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Expansion of Armatimonadota through marine sediment
sequencing describes two classes with unique ecological roles
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Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in
global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities
and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from
the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two
previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally
distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic
raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to
acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon
dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously
identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the
intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and
metabolic potential within anoxic habitats worldwide.

ISME Communications; https://doi.org/10.1038/s43705-023-00269-x

INTRODUCTION
Microorganisms outnumber other forms of life and drive
biogeochemical cycling on the planet [1]. Ocean floor microbial
communities are among the most complex on Earth [2] and play a
major role in global carbon and nutrient cycling. However,
microbial biodiversity in marine sediments is largely unknown
despite its importance. This is due to the difficulty and expense of
obtaining these samples and the challenges associated with
replicating environmental conditions in a laboratory [3–5].
Metagenomics has provided insights into marine microbial
communities by bypassing the need for culturing [6] and has
transformed our understanding of biodiversity [1], microbial
metabolism [7], and the evolution of life [8]. However, significant
gaps remain in our understanding of ocean floor microbes as we
have yet to characterize many dominant community members in
these systems.
In marine sediments, two microbial guilds responsible for the

terminal degradation of organic matter are strictly anaerobic
acetogenic bacteria and methanogenic archaea. Both specialized
microbial groups, respectively, reduce carbon dioxide (CO2) to
acetate and methane by the reductive acetyl-CoA pathway (also
called the Wood–Ljungdahl pathway, WLP) [9]. Acetogenesis and
methanogenesis are processes linked to proton (H+) or sodium

(Na+) ion pumps that drive ATP synthases in the membrane. The
processes utilize H2 as a major electron donor and CO2 as the
electron acceptor for energy conservation. In contrast to
methanogenesis, acetogenic bacteria can obtain energy through
substrate-level phosphorylation and autotrophy, depending on
the other metabolic machinery present. Acetogenic bacteria can
grow by converting one carbon (C1) substrates (e.g., H2CO2, CO,
and formate) and fermentation substrates (e.g., methoxylated
aromatic compounds, sugars, and amino acids, alcohols) to
acetate. This metabolic versatility makes acetogenic bacteria an
essential player in anaerobic food webs worldwide [10]. Acet-
ogenesis is found in several archaeal lineages [7, 11, 12], but it has
historically only been characterized in two bacterial phyla,
Firmicutes [13, 14] and Spirochaetes [15]. Recent metabolic
reconstructions from environmental genomes indicate acetogen-
esis also occurs in Chloroflexi [16]. These recent studies highlight
that acetogenesis is likely more widespread in the bacterial tree of
life than previously thought.
Here, we evaluated the ocean floor microbial diversity of two

contrasting marine sediment environments, the Guaymas Basin
(GB) and the Bohai Sea (BS). GB is a geologically active region of
hydrothermal vents located at a depth of approximately 2000m in
the Gulf of California. In GB, hydrothermal plumes provide an
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abundance of reduced electron donors for microbial growth, such
as H2, H2S, Fe

2+, and NH4
+ [17, 18]. GB has high sedimentation

rates and organic-rich sediments, and thus can support diverse
and active microbial communities [19]. BS is a shallower marine
site (average of 18 meters deep) located along China’s northern
coast and is connected to several bays and the Yellow Sea. This
region is characterized by anthropogenic inputs resulting in high
levels of contaminants and eutrophication, primarily driven by
agriculture and industry [20, 21].
Our metagenomic characterization of these marine sediment

environments allowed us to identify 77 metagenome-assembled
genomes (MAGs) belonging to the Armatimonadota phylum
(previously known as Candidate division OP10). Armatimonadota
representatives were first discovered 20 years ago through 16S
rRNA gene surveys in Yellowstone National Park [22, 23]. However,
it was not until a decade later that these organisms were
designated a new phylum [24]. Difficulties defining this phylum
have been caused by a limited number of cultivated Armatimo-
nadota strains, making it challenging to characterize their
metabolisms [25, 26] and determine their phylogenetic position.
Armatimonadota are known to be aerobic oligotrophs that
degrade complex carbon compounds, and no strict anaerobic
acetogenic members of this phylum have been yet described.
Here, we characterize novel members within the Armatimonadota
that are potentially capable of performing acetogenesis, partici-
pating in nitrogen and sulfur cycling, and mediating key processes
in the anaerobic carbon cycle in marine sediments.

MATERIALS AND METHODS
Sample collection
Guaymas Basin (GB) sediments samples (Aceto Balsamico, Megamat19, and
Megamat22) were collected during Alvin submarine dives from sediments
in the Gulf of California, Mexico, (27°N 0.388, 111°W 24.560) for more
details see Langwig, et al. (2021) and Castelle, et al. (2021). Chinese
sediment samples were collected from three sites in the Bohai Sea (BS)
(BHB10: 38°45.00 N, 118°9.12E; M3: 38°40.03 N, 119°32.51E; and M8:
39°41.34 N, 120°38.98E) during a cruise with the R/V Chuangxin Yi to
Bohai Sea in August, 2018 [27]. These sediment samples were collected
using a box-sampler. A polyvinyl chloride (PVC) tube with 11 cm internal
diameter was inserted into the box-sampler after carefully removing top
water to take sediment-core samples. Sub-samples were taken through
pre-drilled side-holes with intervals of 2 cm, and frozen at –80 °C.

