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Local eukaryotic and bacterial stream community assembly is
shaped by regional land use effects
Benjamin Weigel 1,2✉, Caio Graco-Roza3,4, Jenni Hultman5, Virpi Pajunen4,6, Anette Teittinen4, Maria Kuzmina7, Evgeny V. Zakharov7,8,
Janne Soininen 4,11 and Otso Ovaskainen 1,9,10,11

© The Author(s) 2023

With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use,
it is critical to better understand how species respond to land-use change. This is particularly true for microbial communities which
provide key ecosystem functions and display fastest responses to environmental change. However, regional land-use effects on
local environmental conditions are often neglected, and, hence, underestimated when investigating community responses. Here
we show that the effects stemming from agricultural and forested land use are strongest reflected in water conductivity, pH and
phosphorus concentration, shaping microbial communities and their assembly processes. Using a joint species distribution
modelling framework with community data based on metabarcoding, we quantify the contribution of land-use types in
determining local environmental variables and uncover the impact of both, land-use, and local environment, on microbial stream
communities. We found that community assembly is closely linked to land-use type but that the local environment strongly
mediates the effects of land-use, resulting in systematic variation of taxon responses to environmental conditions, depending on
their domain (bacteria vs. eukaryote) and trophic mode (autotrophy vs. heterotrophy). Given that regional land-use type strongly
shapes local environments, it is paramount to consider its key role in shaping local stream communities.

ISME Communications; https://doi.org/10.1038/s43705-023-00272-2

INTRODUCTION
Changes in land use are among the strongest drivers affecting
species communities, diversity, and the ecosystem services they
provide [1, 2]. Land-use changes do not only alter terrestrial
ecosystems but also influence adjacent freshwater biodiversity
and ecosystem functions in lakes and streams within the drainage
systems [3, 4]. Freshwater ecosystems are thus considered
sentinels to the impact of altered landscape processes since they
are governed by the resulting changes in nutrient loads and
exports of organic matter of vicinal areas [5]. Freshwater
environments are particularly affected by the conversion from
forested areas to agricultural lands through higher deposition of
nutrients, dissolved organic matter, suspended solids and
pollutants that alter water quality [6, 7]. At today’s numbers,
about 38% of the ice-free land surface is dedicated to agricultural
activities [8], and we have—by the year of 2022—crossed the
milestone of 8 billion living humans on Earth. With the projected
population growth to 10 billion by 2050 [9] we should expect
human pressure for food production to expand agricultural areas
and increase land use intensity [10] further affecting freshwater
community structure and ecosystem functioning.

Community composition and biodiversity are widely used as
surrogates to assess aquatic ecosystem status and functioning
[11–13]. This is because water chemistry typically varies greatly
even at short timeframes especially in smaller streams due to
hydrological changes. Among several taxa, microbial communities
emerge as a good bioindicator of fast environmental changes, due
to their short generation times, large population densities and
wide regional occurrence. They play an important role for
ecosystem functioning by decomposing organic matter, trans-
forming nutrients, and providing the basal food resource for
higher trophic levels such as macroinvertebrates [14–16].
Accounting for the community structure of microbes has proven
beneficial for explaining specific ecosystem functions [17]. Thus,
taking a community perspective when investigating the impacts
of land-use change on aquatic ecosystems is paramount. Most
studies that investigate microbial community responses to
environmental pressures commonly rely on ordination or cluster
analyses that fail to account for potential species interactions and
evolutionary constraints of environmental responses. During the
last decade, species distribution modelling has become a common
and fundamental tool to better understand and predict

