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Xanthomonas infection and ozone stress distinctly influence the
microbial community structure and interactions in the pepper
phyllosphere
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While the physiological and transcriptional response of the host to biotic and abiotic stresses have been intensely studied, little is
known about the resilience of associated microbiomes and their contribution towards tolerance or response to these stresses. We
evaluated the impact of elevated tropospheric ozone (O3), individually and in combination with Xanthomonas perforans infection,
under open-top chamber field conditions on overall disease outcome on resistant and susceptible pepper cultivars, and their
associated microbiome structure, function, and interaction network across the growing season. Pathogen infection resulted in a
distinct microbial community structure and functions on the susceptible cultivar, while concurrent O3 stress did not further alter the
community structure, and function. However, O3 stress exacerbated the disease severity on resistant cultivar. This altered diseased
severity was accompanied by enhanced heterogeneity in associated Xanthomonas population counts, although no significant shift
in overall microbiota density, microbial community structure, and function was evident. Microbial co-occurrence networks under
simultaneous O3 stress and pathogen challenge indicated a shift in the most influential taxa and a less connected network, which
may reflect the altered stability of interactions among community members. Increased disease severity on resistant cultivar may be
explained by such altered microbial co-occurrence network, indicating the altered microbiome-associated prophylactic shield
against pathogens under elevated O3. Our findings demonstrate that microbial communities respond distinctly to individual and
simultaneous stressors, in this case, O3 stress and pathogen infection, and can play a significant role in predicting how plant-
pathogen interactions would change in the face of climate change.

ISME Communications; https://doi.org/10.1038/s43705-023-00232-w

INTRODUCTION
The phyllosphere (aboveground parts) of plants is a unique,
nutrient-poor habitat and is inhabited by various prokaryotic and
eukaryotic microorganisms [1] that colonize either the leaf surface
(epiphytes) or inside the leaf tissue (endophytes) [2, 3]. Leaf
microbial community assembly and succession are influenced by
deterministic and stochastic processes. Although dispersal from
neighboring plants and other demographic factors such as
neighbor identity and age are contributing factors toward
phyllosphere microbiome diversity [4], plant host factors such as
host genotype, developmental stage [5], and host resistance [6]
shape the microbiome assembly. This host filtering of the
microbiome is observed due to different resource availability on
the leaf surface [7], differing physical properties [8], and host
defense signaling [9, 10].
Members of the phyllosphere microbiome are known to play a

role in nutrient acquisition [11], plant growth and productivity [12]
and tolerance to various biotic and abiotic stresses [13–17].
Pathogen invasion is one of the most influential biotic stresses
affecting the plant microbial assembly in the phyllosphere [18].
Pathogens can modify the habitat by secretion of virulence
factors, biosurfactants, or hormones, thereby increasing resource

availability for other resident colonizers including opportunists to
flourish [19, 20]. Pathogens can also influence resident microflora
through niche or resource competition [1, 18, 19, 21]. Plant
defense signaling activated in response to pathogen attack has
also been indicated as a source of alteration of the phyllosphere
community [16, 22]. Regardless of the source of change to the
phyllosphere community, dominant members are thought to
restore stability to this disturbed community [23]. Furthermore,
increasing evidence has suggested that plants can recruit
microbes in the phyllosphere that offer protection against
pathogen [24–26], indicating disease-suppressive microbiome
assembly in the phyllosphere in response to pathogen similar to
what has been observed in the rhizosphere [27, 28]. Phyllosphere
microbial community structure and composition is also shaped by
host plant’s response to abiotic stresses, such as drought [29, 30],
increase in surface temperature or warming [31–33], elevated CO2

[34], and ultraviolet radiation [35].
Abiotic stressors can alter host susceptibility to pathogens by

interfering with defense hormone signaling [36] and thus
influence disease incidence. Exposure of plants to simultaneous
biotic and abiotic stressors can result in positive or negative
impacts on plant responses depending on the timing, nature, and
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severity of each stress, as different defense signaling pathways
may interact or inhibit each other [37, 38]. Furthermore, recent
work has demonstrated that climate change may lead to
increased incidence of disease outbreaks due to the spread of
pathogens outside their geographical range [39]. Taken together,
there are many internal and external factors that can shape the
phyllosphere microbiome, and work is needed to fully understand
the role that phyllosphere microbiome plays in the plant’s
response to simultaneous biotic and abiotic stressors.
One such abiotic stressor that plants experience is elevated levels