Genome sequencing and assembly
Genome sequencing and assembly of GB samples was carried out as
described in Langwig, et al. 2021. Briefly, whole community DNA from ≥
10 g of sediment was extracted using the DNeasy PowerSoil kit (Qiagen,
Germantown, Maryland, USA) following the manufacturer’s instructions.
The DNA concentrations were quantified with a QUBIT 2.0 fluorometer
(Thermo-Fisher, Singapore). Illumina HiSeq 4000 genome sequencing for
Guaymas Basin samples was conducted at the Michigan State University
RTSF Genomics. Sequences were trimmed and filtered using Sickle v1.33,
and assembly was performed using IDBA-UD v1.0.9 More details were
described by Langwig et al. [28].
Genome sequencing and assembly for the BS samples is described

previously in Gong et al. [29]. Whole community DNA from ≥1 g of
sediment was extracted using the DNeasy PowerSoil kit (Qiagen, German-
town, Maryland, USA). DNA concentration was measured using the Qubit®
dsDNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, CA, USA).
OD values between 1.8 and ~2.0 and DNA contents above 1 μg were used
to construct the library. A total of 1 μg DNA per sample was used as input
material for the DNA preparations. Sequencing libraries were generated
using NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NE, USA)
following the manufacturer’s recommendations, and index codes were
added to attribute sequences to each sample. Briefly, the DNA sample was
fragmented by sonication to a size of 350 bp, then DNA fragments were
end-polished, A-tailed, and ligated with the full-length adaptor for Illumina
sequencing with further PCR amplification. Finally, PCR products were
purified (AMPure XP system), and libraries were analyzed for size
distribution by Agilent2100 Bioanalyzer and quantified using real-time

PCR before sequencing. DNA from the BS samples were sequenced with an
Illumina HiSeq X™ Ten platform at Tianjin Novogene Bioinformatic
Technology Co., Ltd (Tianjin, China). BS-derived sequences were trimmed
and quality controlled using Sickle v1.33, and assembly was performed
using IDBA-UD v1.1.3.

Genome binning
Binning of individual GB assemblies, only scaffolds >2000 bp, was
performed from dives using Concoct v.0.4.0 [30] and Metabat v2.12.1
[31]. Concoct was used with default settings, and Metabat was run with the
following parameters: –minCVSum 0 --saveCls -d -v --minCV 0.1 -m 2000.
Results from these two binning tools were combined using DAS Tool v1.0
using default settings. CheckM v1.0.11 was used to determine MAG
completeness and contamination. Genomes were only analyzed further if
they were more than 50% complete and less than 10% contamination. In a
previous analysis conducted in Baker, Appler, and Gong (2021) [5], 69
MAGs were identified as a potentially novel phyla (CP9) and included in
this research.
The genome binning procedures for BS samples were similar to those

for the GB samples. Scaffolds under 2000 bp were removed. Binning was
carried out by DAS Tool, Concoct v0.4.0 [30] Metabat v2.12.1 [31], and
MaxBin v2.2.7 [32]. The first three binning tools used the same settings as
for GB samples. MaxBin v2.2.7 was run with default settings. CheckM v1.1.2
was used to determine MAG completeness and contamination. Genomes
were only analyzed further if they were more than 50% complete and
contained less than 10% contamination. 8 MAGs were identified as
candidates within CP9 in a phylogeny previously described in Gong et al.,
2022 [29] and included in further analyses. In total, 77 MAGs were obtained
from deep-sea GB and BS coastal sediments. Genome statistics are shown
in Supplementary Table 1. The estimated complete genome size was
calculated by using a ratio of the recovered MAG size and single copy
marker gene completeness based on CheckM.

Relative Abundance
MAG relative abundance was calculated using MetaGaia (https://
github.com/valdeanda/MetaGaia). Briefly, we used the files_prep.py script
to link the depth file for each scaffold in the assembly, the total number
of raw reads, the length of each bin, and the sampling site of each bin. The
output files were reformatted, and the abundance was calculated using the
bin_abundancy.py script with the parameter: -n 109.

Phylogenetic analyses
A set of 318 publicly available genomes was downloaded from NCBI (late
2020 and early 2021) to better resolve the phylogenetic relationships of the
MAGs described in this study (Supplementary Table 2). Phylogenetic
markers were then extracted from the GB, BS, and reference genomes using
phylosift (v1.0.1) [33], with the ‘phylosift search’ and ‘phylosift align’
functions. The genomes were aligned using Geneious Prime v11.0.4+ 11
using MUSCLE v5.1 and MAFFT v7.490 with default settings and were then
masked (with at least 50% gaps). A phylogenetic tree was generated
through a maximum likeliness-based approach using IQTree v2.0.3 with
1000 bootstrapping replicates using model LG+ F+ R10 [34]. The tree was
visualized using the Interactive Tree of Life (iToL v5). Barrnap v0.7 [35] was
used to extract 16 S rRNA gene sequences from the MAGs in this study.
These sequences were then compared to known 16 S rRNA genes by using
BLASTn [36], against the Silva database release 132 [37]. The 16 S rRNA gene
tree was created using RAxML v7.0.3 with standard parameters in the ARB
software package [38]. The amino acid identity (AAI) profile was generated
using the CompareM v0.1.1 option aai_wf [39]. MAGs were also classified
using GTDB-Tk 2.1.1 (dataset r207v2) [40] (Supplementary Table 1).