Received: 12 May 2023 Revised: 30 May 2023 Accepted: 14 June 2023

1Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki,
P.O. 65, FI-00014 Helsinki, Finland. 2INRAE, EABX, 50 avenue de Verdun, 33612 Cestas, France. 3Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant
Biology, State University of Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Sala 511a, Rio de Janeiro 20550-900, Brazil. 4Department of Geosciences and Geography,
University of Helsinki, PO, Box 64, FI-00014 Helsinki, Finland. 5Soil Ecosystems, Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland. 6Department of
Built Environment, Aalto University, PO Box 11000, 00076 AALTO Espoo, Finland. 7Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada. 8Department of
Integrative Biology, University of Guelph, Guelph, ON, Canada. 9Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland. 10Centre for
Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. 11These authors jointly supervised this work: Janne
Soininen, Otso Ovaskainen. ✉email: benjamin.weigel@helsinki.fi

www.nature.com/ismecomms

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-023-00272-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-023-00272-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-023-00272-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-023-00272-2&domain=pdf
http://orcid.org/0000-0003-2302-5529
http://orcid.org/0000-0003-2302-5529
http://orcid.org/0000-0003-2302-5529
http://orcid.org/0000-0003-2302-5529
http://orcid.org/0000-0003-2302-5529
http://orcid.org/0000-0002-8583-3137
http://orcid.org/0000-0002-8583-3137
http://orcid.org/0000-0002-8583-3137
http://orcid.org/0000-0002-8583-3137
http://orcid.org/0000-0002-8583-3137
http://orcid.org/0000-0001-9750-4421
http://orcid.org/0000-0001-9750-4421
http://orcid.org/0000-0001-9750-4421
http://orcid.org/0000-0001-9750-4421
http://orcid.org/0000-0001-9750-4421
https://doi.org/10.1038/s43705-023-00272-2
mailto:benjamin.weigel@helsinki.fi
www.nature.com/ismecomms


environmental filtering of communities [18]. Joint species
distribution models (JSDM) in particular provide novel insight on
community wide, yet taxa-specific responses with the advantages
of taxa not being modelled independently but with an underlying
joint structure related to abiotic (i.e., environment) and biotic
filtering (i.e., species co-occurrences) simultaneously. Previous
research on microbial stream communities has addressed the
impacts of local environmental conditions [19, 20] and land-use
types [21–23], including influences on biodiversity and function
[24, 25]. However, the dependencies between regional land use
type as a proxy variable and small-scale environmental conditions
shaping communities are often neglected, leading to under-
estimated impacts of land use change. Using novel community
level statistical advances provided by JSDM frameworks offers
better understanding on the combined effects stemming from
local environmental and regional land use pressures, and their
respective contribution to microbial community composition and
assembly processes. This is especially true as land-use impacts and
changes in local environmental conditions in streams vary at
different temporal scales, with land-use changes occurring at
much longer time scales than any change in local stream
conditions [3]. Even past land use is shown to influence water
chemistry [26, 27]. Therefore, quantifying the extent of land-use
effects on local environmental conditions will improve the
understanding of microbial community patterns emerging from
the interplay between regional land-use and local environmental
conditions.
The goal of this study is to quantify the contribution of land-use

types (forested vs. agricultural) in determining local environ-
mental variables (i.e., water chemistry variables) and to uncover
the impact of both, land-use, and environment, on microbial
stream community assembly. With metabarcoding, we leverage
bacteria and eukaryote community data from 120 stream sites in
Finland to understand the resulting microbial community
composition stemming from these drivers. Here we take
advantage of a hierarchical JSDM to disentangle and quantify
the species- and domain-specific (bacteria and eukaryote) drivers
shaping community composition, while simultaneously account-
ing for phylogenetic constraints in species responses to the
environment, as well as their trophic mode, i.e., being autotrophic
or heterotrophic. This enables us to shed light on potential
domain and/or trophy-specific responses to environmental
conditions and susceptibility of different energy pathways. We
further investigate the resulting impact of environmental filtering
on microbial communities, using a region of common community
profile approach.

