
ARTICLE OPEN

Accounting for 16S rRNA copy number prediction uncertainty
and its implications in bacterial diversity analyses
Yingnan Gao1 and Martin Wu 1✉

© The Author(s) 2023

16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation introduces potential biases to microbial
diversity analyses using 16S rRNA read counts. To correct the biases, methods have been developed to predict 16S GCN. A recent
study suggests that the prediction uncertainty can be so great that copy number correction is not justified in practice. Here we
develop RasperGade16S, a novel method and software to better model and capture the inherent uncertainty in 16S GCN prediction.
RasperGade16S implements a maximum likelihood framework of pulsed evolution model and explicitly accounts for intraspecific
GCN variation and heterogeneous GCN evolution rates among species. Using cross-validation, we show that our method provides
robust confidence estimates for the GCN predictions and outperforms other methods in both precision and recall. We have
predicted GCN for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent an exhaustive and
diverse list of engineered and natural environments. We found that the prediction uncertainty is small enough for 99% of the
communities that 16S GCN correction should improve their compositional and functional profiles estimated using 16S rRNA reads.
On the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such as PCoA, NMDS, PERMANOVA
and random-forest test.
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INTRODUCTION
The 16S ribosomal RNA (16S rRNA) gene is the gold standard for
bacterial and archaeal diversity study and has been commonly
used to estimate the composition of bacterial and archaeal
communities through amplicon sequencing. Sequence reads are
usually matched to reference databases like SILVA [1], RDP [2] and
GreenGenes [3] to determine the presence of taxa and their
relative cell abundances. However, the 16S rRNA gene copy
number (16S GCN) can vary from 1 to more than 15 [4, 5] and this
large copy number variation introduces bias in the relative cell
abundance estimated using the gene read counts (thereafter
referred to as relative gene abundance) [6], and consequently it
can skew the community profiles, diversity measures and lead to
qualitatively incorrect interpretations [6–9]. As a result, it has been
argued that 16S GCN variations should be taken into account in
16S rRNA gene-based analyses [6].
The majority of bacteria species have not been cultured or

sequenced and their 16S GCNs are unknown. Studies have shown
that 16S GCN exhibits a strong phylogenetic signal [6, 8], and
therefore 16S GCN can be inferred from closely related reference
bacteria. Based on this principle, software has been developed to
predict the 16S GCN [6, 8, 10, 11] in a process often referred to as
hidden state prediction [12]. However, a recent study correctly
points out that the accuracy of 16S GCN prediction deteriorates as
the minimum phylogenetic distance between the query sequence
and the reference sequences increases, and the prediction of 16S
GCN is still an open question [13].

The increasing error of 16S GCN prediction with increasing
phylogenetic distance roots from the stochastic nature of trait
evolution, which leads to inherent uncertainty in the predicted
trait values. One way of reducing the inherent uncertainty is to
improve taxon sampling in the reference phylogeny to reduce the
query’s phylogenetic distance to the reference [14]. Another way
of addressing the inherent uncertainty is to model the uncertainty
directly and have a confidence estimate. By doing so, we will be
able to determine how confident we should be about a GCN
prediction and make meaningful interpretations. Unfortunately,
few 16S GCN prediction tools provide a confidence estimation for
the predicted 16S GCN, and uncertainty is mostly ignored when
interpreting the results of downstream analyses [6, 8, 11]. For
example, PICRUST2 predicts functional profiles of bacterial and
archaeal communities from 16S rRNA sequence data. It predicts
16S GCN for each operational taxonomic unit (OTU) in the
community and uses the predicted values (point estimates) to
estimate “corrected” relative cell abundances and metagenomes,
without accounting for the uncertainty of the predictions. As a
result, the impact of uncertainty in 16S GCN prediction on
bacterial diversity analyses remains unknown and needs to be
investigated.
Several points need to be considered to properly model the