Hierarchical clustering of genomes based on protein domains
Two unsupervised clustering approaches were performed as described in
Langwig et al. [28] using MEBS v1.0 [41]. First, MAGs were scanned against
the Pfam v3.0 database to obtain a protein presence/absence profile
using mebs.pl -comp option, then MAGs were hierarchically clustered
with mebs_clust.py using Jaccard distance, Ward variance minimization,
and a maximum distance threshold of 0.4 (options –distance –method and
–cutoff, respectively). Second, the normalized MEBS scores from the 77
Armatimonadota MAGs were clustered along with 2 107 publicly available
genomes described in De Anda et al. 2017, and 319 references described in
Supplementary Table 2. The clustering approach was performed with the
F_MEBS_cluster.py script implemented in MEBS.
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Metabolic predictions
Gene prediction for individual genomes was performed using Prodigal
(v2.6.2) [42]. In addition, predicted genes of individual genomes were
characterized using several databases: KofamKOALA [43], Interproscan
(v5.31.70) [44], HydDB [45], dbCAN (v2.0.11) [46], and MEBS (v1.1) [41].
Hydrogenases were identified through similar methods as described by

Langwig et al. 2021 and De Anda et al. [7]. Briefly, hydrogenases were
identified using DIAMOND v0.9.26.127 [47] against the reference hydro-
genase database and then filtered to ensure an alignment length cutoff of
>40 amino acid residues and a sequence identity >50%. Identified
sequences were validated using the HydDB web server [45]. No FeFe- or
Fe- hydrogenases were identified. We identified 113 NiFe hydroge-
nases which were used to construct a phylogenetic tree with a compiled
database of known NiFe hydrogenases previously described [48]. The
sequences were aligned through Geneious Prime v11.0.4+ 11 using the
locally contained MUSCLE v5.1 and MAFFT v7.490 programs. A tree was
created of the aligned hydrogenase sequences using IQ-Tree v2.0.3 on
model LG+ R10 using the same parameters as the 37-marker gene
alignments and phylogeny and were visualized in iToL v5.
Annotated proteins from all sources were mapped onto metabolic

pathways using the KEGG Mapper tool [49], MetaCyc pathway information
[50], and manual curation. Hits for key metabolic marker genes found were
verified using BLASTP through the NCBI web server tool.

Hydroxylamine annotation
To determine potential function of possible hydroxylamine-utilizing
proteins (hydroxylamine oxidoreductase, Hao; and hydroxylamine dehy-
drogenase, Hcp), first we performed a BLASTP search against the NCBI non-
redundant database (June 2021) to determine closely related sequences
based on protein homology (Identity >80%, Coverage >50%). Then, a
reference dataset of each protein sequence was obtained via different
databases including 154 reviewed sequences from Uniprot [51] for Hcp
references (TIGR01703), and 880 sequences from Interpro through the web
server (PF02335) used as Hao references [52]. Both publicly available
references and hydroxylamine-like proteins identified in the MAGs
sequences were aligned with MUSCLE v3.8.31 and Mafft v7.310 using
default settings and masked (at least 50% gaps) in Geneious Prime
2021.0.3. The phylogenetic trees were generated using IQTree v2.1.4 with
1000 bootstrapping replicates. Model WAG+ R10 was used for Hao,
containing 867 sequences in the tree. Model Q.pfam+R6 was used for Hcp,
with 191 sequences. The trees were visualized using iTOL v5 and refined in
Affinity Designer.

Carbohydrate-active enzymes (CAZyme) and peptidase
identification
We used HMMER, DIAMOND, and Hotpep tools within dbCAN v2.0.11 [46]
to identify the CAZymes. We also included signalP [53] prediction and
PSORT v3.0 [54] subcellular localization search on valid hits. Only CAZymes
annotated by at least two tools were considered valid and characterized
with their corresponding subcellular localization. To identify the pepti-
dases, we downloaded the MEROPs database v12.1 [55] and performed
DIAMOND searches against all MAGs described in this study. We assigned
possible substrates and families to each hit based on the MEROPs IDs. We
only kept hits with known possible substrates. Localization searches were
conducted in the same manner as described above for CAZymes.

RESULTS
Reconstruction of Armatimonadota genomes from marine
sediments
Sixty-nine MAGs (previously classified as a novel phylum [5]) were
recovered from three hydrothermally impacted sediment cores
from GB (described in Langwig-De Anda et al., 2021 [28]). In
addition, eight MAGs were obtained from three sediment cores
from BS in Bohai Bay and Midline sites (described in Gong et al.,
2022 [29]). Based on the presence of single-copy marker genes
inferred by CheckM v1.0.11 [56], these 77 MAGs have an
average completeness of 77.35% and an average contamination
of 3.59%. The MAGs range in size from 1.28 to 7.02 Mbp, with a
median of 3.24 Mbp. The estimated average genome size is 3.9
Mbp. In addition, the MAGs have a high GC-content [57] ranging
from 55–70% (Supplementary Table 1 and Supplementary Fig. 1).

Phylogenetic relationship and taxonomic affiliation
Using several phylogenomic approaches (see methods), we deter-
mined that the MAGs obtained in this study fall within the
Armatimonadota phylum. GTDB-Tk 2.1.1 (dataset r207v2) [40, 58]
indicates that most GB and all BS MAGs are within undescribed
classes UBA5377 and CAIYQO01, respectively (Supplementary
Table 1). Because our UBA5377 MAGs were entirely identified in
the Gulf of California/Sea of Cortez, located in Mexico [5], we propose
renaming this undescribed class “Zipacnadia”, after the Mayan
mythological figure Zipacna who personified the geological activity
of the Earth’s crust [59]. As most of our CAIYQO01 MAGs were
identified in the Bohai sea, we propose renaming this undescribed
class “Hebobacteria”, after the Chinese mythological figure Hebo,
who represents the Huang He River, a major input to the Bohai Sea.
The 37-marker gene phylogenetic reconstruction, which