of tropospheric ozone (O3). Global warming caused by greenhouse
gases has resulted in the increase of tropospheric O3 due to the rise
in precursors such as nitrogen oxide (NOx), CO, methane, and other
volatile organic compounds [40, 41]. A study across the US predicted
that the 5–95th percentile for daily 8-h maximum O3 will increase
from 31–79 parts per billion (ppb) in 2012 to 30–87 ppb in 2050 [42].
This increase in O3 level is significant as O3 concentrations above 40
ppb are highly phytotoxic [43]. Elevated O3 can negatively impact
plants and many levels, including visible injury and reduction in
photosynthesis, which in turn affects plant growth, nutritional value,
crop yield, and alterations to carbon allocation [43–45]. As we learn
more about how climate change associated abiotic and biotic
stressors influence plant response at the molecular, cellular or
transcriptomic level, important questions to address are how
associated microbiome would respond to or contribute to plant’s
response in the presence of individual or simultaneous stressors and
whether critical ecological functions of phyllosphere microbial
communities would be altered in presence of stressors.
To address these questions, we explicitly focused on the

response of the phyllosphere microbiome of two pepper cultivars
differing in resistance towards a foliar pathogen, Xanthomonas
perforans, in presence of ambient and elevated O3 levels. We used
an experimental setup in the field involving open-top chambers
(OTCs) that allowed us to manipulate O3 levels and dissect
the influence of genotype x environment (G x E) interactions on
the overall outcome of plant disease as well as on microbiome
structure and function. The two pepper cultivars used in this study
differed in their resistance against X. perforans, an emerging pepper
pathogen in the southeastern US: one being susceptible cultivar
Early Cal Wonder and the other being commercial cultivar PS
09979325, largely deployed in the southeastern US and known to
have polygenic quantitative resistance against all eleven races of
the bacterial spot pathogen [46]. This specific host-pathosystem
allowed us to not only study the response of the resistant variety
under combined stressors, thereby, assessing its durability under
altered climatic conditions, but also to test the response of the
emerging pepper pathogenic species, X. perforans [47], on the
susceptible and commercial resistant varieties under an altered
environment. We hypothesized that phyllosphere microbial com-
munities will show alterations in both taxonomic and functional
profiles and altered seasonal dynamics in response to altered O3

levels, regardless of the cultivars. Interestingly, the influence of
elevated O3 on plant susceptibility depends on the lifestyle of the
pathogen. Such differential effects could stem from physiological
differences, pathogen biology or differences in defense signaling
pathways [48–50]. We hypothesized that presence of elevated O3

will increase overall susceptibility of pepper to bacterial spot
xanthomonads, even on the resistant cultivar. We also hypothesized
that establishment of disease would disrupt seasonal dynamics of
the phyllosphere microbiome, and this effect will be stronger in the
environments that support high disease pressure. Our experimental
design allowed us to address the influence of elevated O3 on the
overall disease outcome on cultivars differing in their resistance
towards pathogen as well as facilitated assessment of taxonomic
and functional profiles of the phyllosphere microbiome under
simultaneous stressors. Lastly, as studies have indicated the
importance of functions rather than species in community structure
and assembly [51], we compared functional profiles of microbiomes

to see whether ecological functions of the community are rather
conserved regardless of biotic or abiotic stressors.

MATERIALS AND METHODS
Experimental site and design
The experiment was conducted at the Atmospheric Deposition (AtDep) site
at Auburn University (Fig. S1A) in the 2021 growing season (May–July),
where we harnessed OTCs (Fig. S1B) that allowed us to test the effect of O3

stress on plant-pathogen-microbiome interactions and address the
complexity of plant defense-development trade-off. We used 12 chambers
for fumigation, where six chambers had an ambient environment, and six
had elevated O3 (Fig. S1A). Each elevated O3 chamber contains four O3