MATERIAL AND METHODS
Field sampling
Samples were collected in June–August 2020. In total, 120 stream sites
were sampled from independent catchments totalling 60 agriculture and
60 forested sites (Fig. 1). The agriculture sites had >30% agricultural areas
in the catchment area and the forested sites had <10% anthropogenic land
use (i.e., agricultural areas + artificial surfaces) in the catchment area. The
land cover and land use information were derived from the European land
cover and land use classification CORINE (Coordination of information on
the environment) dataset [28, 29] In the field, ten cobble-sized stones were
randomly selected from different parts of each stream site for biofilm
sampling. Biofilms were collected by scraping the surfaces of these stones
(25 cm2 per stone) using a sponge (ca. 2 cm × 2 cm × 2 cm) and the
resulting suspension was combined into a composite sample. At a few
sites, less than ten stones were available. In these cases, multiple samples
were collected from some larger stones so that the sampled stone surface
area was the same for all sites. At each site, new sampling equipment were
used, and samples were collected into sterilized sample containers. The
samples were then stored frozen (−20 °C) and freeze-dried prior to
subsequent laboratory analyses.
Simultaneously with biofilm sampling, water temperature, pH, and

conductivity were measured using a Hach HQ40d multimeter (Hach,
Loveland, CO, USA) and water samples were collected. The water samples
were analyzed in the laboratory for total phosphorus according to SFS-EN
ISO 6878 and for total nitrogen according to standard SFS-EN ISO 11905–1
with a Hach Lange DR 5000 spectrometer (Hach Lange GmbH, Düsseldorf,
Germany).

Environmental DNA and metabarcoding
DNA extraction, PCR and sequencing were performed at the Centre for
Biodiversity Genomics, University of Guelph, Guelph, Canada. The lyophilized
samples were sorted by weight into three categories (small, medium, and large).
The volume of 1–6mL of the Insect Lysis Buffer [30] with 10% Proteinase K was
applied to the samples in proportion to their weight. The mixtures were
vigorously vortexed, and 1mL from each sample was subsampled into the
Lysing matrix A, 2mL tubes (MP Biomedicals) immediately. The lysates were
ground in the TissueLyser at 30Hz for 5min, then incubated for 1 h at 56 °C, then
frozen at−20° overnight, then incubated at 65 °C for 1 h 30min. This procedure
helped to break cellulouswalls of themicroscopic algae. DNAwas extracted from
the lysates with the modified automated DNA extraction protocol [31]. An
additional precipitation on the Glass Fibre membrane with the consequent 5x
dilution of DNA was used to obtain the best PCR result. Each sample was
amplified in three replicas. The first round of PCR was performed with the
following target-specific primers: Reuk454FWD1 (5'-CCAGCASCYGCGGTAATTCC-
3') and V4r (5'-ACTTTCGTTCTTGAT-3') for eukaryotic 18 S rRNA region V4, ~380
base pairs; V8F (5'-ATAACAGGTCTGTGATGCCCT-3') and 1510 R (CCTTCYG-
CAGGTTCACCTAC) for eukaryotic 18 S rRNA regions V8-V9, ~330 base pairs;
341 F (5'-CCTACGGGNGGCWGCAG-3') and 805 R (5'-GACTACHVGGGTATC-
TAATCC-3') for bacterial 16 S rRNA regions V3-V4, ~460 base pairs. All primers
were tailed with forward and reverse universal PacBio adaptors: PB1-forward