includes 319 publicly available representatives closely related to
Armatimonadota (Firmicutes, Actinobacteria, Chloroflexi, Ca.
Eremiobacteraeota) (Supplementary Table 2), confirms the taxo-
nomic relationship of the 77 MAGs within the Armatimonadota
phylum (Fig. 1). The 16S rRNA gene phylogeny also revealed 34
unclassified, environmentally derived 16S rRNA genes recovered
by past studies closely related to Zipacnadia and Hebobacteria
(Fig. 2). These unclassified, publicly available sequences are from
globally distributed aquatic sediments in human-derived, fresh-
water, and marine systems (Fig. 2), suggesting these two
understudied classes are globally distributed and may play
important ecological roles outside of marine systems (Fig. 3, Sup-
plementary Table 3). A comparison of average amino acid
identities (AAI) between our MAGs and 95 publicly available
Armatimonadota genomes (Supplementary Table 4) revealed that
the Armatimonadota MAGs from deep (GB) and coastal (BS)
marine sediments are distinct from previously described Armati-
monadota. They share up to 48.56% and 51.46% genome-wide
amino acid similarity to one another respectively (Supplementary
File 1 and Supplementary Table 4).

Ecological setting
To estimate the abundance of the marine sediment MAGs (see
“Methods”, Supplementary Table 5), we mapped all the metage-
nomic reads against the genomic assemblies. This revealed that
the relative abundance of MAGs from BS was low, averaging
0.0000487% across all sampling locations, though their abundance
increased with depth (up to 10 times that of the shallowest
samples in the same site). MAGs from GB sediments were
obtained from two unique sites. First was Megamat (Alvin cores
Meg19 and Meg22 taken within close proximity to each other), an
alkane-rich site named for the sizable microbial mat discovered at
this location [60]. Second was Aceto balsamico (AB), named after
high acetate porewater concentrations at this site, reaching
>800 µM. Megamat is low in methane (<1 mM) and high in sulfate
(~26mM), while AB has higher methane concentrations
(5.8–8.8 mM) and low sulfate and sulfide (<1mM). The low
abundance of our Armatimonadota MAGs recovered from AB
(0.4%), and their high abundance in Megamat (1%) suggests a
preferential niche for sulfate-rich environments. In these ecosys-
tems, methanogenesis may not be predominant or is restricted to
substrates that cannot be metabolized by sulfate-reducing
bacteria, such as methylamines [61].

Metabolic inference
Several approaches were used to characterize the metabolic
capabilities of the 77 Armatimonadota described in this study (see
“Methods”). First, we clustered these bacteria based on their
protein composition. Hierarchical clustering of the 77 MAGs based
on the presence/absence profile of 17,930 protein domains from
the Pfam v3.0 database identified five metabolic clusters
(Supplementary Table 1). These clusters were consistent with
the phylogenetic position of the marine sediment MAGs (Fig. 1).
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We also searched the MAGs for involvement in key biogeo-
chemical processes using MEBS (Multigenomic Entropy Based
Scores) [41]. MEBS searched for protein sequences involved in
nitrogen, iron, oxygen, carbon (primarily methane-related), and
sulfur cycling. The normalized entropy scores of the Armatimo-
nadota MAGs, as well as 319 publicly available references

(Supplementary Table 2), were compared with a set of previously
precomputed scores from 2 107 non-redundant genomes [41]
(Supplementary Fig. 2 and Supplementary Table 6). We used three
projection methods and four clustering algorithms to analyze the
consistency of the clusters. The non-supervised clustering from
this analysis suggested that most of the MAGs from deep-sea
sediments (58 Zipacnadia and 4 Hebobacteria) are similar and
contain fermentative anaerobic pathways (Supplementary Table 6).
In contrast, all MAGs obtained from BS sediments (8 Hebobacteria)
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Hebobacteria
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Metabolic Clusters
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Cluster 5
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Fig. 1 Phylogeny of recovered genomes with cultured and
uncultured references, based on 37 conserved marker genes.
Bootstrap values over 70% are displayed with the proportional size
of circles along internal branches. The two classes are shown to be
distinct when compared to all NCBI database available Armatimo-
nadota (100% bootstrap value). The two described classes:
Hebobcteria and Zipacnadia are highlighted within the tree in
green and purple. Aquificae was used as an outgroup to root the
tree. The five metabolic clusters generated based on protein content
are shown by the color of tree branches. Scores generated by MEBS
are displayed by color blocks directly outside each corresponding
branch label. An interactive version of this tree is available online at
https://itol.embl.de/shared/2mUVQn1s5SIs8 as “Main Tree”.
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and some from GB (6 Zipacnadia and 5 Hebobacteria) share
protein content with organisms that generate energy by the
oxidation or reduction of inorganic sulfur or nitrogen molecules
(Supplementary Fig. 3).
To further investigate the metabolic capacity of the novel

Aratimonadetes genomes, we compared their predicted pro-
teomes with a combination of functional databases and protein
phylogenies. We manually reconstructed the metabolic pathways
of the MAGs obtained in this study. These metabolic inferences
agree with the MEBS clustering (Supplementary Fig. 3) and
suggest that the Armatimonadota MAGs from marine sediment
are mainly anaerobic acetogens with different energy production
pathways.