prediction uncertainty. First, because the uncertainty roots from
the stochastic nature of trait evolution, we need to develop a
good model for 16S GCN evolution. Previously the evolution of the
16S GCN trait has been modeled as gradual evolution using the
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Brownian motion (BM) model [6, 8, 11]. However, alternative
models exist and need to be considered [15–17]. For example,
pulsed evolution (PE) model postulates that traits evolve by jumps,
followed by periods of stasis [15, 18]. It has been shown that
pulsed evolution is prevalent in microbial genome trait evolution
[19]. 16S GCN of Bacillus subtilis can jump from 1 to 6 in a matter of
days by gene amplification [20]. On the other hand, it is well
known that the 16S GCN of some bacterial clades such as the
Rickettsiales order, a diverse group of obligate intracellular
bacteria, has only one copy of 16S rRNA in their genomes,
demonstrating stasis [21, 22]. To develop a proper model for 16S
GCN evolution, the tempo and mode of evolution need to be
examined.
Secondly, 16S GCN can vary within the same species [23–26],

which introduces uncertainty to GCN prediction that needs to be
accounted for. It has been shown that modeling the intraspecific
variation is essential for the analysis of comparative trait data and
failing to account for this variation can result in model
misspecification [15]. Because conspecific strains are usually
separated by zero branch length in the phylogeny of the 16S
rRNA gene, the intraspecific variation can be modeled as time-
independent variation, which can also account for measurement
errors [27].
Thirdly, there is notable rate heterogeneity in 16S GCN

evolution. For example, the obligately intracellular bacteria and
free-living bacteria with streamlined genomes (e.g., Rickettsia and
Pelagibacter) have elevated molecular evolutionary rates [28, 29]
and therefore relatively long branches in the 16S rRNA gene
phylogeny [30]. Nevertheless, they have only one copy of 16S
rRNA in their genomes and the GCNs rarely change [22]. It is
expected that the 16S GCN prediction for this group of bacteria
should be accurate despite their large phylogenetic distances to
the reference genomes. Such examples suggest that the rate
heterogeneity of 16S GCN evolution should be systematically
evaluated and modeled properly. However, no previous methods
have evaluated and modeled such evolution rate heterogeneity,
leading to potential model misspecification in 16S GCN
predictions.
Here, we develop a novel tool RasperGade16S that employs a

heterogeneous pulsed evolution model for 16S rRNA GCN
prediction. Through simulation and cross validation, we show
that RasperGade16S outperforms other methods in terms of
providing significantly improved confidence estimates. We
demonstrate that correcting 16S rRNA GCN improves the relative
cell abundance estimates of the bacterial communities and is
expected to be beneficial for more than 99% of 113842
environmental samples we analyzed. However, our findings
suggest that GCN correction may not be necessary for beta-
diversity analyses, as it has limited impact on the results.

METHODS
Compiling 16S GCN data and inferring 16S rRNA reference
phylogeny
We downloaded annotated RNA gene sequences from 21245 complete
bacterial genomes in the NCBI RefSeq database (Release 205) on April 9,
2021. For each genome, we counted the number of annotated 16S rRNA
genes. Genomes with questionable 16S GCNs were removed and one
representative 16S rRNA sequence from each remaining genome was
selected. A 16S rRNA phylogeny (referred to as reference phylogeny
hereafter) was inferred from the representative sequences of 6408
genomes (Table S1). See Supplementary Methods for details.

Evaluating time-independent variation in 16S GCN
To evaluate the extent of 16S GCN time-independent or intraspecific
variation, we compared GCN between 5437 pairs of genomes with
identical 16S rRNA gene alignments. To formally test whether accounting
for time-independent variation is necessary, we modeled time-
independent variation as a normal white noise, and fitted the BM model

to the evolution of 16S GCN in the 6408 reference genomes, with and
without time-independent variation. We then calculated the likelihood and
chose the best model using the Akaike Information Criterion (AIC).

Evaluating the rate heterogeneity of 16S GCN evolution
We calculated the local average rate of evolution for each genus that
contains at least 10 genomes in the reference phylogeny and examined
the distribution of the average rates among genera. The average rate of a
genus is calculated as the variance of all phylogenetically independent
contrasts (PICs) [31] of GCN within the genus as calculated by the function
“pic” in R package ape. Briefly, one PIC is calculated as the trait difference
between sister nodes that is normalized by their phylogenetic distance,
assuming the rate of evolution under the BM model is 1 per unit branch
length:

PIC ¼ x1 � x2
ffiffiffiffiffiffiffiffiffiffiffiffi

l1 þ l2
p

where x1 and x2 are the 16S rRNA GCN of two sister nodes, and l1 and l2 are
the length of the branches leading to their latest common ancestor.