generators (HVAC-1100 Ozone generator, Ozone Technologies, Hull, IA,
USA), equipped with two ultraviolet bulbs (Model GPH380T5VH/HO/4 P,
Ozone Technologies, Hull, IA, USA) to generate the O3. Generators and
bulbs are located within the elevated O3 chamber fan boxes. To reach the
desired set-point of O3 (~100 ppb), O3 generators were controlled by
0–10 V control wires, which are controlled via an analog output module. To
fumigate the plants, the ozonated air was blown from the fan box into the
plastic lining of the open-top chamber (Fig. S1B). The plastic panel on the
lower portion of the chamber is double-walled with holes on the inside
panel, allowing O3 to be released over the plants inside the chamber. Each
chamber is connected via plastic tubing to a central gas manifold to which
each chamber is opened sequentially by 3-way solenoid valves. A
microcontroller cycles through the 12 solenoid valves every 24min
(sampling each of the 12 chambers for 2 min) to monitor O3 from each
chamber (Model 205 Dual Beam Ozone Monitor, 2B Technologies, Boulder,
CO, USA) during the fumigation window (10 am to 6 pm). During this
experiment, the average [O3] in the control chambers was around 30.6
ppb, while the fumigated chambers had an average [O3] of about 90.3 ppb
(Fig. S1C). O3 levels in the elevated chambers were significantly higher
during the growing season when compared to the ambient chambers
(Kruskal–Wallis, p= 0.04) while the O3 levels between the elevated
chambers were similar (p= 0.62).
Inoculation was performed on 5–6 weeks old seedlings of both cultivars.

Plants were inoculated with a X. perforans suspension adjusted to 106 CFU/
ml in MgSO4 buffer amended with 0.0045% (vol/vol) Silwet L-77
(PhytoTechnology Laboratories, Shawnee Mission, KS, USA). The control
plants were dip-inoculated in MgSO4 buffer amended with 0.0045% (vol/
vol) Silwet L-77 (Fig S1D). The dip-inoculated plants were transplanted into
sterile 10-inch plastic pots (The HC Companies, OH) with soil-less potting
medium (Premier Tech Horticulture, PA). The pots were then transferred to
the above-mentioned OTCs and maintained inside the OTCs throughout
the growing season until harvest. In each of the chambers, we had six
plants, each of Early Cal Wonder (referred to hereafter as the susceptible
cultivar) and PS 09979325 (referred hereafter as the resistant cultivar)
(Fig. S1E). Among the 12 chambers, plants in 6 chambers (three ambient
and three elevated O3) were inoculated with the pathogen X. perforans
while 6 chambers (three ambient and three elevated O3) had control plants
inoculated with MgSO4 buffer (Fig. S1A).

Disease severity measurements
The overall disease development was evaluated by estimating the
percentage of disease symptoms caused by bacterial spot after
transforming the Horsfall-Barratt ratings [52] to the midpoint of the rating
range during both the mid and end of the season [53].

Sample collection, DNA extraction, sequencing, and quality
trimming
Pepper leaf samples were collected from both inoculated and control
samples of each cultivar separately after inoculation with Xanthomonas or
MgSO4 buffer and before keeping the plants in the chambers (base
samples), followed by two other time points during the growing season
(mid and end of the season). For each timepoint, leaves from 6 plants of
each cultivar grown inside one chamber were pooled, so we have one
sample per cultivar. During sampling, leaves were collected randomly to
avoid bias towards diseased leaves and with at least one leaf per plant for
each cultivar. 40 grams of leaf samples were sonicated for 15min in
phosphate-buffered saline solution (50mM) amended with 0.02% Tween
20 and the dislodged cells were pelleted down and processed for DNA
extraction. Briefly, total DNA was extracted using Wizard® Genomic DNA
Purification Kit (Promega, Madison, WI) as per manufacturer instructions
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with the addition of a phenol:chloroform:isoamyl alcohol (25:24:1) followed
by ethanol precipitation. The DNA was quantified using a Qubit 3.0
fluorometer (Thermo Fischer, Waltham, MA) and the DNA samples were
submitted to the Duke Center for Genomic and Computational Biology
sequencing core (Duke University, Durham, NC) for library preparation, and
paired-end reads (2 × 150 bp) were sequenced on NovaSeq 6000 S1 flow
cell system. The raw reads were then trimmed for quality using BBDuk
(http://jgi.doe.gov/data-and-tools/bb-tools/) followed by host contamina-
tion removal with KneadData (https://bitbucket.org/biobakery/kneaddata/)
using pepper cv. 59 (GCA_021292125.1) genome as a reference.