Acetogenic pathways to conserve energy
Most MAGs (48/77) code acetyl-CoA ligase (AcdAB) or both
phosphate acetyltransferase (Pta) and acetate kinase (AckA) for
acetate production (Fig. 4 and Fig. 5) and ATP generation.
Zipacnadia codes the two-step acetate formation pathway with
Pta and Ack (Fig. 4), which is common in acetate-forming bacteria
[62]. In contrast, Hebobacteria MAGs (Fig. 4) code AcdAB. This
indicates these organisms are capable of the reversible one-step
conversion of acetyl-CoA to acetate while generating ATP, and
allowing for the consumption of acetate in the absence of other
substrates [63]. These MAGs also encode an integral membrane
multisubunit ferredoxin–NAD+ oxidoreductase, called the Rnf
complex, that catalyzes the electron transfer from reduced
ferredoxin (Fd2-) to NAD+, generating a chemiosmotic gradient
for H+ or Na+ [13].

Carbon fixation and energy production
The WLP is at least partially present in both classes. Only
Hebobacteria code a complete WLP (7/13 MAGs), while Zipacnadia
have several that are almost complete (Fig. 4). Even though all
Zipacnadia and some (6/13) Hebobacteria MAGs do not code for
fchA, this enzyme is likely not essential due to the presence of a

bifunctional folD in Zipacnadia and Hebobacteria (Supplementary
Table 7). Like other acetogenic bacteria, these MAGs can likely
oxidize a large variety of organic substrates (e.g., hexoses,
pentoses, formate, and formaldehyde) and inorganic substrates
such as hydrogen (H2) or carbon monoxide (CO), which can be
coupled to the reduction of CO2.
Some acetogenic bacteria utilize the six-subunit Rnf complex for

energy conservation [13]. This complex reduces one NAD+ to
NADH and simultaneously moves protons or sodium across the
cell membrane to generate ATP through ATP synthase. In
Hebobacteria MAGs, 2/13 code all six subunits of the Rnf complex,
while 7/13 Hebobacteria code at least four subunits. The presence
of an Rnf complex is a key indicator of possible autotrophy in
Hebobacteria, suggesting these organisms can grow autotrophi-
cally via acetogenesis using the WLP (Fig. 5). The combined
pathway resembles the previously described autotrophic aceto-
gen isolate Clostridium ljungdahlii [13]. In contrast, Zipacnadia
that lacks an Rnf complex, are not likely capable of autotrophic
growth and must rely on heterotrophy to drive acetogenesis,
usually by consuming glucose [64].
In known autotrophic acetogenic bacteria, electrons from H2

and CO2 are derived from hydrogen oxidation, catalyzed by
hydrogenases such as HydABCD [13]. After searching Armatimo-
nadota MAGs for potential hydrogenases, we identified NiFe
group 4b, 1a, 4 g, and 3b hydrogenase. NiFe group 4b
hydrogenase can be associated with formate dehydrogenase,
carbon monoxide dehydrogenase, and glutamate synthase, which
can act as electron-input sources. We identified all of these
associated complexes in both classes (Figs. 4 and 5, Supplemen-
tary Table 7), suggesting these organisms can pair diverse electron
inputs to their hydrogenase [48]. NiFe group 1a hydrogenase is
thought to pair H2 oxidation with sulfate, metal, or organohalide
reduction, and is encoded in 11/13 Hebobacteria and 5/64
Zipacnadia [48]. NiFe group 4g hydrogenase was identified in
16/64 Zipacnadia MAGs, and this group is predicted to utilize
reduced ferredoxins from the TCA cycle to synthesize hydrogen
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and translocate protons [48]. These NiFe group 4g hydrogenases
are phylogenetically closely related to NiFe group 4e (Supple-
mentary Fig. 4, red stars). NiFe group 4e hydrogenases are
sometimes associated with the Ech complex, an alternative
autotrophic acetogenesis mechanism similar to the Rnf complex
[48]. However, we found no evidence of an Ech complex in the 77
MAGs described in this study. Finally, Zipacnadia and some (6/13,
only in BS) Hebobacteria code for NiFe group 3b hydrogenase,
which reversibly couples the oxidation of NADPH to the
fermentative evolution of H2.
A Nuo complex, better known as complex I in the electron

transport chain, is partially coded in 70/77 of the Armatimonadota
MAGs (Nuo, Supplementary Table 7), yet no MAGs code for a
complete Nuo complex. The presence of a functional complex I in
these MAGs could provide an alternative pathway for creating a
gradient that could be utilized by an F-type ATP synthase
identified in the MAGs (25/77 complete, 52/77 partial, Supple-
mentary Table 7).

Central carbon metabolism
The Armatimonadota MAGs recovered here are predicted to have
largely incomplete TCA cycles that closely resemble other acetate-
producing bacteria [50]. Malate dehydrogenase (35/77) replaces
malate:quinone oxidoreductase in the Armatimonadota MAGs,
and citrate (Re)-synthase (15/77) is more common than citrate
synthase (5/77). The presence of citrate (Re)-synthase in these
organisms provides evidence for an anaerobic lifestyle because it
is inactivated by oxygen [65]. This contrasts with citrate synthase,
which functions in comparably oxygen-rich aerobic organisms.
Zipacnadia largely lack either citrate synthase (4/64) or citrate (Re)-
synthase (5/64), while Hebobacteria lack malate dehydrogenase.
Although the TCA cycle is incomplete, reducing power from the
TCA cycle can still be generated in the Armatimonadota MAGs
using isocitrate dehydrogenase (IDH), 2-oxoglutarate:ferredoxin
oxidoreductase (Kor), succinate dehydrogenase (Sdh), and malate
dehydrogenase (Mdh) (Fig. 4). Most MAGs recovered in this study
also have incomplete pathways for the Embden–Meyerhof–Parnas
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(EMP), pentose phosphate pathway (PPP), and reverse ribulose
monophosphate pathway (Fig. 4, Supplementary Table 7). Over
half (42/77) code complete Pyruvate:ferredoxin oxidoreductase
(Por), which converts acetyl-CoA to pyruvate, potentially linking
the WLP of autotrophic CO2 fixation to the TCA cycle. These results
suggest that when growing heterotrophically, Armatimonadota
(especially Zipacnadia, which lacks autotrophic machinery) may
degrade sugars into pyruvate that can be further oxidized to
acetate.