Predicting 16S GCN
We developed a heterogeneous pulsed evolution model to model 16S
GCN evolution (see Supplementary Methods for details) and a likelihood
based R package RasperGade16S to predict 16S GCN. RasperGade16S first
assigns the query sequence to either the regularly-evolving or the slowly-
evolving group based on where it is inserted in the reference phylogeny.
For a query sequence inserted into the slowly-evolving group, its insertion
branch length is scaled by the ratio rslow/rregular, where r is the rate of
evolution in each group. For a query sequence inserted into the regularly-
evolving group, a small branch length is added to the insertion branch to
represent the estimated time-independent variation. RasperGade16S then
predicts the GCN of the query using the rescaled reference phylogeny.
Because 16S GCN is an integer trait, the continuous prediction from hidden
state prediction is rounded and a confidence (probability) that the
prediction is equal to the truth is estimated by integrating the predicted
uncertainty distribution. We marked the 16S GCN prediction with a
confidence smaller than 95% as unreliable, and otherwise as reliable. As a
comparison, we also predicted GCN using PICRUST2, which employs
multiple hidden state prediction methods in the R package castor [32] for
16S GCN predictions. We selected three methods by which confidence can
be estimated: the phylogenetically independent contrast (pic) method, the
maximum parsimony (mp) method, and the empirical probability (emp)
method. Otherwise, we run PICRUST2 using default options and the
unscaled reference phylogeny.
We did not test the tools CopyRighter [8] and PAPRICA [10] in this study

because (1) neither provides the option of using a user-supplied reference
data, and (2) neither provides uncertainty estimates (i.e., confidence
intervals) of its predictions, which is the primary focus of this study.

Adjust NSTD and NSTI with rate heterogeneity
The adjusted nearest-sequenced-taxon-distances (NSTDs) [13] are calcu-
lated using the rescaled reference tree. The adjusted nearest-sequenced-
taxon-index (NSTI) [11] is calculated as the weighted average of adjusted
NSTDs of the community members.

Validating the quality of predicted 16S GCN and its
confidence estimate
We used cross-validations to evaluate the quality of 16S GCN prediction
and its confidence estimate, and how they vary with NSTD. We randomly
selected 2% of the tips in the reference phylogeny as the test set and
filtered the remaining reference set by removing tips with a NSTD to any
test sequence smaller than a threshold. We then predicted the 16S GCN for
each tip in the test set using the filtered reference set. We conducted
cross-validation within 9 bins delineated by 10 NSTD thresholds: 0, 0.002,
0.005, 0.010, 0.022, 0.046, 0.100, 0.215, 0.464 and 1.000 substitutions/site,
and for each bin we repeated the cross-validation 50 times with non-
overlapping test sets. We evaluated the quality of the 16S GCN prediction
by the coefficient of determination (R2), the fraction of variance in the true
copy numbers explained by the prediction. We evaluated the quality of
confidence estimate by precision and recall. Precision is defined as the
proportion of accurately predicted 16S GCN in predictions considered as
reliable (with ≥95% confidence), and recall is defined as the proportion of

Y. Gao and M. Wu

2

ISME Communications



reliable predictions in the accurately predicted 16S GCNs. We averaged the
R2, precision and recall for the 50 cross-validations in each bin.