Fig. 1 Study area and community profiles associated with land-use type. Map of (a) study area including sample region and sites, and (b–d)
detailed sample sites with upper and lower panel including agricultural and forested sites, respectively, where colours represent the Region of
Common Profile (RCP) based on community composition of (b) bacteria, (c) eukaryotes and (d) bacteria and eukaryotes.
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(5'-GCAGTCGAACATGTAGCTGACTCAGGTCAC-3') and PB1-reverse (5'-TGGAT-
CACTTGTGCAAGCATCACATCGTAG-3'). The following PCR1 conditions were used
for 18 S V4 region: 94 °C for four minutes, followed by 35 cycles of 94 °C for 30 s,
46 °C for 30 s, 72 °C for 45 s, followed by 72 °C for ten minutes. The following
PCR1 conditions were used for 18 S V8-V9 regions: 94 °C for four minutes,
followed by 35 cycles of 94 °C for 30 s, 52 °C for 30 s, 72 °C for 45 s, followed by
72 °C for ten minutes. The following PCR1 conditions were used for 16 S V3-V4
regions: 94 °C for four minutes, followed by 35 cycles of 94 °C for 30 s, 50 °C for
30 s, 72 °C for 45 s, followed by 72 °C for tenminutes. PCR1 products were diluted
with molecular grade ddH20 in 1:1 ratio. The 1 µL of diluted PCR1 product was
used as a template in the second PCR (PCR2). The PCR2 was performed in 384-
wellmicroplatewith the total volume of the PCR reaction 6 µL, using forward and
reverse barcoded universal PacBio primers Plate-384v2 kit, and following PCR
conditions: 94 °C for twominutes, followed by 20 cycles of 94 °C for 40 s, 64 °C for
one minute, 72 °C for one minute, followed by 72 °C for ten minutes. The
resulting asymmetrically labelled amplicon products were pooled for DNA
sequencing and quantified with Qubit 2.0 Fluorometer (ThermoFisher). SMRTbell
libraries for each fragment were prepared using Express Template Prep Kit 2.0
with barcoded adapters bc1015_BAK8B_OA, bc1016_BAK8B_OA, bc1017_BAK8-
B_OA. Library QCwas performed using Agilent 100 Bioanalyzer. Sequencing was
performed using Sequel platform (Pacific Biosciences) on a single 1M SMRTcell
v3 with eight-hour movie time and 20pM on-plate loading concentration. The
resulting polymerase reads were demultiplexed in SMRTLink v.8 to generate
datasets for each amplicon fragment. By-strand circular consensus reads (CCS)
were generated for each dataset with minimum predicted accuracy 99%. Final
CCS reads were further demultiplexed for individual samples based on exact
scoring of forward and reverse barcoded primers. Subsequent bioinformatic
analysis involved removal of loci-specific primer sequences with cutadapt [32]
and assigned the sequences into operational taxonomic groups using vsearch
[33] with 97% similarity for both bacteria and eukaryotes. Taxonomic assignment
of representative sequences for each OTU was done with the classify.seqs
command at Mothur [34] against Silva 138 [35] for bacteria and pr2 version
4.14.0 [36].
With high number of singleton OTUs we used species level annotation

for bacteria and order level for the analysis of eukaryotes. The bacterial
taxa with domain unknown or the ones classified as Chloroplast were
removed from the further analysis as were the eukaryal taxa with domain
unknown or phyla/supergroup level annotated as Eukaryota_unclassified.
We further joint taxa with same unknown classification level for either
genus or order. Taxa that were present in more than 10 of the analyzed
120 samples were kept for the statistical analysis which were conducted
with the presence-absence data. For phylogenomic analysis we con-
structed Newick-formatted phylogenetic trees with MEGAX [37] using
MUSCLE nt alignment [38] and UPGMA clustering.

Region of common community profile
We evaluated differences in community compositions and linked these to
land use types by using a region of common profile (RCP) approach [39].
This was done by grouping sites based on their biological content, i.e.,
species occurrence data. Hence, communities within the same RCP are
more similar in species composition than communities belonging to a
different RCP. We used the dist.binary function from the ade4 package
v. 1.7-16 [40] in the R environment [41] to compute the Jaccard dissimilarity
matrix for binary data using the raw presence-absence data including
bacteria and eukaryote OTUs. Subsequently we used the cascadeKM
function, a K-means partitioning using a range of values of K, here between
1 and 10, from the package vegan v. 2.5-6 [42] to find the optimal number
of clusters emerging from the community data using 1000 iterations. For
optimal cluster evaluation, we used the well-established “calinski” criterion
[43], included as output in the cascadeKM function. We used the resulting
optimal data partition as RCPs, each reflecting sites of similar community
composition.

Joint species distribution modelling
Emerging advances in statistical community modelling frameworks now
allow us to specifically quantify how species’ responses to environmental
variation depend on traits and their phylogenetic relationships [44]. We
used a hierarchical joint species distribution modelling (JSDM) approach,
the Hierarchical Modelling of Species Communities (HMSC; [44–46]). HMSC
can incorporate trait and phylogenetic data of communities to improve
estimations of species’ responses to environmental covariates while also
quantifying their contribution to the explained variation. First, to under-
stand how land-use types and the spatial location of site within land use
type influenced the local environmental variables, we build an