Taxonomic profiling
Quality controlled and host decontaminated reads were taxonomically
assigned using Kraken2 (v2.1.2) [54] against a standard Kraken2 database
containing RefSeq libraries [55] of archaeal, bacterial, human, and viral
sequences (as of March 01, 2022). Kraken2 is a kmer based short read
classification system that assigns a taxonomic identification to each
sequencing read by using the lowest common ancestor (LCA) of matching
genomes in the database and has been used for high accuracy
classification of metagenomic reads [56, 57]. Kraken2 report files were
used as inputs to run Bayesian re-estimation of abundance with the Kraken
(Bracken) (v2.6.2) [58] to re-estimate abundance at each taxonomic rank for
all the samples. Bracken uses the taxonomy labels assigned by Kraken to
estimate the abundance of each species. The database for Bracken was
subsequently built with the Kraken2 database using the default 35 k-mer
length and 100 bp read lengths based on the average read length in our
sample with the lowest read length to re-estimate the relative abundance
of microbial communities at the species level. The outputs from Bracken
were combined using the combine_bracken_outputs.py function for
downstream analysis. The kraken-biom tool (https://github.com/
smdabdoub/kraken-biom) was used to convert the output from Bracken
into BIOM format tables for diversity analyses in R [59].
In addition to relative abundance for each taxon, we calculated an

estimate of absolute abundance based on relative abundance of different
bacterial taxa and the total DNA recovered from each sample. Microbiota
density described as total DNA (ng) per mg of fresh sample was calculated
for each sample, which was then used to calculate the absolute abundance
of different microbial taxa as defined by ng of DNA per mg of sample
multiplied with the relative abundance [60].
The taxonomic composition and diversity of eukaryotes in the samples

were accessed using the EukDetect (v1.3) [61]. EukDetect aligns the
metagenomic reads to universal marker genes from conserved gene
families curated from fungi, protists, non-vertebrate metazoan, and non-
streptophyte archaeplastida genomes and transcriptomes followed by low-
quality and duplicate reads filtering. The final eukaryotes abundance is
calculated by filtering taxa with fewer than four reads and aligning to less
than two marker genes. The resulting absolute abundance (Reads Per
Kilobase of Sequence) was used to compare the diversity across the
samples. The RPKS value was normalized by multiplying with a scaling
factor calculated by dividing the median library size by the sample library
size, which was then used to compare across the samples.

Culture-dependent method for determining the Xanthomonas
population
To determine the effect of cultivar and environment on the abundance of
X. perforans, a culture-dependent method was used for tracking the in
planta population of Xanthomonas. Plants (6 from each cultivar/chamber)
were dip-inoculated as described earlier and kept inside the chambers
with ambient and elevated O3. Leaf samples were taken at day 0, 7 and 14
after inoculation to determine the in planta bacterial population. At each
sampling time, approximately 4 cm2 of leaf area was taken using a sterile
cork borer and was macerated using a sterile Dremel® in microcentrifuge
tubes with 1ml of sterile 0.01 M MgSO4 buffer. The homogenized
suspension was then diluted by ten-fold followed by plating on Nutrient
Agar plate using a spiral plater (Neu-tecGroup Inc., NY). Plates were then
incubated at 28 °C for 3 days and bacterial population was determined as
colony forming units per centimeter squared of leaf area.

Diversity, statistical analysis, and network analysis
All statistical and diversity analyses were performed using R (v4.1.3) [59]
and Rstudio [62] with the Phyloseq (v1.38.0) [63], vegan (v2.5–7) [64], and
ggplot2 (v3.3.5) [65] packages. Before data analysis, the library size was
normalized using scaling with ranked subsampling with ‘SRS’-function in

the SRS R package (v0.2.2) [66]. Alpha diversity measures Chao1 and
Shannon index were used to identify community richness and diversity,
respectively. The Wilcoxon rank sum test tested significant differences in
alpha diversity indices for nonparametric data and the T-test for normally
distributed data. The appropriateness of these methods was verified by
checking for the normal distribution of residuals based on the
Shapiro–Wilk test for normality.
The differences in overall microbial profiles among the cultivars and

different environmental conditions (β-diversity) were estimated using the
Bray–Curtis distance. To understand the factors contributing to microbial
community structure, we performed permutation multivariate analysis of
variance (PERMANOVA) [67] as implemented in the adonis2 (analysis of
variance using distance matrices, ADONIS) with the argument ‘by’ set to
‘margins’ and analysis of similarities (ANOSIM) with 1000 permutations
(p= 0.05) using Bray–Curtis dissimilarity in the vegan R package (v 2.5–7).
In addition, multivariate homogeneity of group dispersion test (BETADIS-
PER) [68] was performed to determine the homogenous dispersion
between the factors in relation to their microbial taxa. Non-metric
multidimensional scaling (NMDS) among the sample groups was
calculated using Bray–Curtis dissimilarity and visualized using the ggplot2
package in R.
For our network analysis, the taxonomic data was subsetted to at least