Evaluating the effect of 16S GCN correction on relative cell
abundance estimation
We simulated bacterial communities with 16S GCN variation (SC1 dataset,
see Supplementary Methods). To estimate the confidence interval (CI) of
the corrected relative cell abundance of each OTU in a community, we
randomly drew 1000 sets of 16S GCNs from their predicted uncertainty
distribution. For each set of 16S GCNs, we divided the gene read count of
OTUs by their corresponding 16S GCNs to get the corrected cell counts.
The median of the corrected cell count for each OTU in the 1000 sets is
used as the point estimate of the corrected cell count, and the OTU’s
relative cell abundance is calculated by normalizing the corrected cell
count with the sum of corrected cell counts of all OTUs in the community.
The 95% CI for each OTU’s relative cell abundance is determined using the
2.5% and 97.5% quantiles of the 1000 sets of corrected relative cell
abundances. The support value for the most abundant OTU is calculated as
the empirical probability that the OTU has the highest cell abundance in
the 1000 sets of corrected cell abundances. We calculated the coverage
probability of the CI as the empirical frequency that the relative gene
abundance or true relative cell abundance is covered by the estimated CI.
We evaluated the effect of 16S GCN correction on relative cell abundance
estimation at different NSTD thresholds.

Evaluating the effect of 16S GCN correction on beta-diversity
analyses
We used the Bray–Curtis dissimilarity, weighted UniFrac distance, and
Aitchison distance for beta-diversity analysis that requires a dissimilarity or
distance matrix and evaluated the effect of 16S GCN correction on the
simulated bacterial communities (SC2 dataset, see Supplementary
Methods). To correct for 16S GCN variation in beta-diversity analyses, we
divided the gene abundance of each OTU by its predicted 16S GCN and
calculated the corrected relative cell abundance table and the correspond-
ing dissimilarity/distance matrix. We used the corrected cell abundance
table to generate the principal coordinates analysis (PCoA) or the non-
metric multidimensional scaling (NMDS) plot and to conduct the
permutational multivariate analysis of variance (PERMANOVA) and the
random-forest test with the R package vegan and randomForest,
respectively.

Examining the adjusted NSTI of empirical bacterial
communities
To check the predictability of 16S GCN in empirical data, we examined
bacterial communities surveyed by 16S rRNA amplicon sequencing in the
MGnify resource platform [33] that were processed with the latest two
pipelines (4.1 and 5.0). The MGnify resource platform uses the SILVA
database release 132 [1] for OTU-picking in their latest pipelines, and
therefore we predicted GCNs for SILVA OTUs (Supplementary Methods,
Table S2). We filtered the surveyed communities from the MGnify platform
so that only communities with greater than 80% of their gene reads
mapped to the SILVA reference at a similarity of 97% or greater were
included. This filtering yielded 113842 bacterial communities representing
a broad range of environment types. We calculated the adjusted NSTI for
each community and examined the adjusted NSTI distribution in various
environmental types.

RESULTS
Time-independent variation is present in 16S GCN evolution
To evaluate the extent of time-independent or intraspecific
variation in 16S GCN, we examined 5437 pairs of genomes with
identical 16S rRNA gene alignments. The 16S GCN differs in 607
(11%) of them, suggesting the presence of significant time-
independent variation. For the 6408 genomes in the reference

phylogeny, we found that incorporating time-independent varia-
tion with the BM model greatly improves the model fit (Table 1),
indicating the necessity to take time-independent variation into
account in 16S GCN prediction. In addition, we observed that the
rate of evolution in the fitted BM model is inflated by 1670 folds
when time-independent variation is not included in the model,
which will lead to overestimation of uncertainty in BM model-
based 16S GCN prediction.

Pulsed evolution model explains the 16S GCN evolution better
than the Brownian motion model
When predicting traits using phylogenetic methods, the BM
model is commonly assumed to be the model of evolution. We
have shown that PE model is a better model for explaining the
evolution of bacterial genome size [34], prompting us to test
whether pulsed evolution can be applied to explain 16S GCN
evolution as well. Using the R package RasperGade that imple-
ments the maximum likelihood framework of pulsed evolution
[15], we fitted the PE model with time-independent variation to
the same dataset. Table 1 shows that the PE model provides a
significantly better fit than the BM model, indicating that 16S GCN
prediction should assume the PE model instead of the BM model.
Fitted model parameters are not sensitive to the HMM profiles
used for aligning the 16S rRNA sequences (Table S3).