environmental model menv, where we included water conductivity, pH,
temperature [°C], total phosphorus concentration [ug/l], and the total
nitrogen to phosphorus ratio as response variables with the explanatory
variables being land-use type (agricultural vs. forested) as a fixed effect and
the spatial location of sites, given as latitudinal and longitudinal
coordinates, as the random effect. This enabled us to construct a causal
flow diagram quantifying the explained variation of environmental
covariates related to the spatial setting and land-use type. Prior to the
analysis we applied a log-transformation to the response variables water
conductivity; phosphorus concentration and the N:P ratio; to better
approximate normal distributions.
Subsequently, we constructed three different community models based

on, (1) the bacterial community mbac, (2) the eukaryotic community meuk,
and (3) the joint community mjoint including both domains, bacteria, and
eukaryotes. We modelled spatially explicit eukaryotic and bacterial
occurrences probabilities, based on OTUs, and their inference with
environmental parameters. Our response variables were 217 OTUs,
including 58 bacteria and 159 eukaryote taxa. The first two models, mbac

and meuk, allowed us to quantify domain specific environmental drivers
and the degree to which occurrence probabilities of included taxa depend
on evolutionary constraints based on their phylogenetic relationship. With
mjoint we modelled cross-domain species occurrences, specifically account-
ing for trophic modes within the community and investigated common
community profiles in relation to land-use types. Each model was fitted
with the same environmental variables, and the same spatially explicit
structure. We included land-use, water conductivity, pH, temperature, total
phosphorus concentration, and the total nitrogen to phosphorus ratio (N:P)
as fixed effects. To account for the spatial structure of the study design, we
included a spatially explicit random effect at the level of site, represented
by latitudinal and longitudinal coordinates. Prior to the community model
analyses, phosphorus concentrations as well as the N:P ratio were log-
transformed.
HMSC incorporates a hierarchical layer accounting for phylogenetic

constraints and traits in species responses to environmental variables [47]. In
mbac and meuk we included the phylogenetic structure of the community as
well as the categorical trait trophy accounting for autotrophic and
heterotrophic species. We evaluated the strength of a potential phylogenetic
signal to environmental variables within communities, i.e., if closely related
species tend to have similar directional responses to environmental
variables. The phylogenetic correlation parameter is denoted as rho, with
possible values between 0 and 1 indicating whether the residual variance
among the species is independent (0) or if their environmental responses are
fully structured by their phenology (1). For mjoint we did not include
phylogenetic information due to the cross-domain analysis but instead, in
addition to the trait trophy, we also included the trait domain, enabling us to
account for domain-specific trophic modes. We then use mjoint-specific
parameters to quantify the domain- and trophy-specific environmental
responses of taxa within the joint community.
We fitted all four above described models (menv, mbac, meuk and mjoint)

with the Hierarchical Modelling of Species Communities (HMSC) R package
Hmsc [46]. Since mbac, meuk and mjoint are based on binary presence
absence data, the models followed a Bernoulli distribution with a probit
link function, while menv followed a Gaussian distribution with an identity
link function. We sampled the posterior distribution of each model with
four Markov Chain Monte Carlo (MCMC) chains, each of which was run for
37,500 iterations, of which the first 12,500 were discarded as burn in. The
chains had a thinning of 100 to yield 250 posterior samples per chain,
resulting in 1000 posterior samples per model in total. We subsequently
assessed MCMC convergence by examining the potential scale reduction
factors [48] of the model parameters.
To examine the explanatory power of the models, we evaluated OTU-

specific Tjur R2 [49] and AUC [50] values for the binary presence-absence
models mbac, meuk and mjoint, and R2 values for menv. We quantified the
drivers of community structure following Ovaskainen et al. [45] to partition
explained variation among the fixed and random effects.

RESULTS
Sequence data obtained
For bacteria a total of 378 (from 295–523) and for eukaryotes a
total of 363 (from 85–865) PacBio Sequel sequence reads per
sample were used in the analysis. The by-strand circular consensus
reads (CCS) were generated for each dataset with a minimum
predicted accuracy of 99%. With high quality due to the short read
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length and several cycles of sequencing, we used all reads in the
analysis.

