soils were also larger in
magnitude, particularly when examining overall ecosystem
functioning, i.e., multifunctionality. This contrasts with our original
hypothesis that the more diverse communities present in the
prairie soils would confer greater ecosystem stability and suggests
that historical exposure to stress (i.e., our cultivated soils) may
select for a more stress-tolerant community that is more resistant
to future stressors. An alternative explanation is that the historical
stress applied to the cultivated soils has resulted in low biomass
communities (Supplementary Fig. S10) that already exhibit
minimal function with respect to many ecosystem processes
and therefore no further stress response is possible. Regardless,
our results suggest that high-functioning natural ecosystems may
also be the most vulnerable to anthropogenic stress.
Many of the stress responses we observed were expected given

that the stressor we applied, oxytetracycline, is a bacteriostatic
antibiotic that inhibits bacterial activity by preventing protein
production. For example, stress reduced SIR and N mineralization
rates, two processes that are dependent upon overall microbial
activity. We also observed increased qCO2 (lower efficiency)
following antibiotic application, which has also been observed in
prior studies [69, 70]. This may reflect increased maintenance
demands of bacteria and/or shifts towards less efficient bacterial
taxa. Antibiotic stress also significantly increased hydrolytic
enzyme activity in D2 soils from the prairie ecosystem, which
indicates greater allocation of resources to C-, N-, and
P-acquisition in these communities. Greater allocation of cellular
resources towards enzyme production as opposed to biomass
production is in accordance with the reduced efficiency (higher
qCO2) we observed in these soils [71]. Interestingly, however, the
abundance of tetracycline antibiotic resistance genes (ARGs) was
not a strong predictor of ecosystem processes, despite the fact
that ARG abundance was indeed low or undetectable in the
D2 soils that also exhibited the greatest stress responses
(Supplementary Fig. S16). It is possible that other tet ARGs (e.g.,
tetO, tetX) that we did not measure played important roles in our
experiment. Alternatively, it is likely that different microbial taxa
exhibit different degrees of intrinsic resistance to this antibiotic or
distinct recovery patterns following application of this stress, thus
accounting for the patterns we observed.
It is also important to note that our study did not consider

influences of eukaryotic organisms (e.g., fungi, protists) as our
experimental approach proved unsuitable for manipulation of
those communities. Despite this limitation, the lack of fungal
establishment in our microcosms has the benefit of allowing us to

more completely isolate the influences of bacteria (the direct
targets of most antibiotics) on ecosystem function and stability.
However, multiple prior studies have provided evidence of
eukaryotic influences on ecosystem functions, including signifi-
cant statistical associations between eukaryotic α diversity and soil
processes [15, 16]. Therefore, we recommend that future studies
attempt to comprehensively assess characteristics of eukaryotic
communities that support soil ecosystem function and stability,
similar to what we have done here for bacterial communities.
Future studies should also incorporate additional dimensions of
soil function (e.g., plant productivity, pathogen suppression) when
quantifying multifunctionality, as these functions may exhibit
different relationships with microbial communities compared with
the biogeochemical functions measured here.
Regardless, the central conclusions of our study are clear – that

microbial abundance and bacterial community membership, and
not α diversity, emerge as the strongest predictors of soil
ecosystem processes. This conclusion is supported by re-analysis
of a prior microbial diversity – ecosystem stress experiment [23],
which yielded similar results to ours, thus reinforcing our findings.
Indeed, the observation of similar patterns in soils from distinct
biogeographic regions and across a broad range of global change
factors demonstrates that our results are robust across ecological
contexts. Overall, our results demonstrate that while bacterial α
diversity may be a simple and useful indicator of ecosystem
function and stability, microbial abundance and community
membership metrics are stronger statistical predictors of function
and more likely reflect the biological mechanisms by which
microbial communities influence ecosystems. We suggest that
future studies also comprehensively examine all possible microbial
drivers of ecosystem function as opposed to considering
influences of α diversity alone. Continued development of this
line of research is critical – microorganisms are the proximate
drivers of nearly all ecosystem functions [2] and will determine the
fate of ecosystems in the face of intensifying anthropogenic stress.
Therefore, it is imperative to identify microbial characteristics that
will influence ecosystem stress responses. We demonstrate that
variation in microbial abundance and community membership are
the dominant drivers of ecosystem processes and are therefore of
primary importance when seeking to understand and predict
ecosystem responses to global change.

DATA AVAILABILITY
Raw sequence data is deposited in the NCBI archive under accession number
PRJNA853373. All other data and reproducible R code are available on figshare:
https://doi.org/10.6084/m9.figshare.21513366.v3
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