Substantial rate heterogeneity exists in 16S GCN evolution
To systematically examine the rate heterogeneity of 16S GCN
evolution in the reference genomes, we first used the variance of
PICs as an approximate estimate of the local evolution rate of 16S
GCN. We found that the rate of evolution varies greatly among
genera (Fig. 1), but can be roughly divided into two groups with
high and low rates of evolution. Therefore, we developed a
heterogeneous pulsed evolution model where all jumps are the
same size but the frequency of jumps varies between two groups
to accommodate the heterogeneity among different bacterial
lineages. Using a likelihood framework and AIC, we classified 3049
and 3358 nodes (and their descending branches) into slowly-
evolving and regularly-evolving groups respectively (Fig. S1). The
frequency of jumps in the regularly-evolving group is 145 folds of
the frequency in the slowly-evolving group (Table S4). The
heterogeneous PE model provides the best fit among all models
tested (Table 1), indicating that a heterogeneous PE model should
be assumed in predicting 16S GCN.
Apart from the rate of pulsed evolution, we also observed

heterogeneity in time-independent variation: for the slowly-
evolving group, the fitted model parameters indicate no time-
independent variation, while for the regularly-evolving group, the
magnitude of time-independent variation is approximately 40% of
a jump in pulsed evolution (Table S4). The presence of time-
independent variation caps the confidence of prediction in the
regularly-evolving group at 85%, which can only be achieved
when the query has identical 16S rRNA gene alignment to one of
the reference genomes.

RasperGade16S improves confidence estimate for 16S GCN
prediction in empirical data
Using 16S GCN from the 6408 complete genomes in the reference
phylogeny for cross-validation, we compared the performance of
various methods in accuracy and confidence estimates. The pic
and mp methods produce very large and zero uncertainty
respectively (Fig. 2A), leading to either poor recall or poor precision

Table 1. The AICs of Brownian motion model and pulsed evolution model.

Model BM BM (with time-independent variation) PE (with time-independent variation)

Homogenous model 34,338 18,028 −7925

Heterogeneous model NA NA −15,395
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rates (Fig. 2C, D). The emp method performs the worst in terms of
accuracy. The PE method produces the best overall precision
(Fig. 2D), achieving an average precision rate of 0.96, one of the
best accuracies (Fig. 2B), and the most realistic recall rate for 16S
GCN prediction (Fig. 2C) over the full spectrum of NSTD, and
should be preferred when predicting 16S GCN.

Copy number correction improves relative cell abundance
estimation
From theoretical calculations, in general, community members
with lower relative cell abundances suffer from greater impacts by
16S GCN variation (Fig. 3A). If a species has a higher GCN
compared to the average GCN of the community, its relative
abundance will be overestimated. Otherwise, its presence will be
underestimated (Fig. 3A). In simulated dataset (SC1), we found
that 16S GCN variation has a large detrimental effect on the
estimated relative cell abundance (Fig. 3B). On average, the
relative cell abundance estimated using the gene abundance
increased or decreased by 1.8-fold compared to the true relative
cell abundance, and the empirical probability of correctly
identifying the most abundant OTU based on the gene
abundance is only around 13% (Fig. 3C). Correcting for 16S GCN
improves the estimated relative cell abundance (Fig. 3B). As
expected, the improvement is greatest when the adjusted NSTI is
small (i.e., when there are closely related reference genomes), and
it gradually diminishes when the adjusted NSTI increases. At the
smallest adjusted NSTI, the average fold change of the estimated
relative cell abundance decreases to 1.1-fold after 16S GCN
correction and the empirical probability of correctly identifying
the most abundant OTU increases to around 65% (Fig. 3C).
Because we predict each OTU’s 16S GCN with a confidence

estimate, we can provide 95% confidence intervals (95% CIs) for
their relative cell abundance as well. Ideally, 95% of the true
relative cell abundances should be covered by the 95% CIs.
Figure 3D shows that the average coverage probability of the true
relative cell abundance is about 98% across NSTD cutoffs,
indicating that our 95% CIs are slightly over-conservative.
Similarly, we can also calculate the coverage probability of our