Land-use type structures community profiles at local
environment
The data partitioning to highlight sites with common community
profiles resulted in two optimal clusters for each domain, bacteria,
and eukaryotes, as well as their joint composition (Fig. S1), namely
RCP 1 and RCP 2 (Fig. 1b–d). We found strong separations
between common community profiles depending on land-use
type, where RCP 1 was strongly associated with agricultural, and
RCP 2 with forested areas.
Local environmental conditions showed statistically significant

differences between land-use types for all included environmental
variables except temperature (Fig. 2). Linking the realized RCPs to
the local environmental conditions at land-use types, we found
that RCP 1 with high prevalence in agricultural areas was
associated with higher values in water conductivity, pH, and
phosphorus concertation compared to RCP 2 with high prevalence
at forested sites (Fig. 2). The nitrogen to phosphorus ratio was on
average higher in forested areas. Water temperature did not differ
between land-use types.

Model convergence and fit
The MCMC convergence of all four models (menv, mbac, meuk and
mjoint) was good, indicated by the potential scale reduction factor
being ≪ 1.1 (Table 1). The models showed a satisfactory fit
indicated by discriminatory and explanatory powers (Table 1).

Variance partitioning of land-use, local environment, and
community relationships
We found that land-use type and sample location are strong
predictors for local environmental conditions, as indicated by the
respective R2 values of menv (Fig. 3). This is especially true for water
conductivity and total phosphorus concentrations, where land-use
and location together explained 98.5% and 94.7% of their total
variation, respectively. The explanatory power of land-use type
was particularly strong for conductivity (79%), pH (58%), and total
phosphorus concentration (43%), while the explicit spatial effect
contributed most to explained variation in nutrient concentra-
tions, i.e., the nitrogen to phosphorus ratio (64%) as well as total
phosphorus concentrations (52%) in streams. Only the variation of
water temperature was independent of land-use type and location
with <1% explained variation, respectively.
For both, eukaryote (meuk) and bacteria (mbac) communities,

taxa occurrences were influenced similarly, in terms of proportions

of the explained variation by the fixed and random effects
(Fig. 3a). Water conductivity, phosphorus concentration, and pH
were the strongest predictors, each alone exceeding the effect of
land-use type as proxy variable as fixed effect. However, the
spatial random effect had the second strongest explanatory power
for species occurrences after pH, in both models, meuk and mbac.
When considering all eukaryotic and bacterial taxa together as

joint community (mjoint), we found that of the total explained
variation in species occurrences, about two thirds (61.9%) can be
attributed to the local environmental conditions, while effects of
the proxy variable land-use type (14.1%) and the explicit spatial
location (24%) only accounted for one third of variation combined
(Figs. 3b, S2). However, roughly 70% of the variation in local
environmental variables can be attributed to land-use and
location (Fig. 3b).

Species-environment responses depend on domain-specific
trophic modes
Using the joint community model (mjoint) to account for domain-
specific response types to environmental variables, we found that
the effects of environmental conditions differed across bacteria
and eukaryotes as well as across autotrophs and heterotrophs
(Fig. 4). Among all autotrophic eukaryotes, individual taxa showed
both positive and negative responses to the local and regional
variables, except for total phosphorus concentrations, which
generally increased the probability of taxon occurrence. Con-
versely, heterotrophic eukaryotes that showed statistically

Fig. 2 Comparison of environmental conditions at land-use types. Presence of joint bacteria and eukaryote community RCPs in relation to
realized environmental conditions at land-use types.