Chemolithotrophy
The presence of anaerobic sulfite reductase (Asr) in most of the
MAGs (65 of 77) indicates that these organisms may be capable of
reducing sulfite to hydrogen sulfide [66]. The annotated domain
from the putative Asr (Supplementary Table 7) suggests this
complex may also act on other compounds, such as hydro-
xylamine (NH2OH) or selenium trioxide (SeO3) (Fig. 5) [66].
Hebobacteria (6/13, only in BS) also codes at least 3 subunits of
HydABGD, a sulfhydrogenase complex that reduces polysulfide to
hydrogen sulfide (H2S).
Several MAGs contain genes for hydroxylamine-utilizing

enzymes (Fig. 4). Hebobacteria (4/13) code hydroxylamine
dehydrogenase (Hao) (Supplementary Table 8). However, protein
phylogenies suggest these Hao genes are more closely related to
cytochrome c552 (Hao-like), which is an electron transporter
involved in dissimilatory nitrite reduction to ammonium (Supple-
mentary Fig. 5) [67]. This is in contrast to cytochrome c554 (true
Hao), which would reduce hydroxylamine (NH2OH) to nitrite (NO2

-)
or nitrous oxide (NO). Following these results, Hebobacteria
appear to encode only Hao-like genes and not true Hao. The
Armatimonadota MAGs also code hydroxylamine dehydrogenase
(Hcp) (9/13 Hebobacteria, 21/64 Zipacnadia), which reduces
hydroxylamine to ammonium. The phylogeny of Hcp proteins
(Supplementary Fig. 6) supports their original annotation as
hydroxylamine dehydrogenase. Since we could not identify
complete ammonia oxidation or nitrate/ite reduction pathways,
the overall function of Hcp in these organisms remains
unknown [68].

Degradation of carbohydrates and proteins
Our analysis of peptidases and carbohydrate-active enzymes
(CAZYmes) revealed several metabolic strategies for degrading
complex molecules. We detected at least one extracellular
peptidase in 10 Hebobacteria and 57 Zipacnadia MAGs. All
identified extracellular peptidases are shown in Supplementary
Fig. 7, and a comprehensive list of all detected peptidases is in
Supplementary Table 9. Genes for extracellular subfamily S8A
protease were common across each class, suggesting a subtilisin-
like protease is excreted by these organisms to degrade
polypeptides [55]. Zipacnadia MAGs encode S8B family pepti-
dases, suggesting they produce a kexin-like protease for alternate
polypeptide degradation through Lys-Arg and Arg-Arg cleavage
[55]. Family C40 peptidases are present in 11/13 Hebobacteria
MAGs, which play a role in cell wall component degradation [55].
CAZYmes were annotated using three methods and were only

considered present if they were confirmed by at least two (see
methods). Half of the Armatimonadota MAGs (45/77) code
CAZYmes, predicted to degrade carbohydrates such as cellulose,
chitin, starch, xylan, mannan, pectin, and laminarin (Supplemen-
tary Table 10 and Supplementary Fig. 8). Hebobacteria have partial
cellulose degradation pathways. Both classes code endoglucanase
(Supplementary Table 7) and the cytoplasmic membrane-bound
CAZyme family GH94. The pair of enzymes would allow for the
degradation of cellulose to cellodextrin and finally to glucose. Most
Armatimonadota MAGs (44/77) encode chitin-degrading machin-
ery. For example, both classes code family GH23, suggesting these
organisms can initially degrade chitin to chitodextrin (Supple-
mentary Table 10). Inside the cytoplasm, degradation of

diacetylchitobiose to glucosamine may be carried out by
hexosaminidase based on the presence of HEX/HEXA_B/nagZ
(45/77 MAGs).
Extracellular CAZYmes were detected in 6/13 Hebobacteria and

39/64 Zipacnadia (Supplementary Table 10). Extracellular hydro-
lyzing CAZymes were uncommon, with only a few sequences for
families GH62, GH121, and GH136. Interestingly, we only identified
one extracellular CAZYme in Zipacnadia, GH62, indicating these
organisms may degrade arabinofuranosyl to arabinofuranose [69]
and supply arabinofuranose to fermenters in the deep sea (Fig. 6).
Family GH141 is present in Zipacnadia and Hebobacteria, which
allows for the degradation of Lacto-N-tetraose sugars to lactose
(Fig. 6) [69]. Family GH136 is present in Hebobacteria, and
degrades xyloglucan to smaller oligosaccharides (Fig. 6) [69].

Arsenate detoxification
Due to its similarity to phosphate, arsenate can freely enter cells
through phosphate transporters [70]. A minority of MAGs in both
classes possess a detoxification pathway to prevent the buildup of
arsenic compounds in their cells. Arsenate within the cell could be
transformed into arsenite by an arsenate reductase (ArsC) coded
by 16/77 MAGs (Fig. 4). Arsenite can be removed from the cell by
an arsenical pump membrane protein (ArsB), present in 21/77
MAGs. A transcriptional regulator responsive to arsenate/arsenite
(ArsR) was also found in 53/77 MAGs, likely regulating the
expression of the detoxification proteins.