95% CI to the relative gene abundance. As expected, when the
coverage probability to the relative gene abundance increases,
the improvement by GCN correction (quantified by the relative
reduction in the difference between the estimated and true cell
abundances) decreases (Fig. 3E), and that when this coverage
probability is below 95%, GCN correction always results in strong
improvement in relative cell abundance estimates. In empirical
studies when the true abundance is unknown, we can use the
coverage probability to the relative gene abundance as a
conservative statistic to decide if GCN correction for a community
will likely improve the relative abundance estimation or not. For
the most abundant OTU in the community, we can calculate its
support value from the 16S GCN’s confidence estimates. We found
that the calculated support value matches the empirical
probability that the most abundant OTU is correctly identified
(Fig. 3C).
To demonstrate the effect of 16S GCN correction in empirical

data, we analyzed the data from the first phase of the Human
Microbiome Project (HMP1) and the 2000-sample subset of Earth
Microbiome Project (EMP). We found that on average the relative
cell abundance with and without 16S GCN correction changes
around 1.3-fold in HMP1 and 1.6-fold in EMP. Since the true
abundance of OTUs is unknown, we use the coverage probability
of 95% CIs to the relative gene abundance described above to
evaluate the effect of GCN correction. Our results indicate that a
majority of HMP1 (over 82%) and EMP (over 90%) samples have a
coverage probability below 95% (as shown in Fig. 3F). Since our
simulations demonstrate that GCN correction improves the
accuracy of relative cell abundance estimation in samples with
coverage probability less than 95% (as demonstrated in Fig. 3E),
this suggests that GCN correction will likely improve relative cell
abundance estimates in these HMP1 and EMP samples. In terms of
the most abundant OTU, we found that the identity of the most
abundant OTU changes after copy number correction in around
20% and 31% of the communities in HMP1 and EMP respectively.
The support values for the most abundant OTUs are around 0.85
on average in both datasets, indicating high confidence in the
identification of the most abundant OTUs.
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scale. The red dashed line divides the rates into two groups: slow-evolving group (left) and regularly-evolving group (right).
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Copy number correction provides limited improvements on
beta-diversity analyses
To examine the effect of 16S GCN variation on beta-diversity
analyses, we simulated communities at different turnover rates in
two types of environments where 0.25%, 1% or 5% of the OTUs
are enriched in one environment compared to the other (the SC2
dataset). We found that when the relative gene abundance is used
to calculate the Bray-Curtis dissimilarity, weighted UniFrac
distance, or Aitchison distance, the positions of the samples in
the PCoA or NMDS plot shift but the overall pattern of clustering
of communities between environmental types does not seem to
be affected (Fig. 4 and Fig. S2). Nevertheless, correcting for 16S
GCN reduces about 61%, 78%, and 92% of the shifts (quantified as
the Euclidean distance in all dimensions) in the Bray-Curtis
dissimilarity (P < 0.001, paired t-test), weighted UniFrac distance
(P < 0.001, paired t-test), and Aitchison distance spaces (P < 0.001,
paired t-test), respectively.
We observed a limited effect of 16S GCN variation on

PERMANOVA. Depending on the metric used, the signature OTU
numbers and turnover rates, the proportion of variance explained
(PVE) by the environmental type using the true cell abundances
ranges from 5.27% to 19.65% on average. Using gene abundance,
the average PVE ranges from 5.27% to 19.82% and the change in
PVE is not statistically significant regardless of the metric used, the
signature OTU numbers, or the turnover rates (P > 0.002, paired t-
test with Bonferroni correction, α= 6.17 × 10–4, Table S5), indicat-
ing that PERMANOVA is not very sensitive to 16S GCN variation.
It is a common practice to compare the relative cell abundance

of OTUs of interest between environments. We found that such

comparison is also not sensitive to 16S GCN variation (Table S5),
with the fold change of relative cell abundance estimated using
the gene abundance and the truth highly concordant (R2 > 0.99).
Random forest identified from 20.0% to 89.0% of the signature
OTUs when the true cell abundances were used (Table S5). When
the gene abundances were used, this recovery rate varies from
18.0% to 89.32% (Table S5), and the change is not statistically
significant (P > 0.032, paired t-test with Bonferroni correction,
α= 1.85 × 10–3). Correcting for 16S GCN changes the recovery rate
to from 17.8% to 89.2% (Table S5), and the change is not
significant either (P > 0.041, paired t-test with Bonferroni correc-
tion, α= 1.85 × 10–3). Similar results were found when we
examined the effect of 16S GCN variation correction on beta-
diversity in empirical data (Supplementary Results).