Table 1. Model diagnostics for the environmental model menv as well
as the three community models mbac (bacteria), meuk (eukaryotes) and
mjoint (bacteria and eukaryotes).

psrf mean discriminatory/
explanatory power

mean point est. upper C.I. Tjur R2 AUC R2

menv 1.004 1.015 0.690

mbac 1.002 1.008 0.111 0.785

meuk 1.002 1.009 0.095 0.760

mjoint 1.003 1.012 0.096 0.772

The Gelman-Rubin potential scale reduction factor (psrf ) as measure for
MCMC convergence being ≪ 1.1 indicates good conversion for all models.
Explanatory power of menv is measured via R2, while the community
models, based on presence absence data, are evaluated by the coefficient
of discrimination Tjur R2 and area under the curve AUC for their
discriminatory power.
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supported responses were mainly negatively associated with the
included variables (Fig. 4a). While autotrophic bacteria were more
likely to occur at higher pH values and in agricultural than in
forested areas, the heterotrophic bacteria were less likely to occur
in nutrient rich waters, being more favoured by warmer waters in
forested areas (Fig. 4a). Noteworthy, there was a moderately
strong phylogenetic signal in both bacteria (rho= 0.71, SD= 0.07)
and eukaryote communities (rho= 0.75, SD= 0.08), suggesting
that closely related species in each community tended to respond
similarly to environmental variables (Fig. 4b).

DISCUSSION
Land-use types have a profound effect on freshwater commu-
nities, their biodiversity and on the ecosystem functions they
provide [1, 51]. However, our results underline that regional land-
use effects determine microbial community assembly by primarily
shaping local environmental conditions. Here we demonstrated
that (i) microbial stream community composition is closely linked
to land-use type, (ii) local environmental conditions, driving
microbial species responses, mediate the effects of land-use on
microbial communities, and (iii) taxon responses show systematic
variation to environmental variables, depending on their domain
(bacteria vs. eukaryote) and trophic mode (autotrophy vs.
heterotrophy).
We found a clear differentiation between the community

compositions depending on land use type. This was true not only
for the bacterial community but also for the eukaryotic commu-
nity as well as for their joint composition. For each of the three
community types two regions of common community profile
(RCP) emerged, each reflecting similarity in community composi-
tion with affinities to either agricultural or forested areas, without
any a priori assumptions regarding environmental conditions at
the respective sites. This clear separation beyond taxonomic
domains, suggests that environmental filtering and species sorting
are the main processes underpinning the microbial community
structure [52–54]. Different land use type-associated community
composition also point to differences in water quality and
microbial activity with altered stream metabolism possibly
affecting higher trophic levels through altered food web structure
[14, 51]. The strong observed impact of environmental filtering on

the microbial meta-community supports their potential as
bioindicators for the assessment of environmental conditions [55].
The effects of regional land-use on the local environmental

conditions (e.g., water physico-chemistry) are often overlooked
when investigating land use effects on communities [21, 56]. This
may owe to the common aim to disentangle the respective
contribution of land use, such as urbanized, agricultural, or
forested areas, on species or communities in a certain environ-
mental setting. However, here we show that regional land-use
types overwhelmingly determine local key environmental drivers
of microbial stream communities. While our results demonstrate
that land use, when considered as large-scale proxy variable,
explained less variation of species occurrences than local
environmental conditions, the effects of land use on the variation
of local stream conditions was substantial. This suggests that
regional land use effects determine local stream conditions that in
turn are the main driver of microbial stream community assembly.
We argue that the full impact of land use may be underestimated
when failing to consider that local environmental conditions
mediate regional land use effects. The strongest environmental
drivers explaining community composition, were also those which
were best explained by land-use types, namely, water conductiv-
ity, water pH and phosphorus concertation, with statistically
significant differences between agricultural and forested areas.
However, we acknowledge that while our included explanatory
covariates do reflect general parameters of local water quality, we
did not consider any organic matter compositions here, that may
have added a more detailed understanding in the mechanisms of
community structures between land use types. Water pH-levels
have been previously demonstrated to be a major driver of
microbial stream communities [57, 58]. Our results support this
finding with pH having the highest explanatory power of the fixed
effects in all three community models, meuk, mbac and mjoint. We
found high levels of pH values and water conductivity to be
associated with agricultural land use. Microbial community
responses to elevated values in both, pH and conductivity, have
been linked to increased respiration rates, indicating stress
responses, with the potential to destabilize microbial ecosystem
function [51].
Although we found consistent responses of communities