Environmental interactions and motility
The sampling site of each MAG is the differentiating factor for
individual environmental interaction and motility genes. In BS
MAGs, we identified a type II bacterial secretion system that
participates in biofilm formation. These coastal sediment MAGs
code genes for polysaccharide biosynthesis proteins PslF, PslG,
and PslH, which support biofilm matrix production. They also code
for the adhesion factor PgaC/IcaA, which participates in exopo-
lysaccharide biosynthesis [71–73]. Some GB MAGs (27/69) code
PslG, which may help to disperse existing bacteria from biofilms
[74]. We identified a type III bacterial secretion system in GB MAGs,
identified by the presence of other flagellar structures such as an L
ring, P ring, M ring, hook biosynthesis, filament biosynthesis, and
other minor basal body components (Supplementary Table 8).
Furthermore, the GB MAGs in this study encode motor proteins
MotA (40/69) and MotB (37/69), as well as additional genes
involved in chemotaxis signal identification and response
(Supplementary Table 8). Flagellar structures are common in
other deep-sea bacteria, used to avoid temperature and pressure
stress [75]. Similarly to previously described Armatimonadota, the
MAGs described in this study are likely gram-negative, encoding
genes for lipopolysaccharide biosynthetic enzymes, CMP-KDO
synthetase, KDO 8-P synthase, 3-deoxy-D-manno-octulosonic-acid
transferase, and glucosamine N-acyltransferases (KdsABCD, KdtA,
LpxABDL) (Supplementary Table 8).

DISCUSSION
In this study, we broadly expand the genomic diversity of
Armatimonadota bacteria. We describe two classes from marine
sediments previously identified as CAIYQO01 and UBA5377 [40],
which we propose naming Hebobacteria and Zipacnadia, respec-
tively. Prior to this work, Armatimonadota bacteria were known to
be a primarily aerobic heterotroph phylum [25, 76]. The MAGs
recovered here expand the diversity of Armatimonadota to
include likely obligate anaerobes with chemolithotrophic meta-
bolic potential, some of which may be capable of autotrophic
growth. These new Armatimonadota members are broadly
distributed worldwide and abundant in deep-sea hydrothermal
environments. Zipacnadia genomes are among the most domi-
nant microbial populations in GB sediments (Supplementary
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Table 5). They are particularly abundant at intermediate depths of
anoxic sediments with methane concentrations less than 1mM,
CO2 ~10mM, high sulfate concentrations ~26mM (similar to
ocean water), and temperatures >30 °C. Autotrophic acetogenesis
may lead these organisms to compete with methanogenic
archaea for hydrogen (H2) and carbon dioxide (CO2). The large
number of Zipacnadia MAGs in Megamat, paired with low
methane levels, may suggest that these acetogenic organisms
are outcompeting methanogens and thus play a vital role in the
final degradation of organic matter in the deep sea. In addition,
their flagellar motility may contribute to ecological success in the
deep sea, allowing these organisms to navigate the varied
microcosms of an active sea floor. Zipacnadia and Hebobacteria
(5/13) MAGs are dominant in the deep sea, together making up
about 1% of the total microbial diversity in GB, suggesting that
understanding their roles is crucial to interpreting the ecology of
the ocean floor.
Based on our detailed genomic characterization, the recovered

Armatimonadota appear to be acetogenic and fermentative
obligate anaerobes. Phylogenetic analyses show that they are
divided by the two classes described in this study, though these
MAGs appear to be further divided into five separate metabolic
clusters based on protein content including undescribed proteins.
Our detailed metabolic inferences support the two-class model,
with numerous key distinctions in pathways likely to be critical to
these bacteria. Hebobacteria MAGs can be distinguished by their
potential capacity to grow autotrophically through the WLP and
Rnf complex, which augments the proton gradient used by ATP
synthase. Zipacnadia, on the other hand, is distinguished by the

absence of the Rnf complex, likely relying on a heterotrophic
lifestyle that depends on hydrogenases and a complex I-like
structure to generate the same gradient. Both classes are likely able
to transform inorganic carbon (CO2) into acetate, making a carbon
pool accessible to other organisms (Fig. 6). Acetate produced by
these organisms can become a carbon source, electron donor, or
other chemical intermediates for community members.
All Armatimonadota recovered here are predicted to utilize

nitrogen and sulfur compounds (Fig. 5). An anaerobic sulfite
reductase (Asr) is present in the MAGs, suggesting they play an
active role in sulfur cycling. In addition, these MAGs can reduce
hydroxylamine (NH2OH), an important intermediate in the
nitrogen cycle, to ammonium (NH4

+). Hydroxylamine is formed
during nitrification and anaerobic ammonium oxidation, and is a
precursor of nitrous oxide [77]. However, further research is
needed. Little is known about the environmental activity of
microorganisms that use hydroxylamine.
Given the breadth of environments where related organisms

were identified (16S rRNA gene analysis), it is likely that the MAGs
recovered here are important players in anoxic environments
globally. Hebobacteria and Zipacnadia appear to fulfill a broad
range of ecological roles, vastly expanding the previously known
capabilities of Armatimonadota with complex carbohydrate
degradation, carbon fixation, nitrogen reduction, and sulfur
reduction.