Vast majorities of bacterial community studies should benefit
from copy number correction
To examine if analysis of real communities would benefit from 16S
GCN correction, we calculated the adjusted NSTI for 11,3842
communities in the microbiome resource platform MGnify
(formerly known as EBI Metagenomics) [33] that passed our
quality control. These microbiomes were sampled from various
environments and include host-associated microbiomes in ani-
mals and plants and free-living microbiomes in soil and aquatic
environments (Table S6). The adjusted NSTI varies greatly among
samples and the median across all samples is 0.01 substitutions/
site. In the simulated communities, we observed that GCN
correction significantly improves the estimated relative cell
abundances (P < 0.001, paired t-test) even when the adjusted
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NSTI reaches 0.3 substitutions/site. We found that more than 99%
of the communities from MGnify have an adjusted NSTI less than
0.3 substitutions/site, suggesting that they should benefit from
16S GCN correction when estimating the relative cell abundances.
The distribution of adjusted NSTI varies among different environ-
mental types (Fig. 5), but the proportion of communities that will
likely benefit from 16S GCN correction remains high, ranging from
98% to 100%.

DISCUSSION
We address the inherent uncertainty problem in 16S GCN
prediction by directly measuring it with confidence estimates.
Using simulations and cross-validation, we show that the PE
method implemented in RasperGade16S outperforms other
methods in both the precision and recall rates. This method’s
strength comes from three features of its modeling of the 16S
GCN evolution: implementation of a pulsed evolution model and
accounting for the rate heterogeneity and time-independent trait
variation. Pulsed evolution model expects no trait changes to
occur over a short branch as jumps are not likely to happen on
that branch. This leads to a higher confidence to 16S GCN
prediction with a short NSTD, and thus improves the recall of the
accurate predictions. By incorporating rate heterogeneity, we can
make predictions in the slowly-evolving groups with high
confidence, even when their NSTDs are large, thereby further
improving the overall precision and recall rates. In the reference

phylogeny, 48% of branches were estimated to fall within this
slowly-evolving group, whose evolution rate is 145 times slower
compared to that of the regularly-evolving group. The third source
of improvement for RasperGade16S comes from accounting for
time-independent variation, which can result from measurement
error and intraspecific variation. We show that failing to account
for time-independent variation results in model misspecification
(Table 1) and overestimated rate of evolution for the pic method.
Having confidence estimates is critical in the presence of

inherent uncertainty because they provide direct evaluation of the
uncertainty associated with the predictions. Using cross-validation,
we show that RasperGade16S has high precision (around 0.96),
which means for predictions with high confidence (≥95%), 96% of
the predictions are accurate. Therefore, we can use the confidence
score provided by RasperGade16S to select high-quality predic-
tions if necessary, or we can draw firm conclusions from the 16S
rRNA data when the confidence is high. For example, 16S rRNA
GCN has been linked to the ecological strategy of bacterial
species, with oligotrophs generally having low GCNs and
copiotrophs having higher GCNs [35, 36]. To better understand
the overall ecological strategy of a bacterial community, we can
predict its members’ GCNs and classify the community into either
an oligotroph-dominant, copiotroph-dominant or a mixed com-
munity, and we can do this with a measure of confidence [37].
The application of confidence estimation extends beyond the

prediction of 16S GCN. Because the uncertainty in the prediction is
inherited by statistics derived from the predicted 16S GCN, we can
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Fig. 3 The impact of 16S GCN variation on estimated relative cell abundances. A The impact of GCN variation on estimated relative cell
abundance based on theoretical calculations. The color of the lines denotes the ratio of an OTU’s GCN to the average GCN of the community.
B The average fold change to the true relative cell abundance. C The empirical probability of correctly identifying the most abundant OTU in
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to the true relative cell abundance. Accurate confidence estimates (95% CIs) should produce a coverage probability of 95% regardless of the
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estimate the uncertainty and confidence intervals of important
parameters in downstream analyses, such as the relative cell
abundance. With confidence intervals, we can draw more mean-
ingful and sound conclusions, such as identifying the most
abundant OTU in the community with a support value. Getting
confidence estimates of the relative cell abundance is also
important for predicting the functional profile of a community
based on 16S rRNA sequences. Although PICRUST2 uses an
extremely lenient NSTD cut-off to eliminate problematic
sequences, it does not provide an accurate confidence measure-
ment of its predictions. As shown in this study, the default
maximum parsimony method used by PICRUST2 to predict 16S
GCN essentially assumes there is no uncertainty in the predictions,