belonging to different domains, i.e., eukaryote vs. bacterial

Fig. 3 Causal flow diagrams summarizing the relationships between land-use type, environmental variables, and species communities in
terms of explained variation. a Detailed causal flow diagram indicating explained variation (R2) of environmental variables by land-use type
(top row left, forest vs. agriculture) and explicit spatial location (top row right). Thickness of arrows correspond to indicated R2 values. Middle
row: symbols from left to right represent conductivity, water temperature, total phosphorus concentration, total nitrogen to phosphorus ratio,
and pH with respective Tjur R2 values in explaining eukaryotic (meuk bottom row left) and bacterial (mbac bottom row right) species
occurrences at the community level. Note that arrow thickness is proportional among Tjur R2 values (red and blue, meuk and mbac respectively)
and among R2 values (green and yellow, menv). b Summarized causal flow diagram indicating mean explained variation of environmental
variables by land-use type and location (R2 from menv, black), and fractions of explained variation of land-use and location as well as
environmental variables on the joint community (Tjur R2 from mjoint, grey).
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community, as well as the joint cross domain community, we
found systematic variation of species responses to environmental
variables and land-use type, depending on domain-specific
trophic modes. Autotrophic eukaryotes show mainly positive

associations to phosphorus concentration, while displaying a
bimodal distribution of both negative and positive responses of
included taxa to the remaining environmental variables, including
land use type, suggesting that this group of species comprises

Fig. 4 Responses of species to environmental variables and land use. a Density distribution of domain- and trophy- specific environment
relationships with statistical support of 90% posterior probability, illustrated by standardized variable effects from mjoint. The number of
statistically supported responses of taxa per panel group is indicated by n. b Phylogenetically structured directional responses of taxa
occurrences to variables (left mbac, right meuk). Responses that are positive with at least 90% posterior probability are shown by red, responses
that are negative with at least 90% posterior probability are shown in blue. Responses that did not gain strong statistical support are shown in
white. Tree tip labels and taxonomic classifications are given in Supplementary Tables S1, S2 and Figs. S2, S3.

B. Weigel et al.

6

ISME Communications



members with a heterogeneous range of environmental niches.
Heterotrophic eukaryotes on the other hand seemed more
constraint in their niche space, showing mainly negative
responses to realized environmental variables. While hetero-
trophic bacteria exhibited similar negative responses to nutrient
concentrations as their eukaryotic counterparts, they had opposite
responses to water temperature and land-use type, and no
detected association with water conductivity. This indicates that
heterotrophic bacteria and eukaryotes are associated with
different environmental conditions, likely excluding competitive
interactions as well as environment-specific energy flows. The fact
that autotrophic bacteria only showed statistically supported
responses to pH and land use points towards their robustness to
environmental drivers and wide-ranging niche space. These
trophy-specific responses are supported by the detected signal
of phylogenetically structured environmental responses in both
communities, signifying phylogenetic niche conservatism. When
dividing responses of energy flow pathways into ‘green’,
autotroph-based, and ‘brown’, heterotroph-based [59, 60], our
results suggest that the brown pathways are more susceptible to
environmental change and land use types than the green.
Depending on the environmental setting as well as on primary
consumer preference, shifts in such energy flow pathways may
have ecosystem wide implications. Highlighting these different
domain and trophy specific response types at the community
level, and revealing their potential influence on ecosystem
function, is not possible by applying the commonly used statistical
tools such as ordination analyses, but requires the use of more
timely advances in community ecology such as JSDM. Considering
that land-use type is a strong determinant of the local
environment, it will be important to not only consider its impact
on species communities as a large-scale proxy variable, but also
the even stronger local impact through mediated environmental
conditions.
Our findings challenge the common approach to consider

impacts of land-use change and local environmental variables on
microbial communities independently from each other. We show
that most of the explained variation in species responses is
attributed to the local conditions, which are in fact to the largest
part determined by regional land-use types. This strong impact of
land-use on community assembly across domains redefines our
current understanding towards the expanding pressures stem-
ming from land-use change, provides better understanding to
community wide responses, and may ultimately support stream
ecosystem conservation efforts.

DATA AVAILABILITY
Raw sequence and metadata can be found in the European Nucleotide Archive (ENA)
under the project PRJEB62688.
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