Proposal of type material
Candidatus Hebobacterum abditum. Candidatus Hebobacterum
abditum (ab.di’tum. L. neut. adj. abditum, hidden). A marine

Fig. 6 Representation of proposed ecological roles of Hebobacteria and Zipacnadia. Class distinctions are denoted by text and color; all
unique environmental contributions are shown with the associated protein colored by the class in which it is present. Eight Hebobacteria
MAGs were located in the anoxic sediments of the Bohai Sea with depths of 26–44 cm below the water-sediment interface. Zipacnadia MAGs
and 5/13 Hebobacteria were located in the anoxic sediments of the Guaymas Basin with depths of 0–20 cm below the water-sediment
interface. All MAGs are anaerobic, functioning primarily on the intermediate compounds sulfite, nitrite, and hydroxylamine provided by
sulfate and nitrate reducing microbes in nearby sediments. Organic Matter (OM) includes buried sedimentary carbon metabolized by
heterotrophs to produce CO2 used directly in the WLP of all MAGs. Both classes likely play a dominant role in supplying usable carbon through
acetate secretion and additional degradation of refractory or inorganic matter. Complex carbon degradation is confirmed by the presence of
specific extracellular CAZymes (GH62, GH141, GH136), shown here. More distinctions in identified metabolic pathways and capabilities are
clearly differentiated between groups in Fig. 4. Created using BioRender.com.
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sediment taxon reconstructed from environmental sampling,
likely autotrophic and capable of unique roles in nitrogen and
sulfur cycling. This uncultured lineage is represented by
the genome “M3-44_Bin_391”, NCBI BioSample SAMN20205124,
recovered from Bohai Sea sediments, and defined as a high-
quality metagenome-assembled genome with an estimated
completeness of 90.59% and 4.01% contamination, the
presence of an incomplete (68%) 23S rRNA gene and 20
distinct tRNAs.

Candidatus Zipacnadum vermilionense. Candidatus Zipacnadum
vermilionense (ver.mi.li.o.nen’se. N.L. neut. adj. vermilionense,
pertaining to the Vermilion Sea (aka the Gulf of California)).
A marine sediment taxon reconstructed from environmental
sampling, capable of unique roles in carbon, nitrogen, and
sulfur cycling. This uncultured lineage is represented by the
genome “AB_3033_Bin_57”, NCBI BioSample SAMN26807170,
recovered from Guaymas Basin sediments, and defined as
a high-quality metagenome-assembled genome with an
estimated completeness of 94.44% and 0.93% contamination,
the presence of a complete 16S and 23S rRNA gene, and 20
distinct tRNAs.

Candidatus Hebobacterum gen. nov. Candidatus Hebobacterum
gen. nov. (He.bo.bac.te’rum. Ch. masc. n. Hebo, god of the Yellow
River; N.L. neut. n. bacterium, unicellular microorganism which lack
an organized nucleus; N.L. neut. n. Hebobacterum, referring to the
type genus Hebobacterum). Type species: Candidatus Hebobac-
terum abditum.

Candidatus Zipacnadum gen. nov. Candidatus Zipacnadum gen.
nov. (Zi.pac.na’dum. Sp. masc. n. Zipacna, Mayan mythological
figure representing the earth’s crust; N.L. neut. n. bacterium,
unicellular microorganism which lack an organized nucleus; N.L.
neut. n. Zipacnadum, referring to the type genus Zipacnadum).
Type species: Candidatus Zipacnadum vermilionense.

Descriptions of higher taxonomic ranks. Description of Candida-
tus Hebobacteraceae fam. nov. (He.bo.bac.te.ra’ce.ae. N.L. neut.
n. Hebobacterum, referring to the type genus Hebobacterum;
-aceae, ending to denote a family; N.L. fem. pl. n. Hebobacteraceae,
the Hebobacterum family). Type genus: Candidatus Hebobac-
terum.
Description of Candidatus Zipacnadum fam. nov. (Zi.pac.na.-

da’ce.ae. N.L. neut. n. Zipacnadum, referring to the type genus
Zipacnadum; -aceae, ending to denote a family; N.L. fem. pl. n.
Zipacnadaceae, the Zipacnadum family). Type genus: Candidatus
Zipacnadum.
Description of Candidatus Hebobacterales ord. nov. (He.bo.-

bac.te.ra’les. N.L. neut. n. Hebobacterum, referring to the type
genus Hebobacterum; -ales, ending to denote an order; N.L. fem.
pl. n. Hebobacterales, the Hebobacterum order). Type genus:
Candidatus Hebobacterum.
Description of Candidatus Zipacnadales ord. nov. (Zi.pac.na.-

da’les. N.L. neut. n. Zipacnadum, referring to the type genus
Zipacnadum; -ales, ending to denote an order; N.L. fem. pl. n.
Zipacnadales, the Zipacnadum order). Type genus: Candidatus
Zipacnadum.
Description of Candidatus Hebobacteria class nov. (He.bo.-

bac.te’ri.a. N.L. neut. n. Hebobacterum, referring to the type genus
Hebobacterum; -ia, ending to denote a class; N.L. fem. pl. n.
Hebobacteraceae, the Hebobacterum class). Type genus: Candida-
tus Hebobacterum.
Description of Candidatus Zipacnadia class nov. (Zi.pac.na’di.a.

N.L. neut. n. Zipacnadum, referring to the type genus Zipacnadum;
-ia, ending to denote a class; N.L. fem. pl. n. Zipacnadia, the
Zipacnadum class). Type genus: Candidatus Zipacnadum.

DATA AVAILABILITY
All sequence data and sample information are available at NCBI under BioProject ID
PRJNA692327 and PRJNA743900 for samples from Guaymas Basin and Bohai Sea,
respectively.
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