which is unrealistic and leads to poor precision. Incorporation of a
more meaningful confidence estimate of 16S GCN prediction in
PICRUST2 should make its functional profile prediction more
informative.
Strikingly, 99% of 113842 bacterial communities we examined

have an adjusted NSTI less than 0.3 substitutions/site, a range
where we show that GCN correction improves the accuracy of the
relative cell abundance estimation (Fig. 3B). Because these
communities represent a comprehensive and diverse list of
natural and engineered environments, we recommend applying
16S GCN correction to practically any microbial community
regardless of the environmental type if accurate estimates of
relative cell abundance are critical to the study. Our results
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therefore affirm the conclusion of the previous studies based on
analyses of a much smaller number of communities [6, 8].
Few studies have investigated to what extent the bias

introduced by 16S GCN variation will have on the microbiome
beta-diversity analyses. We show that the effect sizes of 16S rRNA
bias on beta-diversity analyses are small. Correcting 16S GCN
provides limited improvement on the beta-diversity analyses such
as random-forest analysis and PERMANOVA test. One possible
reason is that for an OTU, the fold change in the relative cell
abundance between samples remains more or less the same with
or without correcting for the copy number. For example, assuming
the estimated relative cell abundances of an OTU in samples A and
B are ra and rb respectively without copy number correction. When
correcting for the copy number, its relative abundance is adjusted
with the scaling factor ACN/GCN, where the GCN is the 16S rRNA
copy number of the OTU and the ACN is the average copy number
of the sample. Assuming the ACN does not vary much between
samples, then the scaling factor for the OTU will be roughly the
same in samples A and B. So even with copy number correction,
the relative abundance change will still be close to ra/rb.
Copy number variation in 16S rRNA is just one of several sources

of bias in 16S rRNA sequencing, which also include DNA extraction
and PCR amplification biases. Nevertheless, using in vitro mock
communities, it has been shown that applying GCN correction
improves the accuracy of microbial relative abundance estimates
and enhances the agreement between metagenomic and
amplicon profiles [8]. Recently, a study demonstrated that
incorporating 16S rRNA qPCR data, which measure bacterial load,
can improve downstream analyses such as species richness,
species–species and species–metadata associations [38]. GCN
correction is known to have tangible changes to estimates of
qPCR abundance [8], and is expected to benefit the microbial
analyses based on this experimental quantitative approach
as well.

It should be noted that having a confidence associated with the
16S GCN prediction helps to estimate the uncertainty of the
prediction, but it does not improve the accuracy of the prediction.
Accuracy of the prediction is constrained by the inherent
uncertainty, which can only be improved by better sampling the
reference genomes. However, as our current sampling is
inadequate for accurate 16S GCN prediction of all environmental
bacteria, we believe that incorporating confidence estimates is the
best practice to control for the uncertainty in the 16S rRNA based
bacterial diversity studies, as opposed to not correcting the GCN
bias as previously suggested [9, 13].

DATA AVAILABILITY
The NCBI accession numbers of the reference genomes, the representative 16S rRNA
sequences and alignments, the reference phylogeny, the predicted GCN for OTU99 in
the SILVA database, the simulated bacterial community data and scripts to reproduce
the figures and tables in this study are available in the Dryad repository (https://
datadryad.org/stash/share/OaS9BjM_kIVdJ3WkZRT7KO8fDr8D4k8jy3LsOtlYELM). The
R package RasperGade16S can be downloaded from https://github.com/wu-lab-uva/
RasperGade16S. The scripts to conduct the analyses in this study are available in the
GitHub repository (https://github.com/wu-lab-uva/16S-rRNA-GCN-Predcition).
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