0.5% relative abundance in over 20% of the samples (prevalence) to ensure
that all samples had sufficient sequencing depth to recover most of the
diversity. Correlation network analysis was performed using the SPRING
[69] approach implemented in the R package NetCoMi (v1.1.0) [70].
Community structures across the treatment were estimated using the
“cluster_fast_greedy” algorithm [71], and hub taxa were determined using
the threshold of 0.95. A Jaccard index was used to test for similarities
(Jacc= 0, lowest similarity and Jacc= 1, highest similarity) in selected local
network centrality measures (degree, betweenness centrality, closeness
centrality, and eigenvector centrality) to determine the hub or keystone
taxa. A quantitative network assessment was performed with a permuta-
tion approach (1000 bootstraps) with an adaptive Benjamini–Hochberg
correction for multiple testing.

Functional profiling
Functional profiling of the microbial communities was conducted on
concatenated paired-end sequences with HUMAnN3 (v3.0) [72] to quantify
gene abundance (UniRef90 gene-families) [73] and MetaCyc pathways [74].
ChocoPhlAn nucleotide database v30 was used for functional pathway
abundance and coverage estimation. The gene families and pathway
abundance tables were sum-normalized to copies per million reads (CPM)
to facilitate comparisons between samples with different sequencing
depths. The output from HUMAnN3 was then imported into QIIME2
(v2021.11) [75] to generate nonmetric multidimensional scaling (NMDS)
ordinations using Bray–Curtis dissimilarly matrix. To understand the factors
driving functional profiles, we performed permutation multivariate analysis
of variance (PERMANOVA) [67] as implemented in the adonis2 (analysis of
variance using distance matrices, ADONIS) and analysis of similarities
(ANOSIM) with 1000 permutations (p= 0.05) with different factors
(cultivars, environment, inoculation status, and time of sampling), as
described above. Differentially abundant pathways across the treatment
were identified using the LEfSe (Linear discriminant analysis Effect Size)
(v1.1.2) [76]. Pathways with a corrected p value of 0.05 or less and Linear
Discriminant Analysis (LDA) score of log >2.5 were classified as significantly
increased within one of the two groups.

RESULTS
Influence of O3 levels on disease severity on resistant and
susceptible cultivars
Overall higher disease severity index was recorded on the
susceptible cultivar compared to the resistant cultivar. Under
ambient conditions, the susceptible cultivar supported an average
of 53.01% disease severity index during mid-season, which
decreased to 15.11% by the end of the growing season. The
resistant cultivar supported minimal disease with disease severity
index of 0.37% during mid-season and 0.29% by the end of the
season. Elevated O3 did not impact disease severity on the
susceptible cultivar. However, significantly higher disease severity
index was observed on the resistant cultivar under elevated O3

conditions, both at mid-season (12.61%) (p < 0.001) and end of the
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season (2.01%) (p= 0.01) compared to the ambient environment
(mid-season= 0.37%, end of the season= 0.29%) (Fig. 1, Table S1).

Sequencing statistics
The samples collected in the beginning of the experiment (base
samples) and twice during the growing season (mid-season and
end of the season) were subjected to shotgun metagenome
sequencing, which produced 2.83 to 17.16 Gbps of raw reads per
sample. Adapter trimming and removal of low-quality reads
resulted in the loss of 4.3 to 11.3% of the total reads among
different samples. Of the quality trimmed reads, 5.78 to 39.09% of
the reads were identified as host reads and removed from further
analysis. The samples at the early seedling stage yielded very few
reads upon filtering because of higher host contamination
(23–39%), indicating minimal microbial colonization in the
greenhouse-grown seedlings before transplanting. Around
50.61% to 84.56% of the original total reads were retained for
downstream analysis (Table S2).

Microbial diversity and richness are reduced under
susceptible response, but are not significantly affected by
elevated O3
We next investigated the effect of inoculation and elevated O3

and their interaction on overall microbial diversity and richness of
the phyllosphere communities. Overall bacterial richness and
diversity values in both the mid and end of the season samples
were higher in control plants when compared with base samples.
This could be attributed to low microbial colonization levels on
greenhouse-grown base samples that increased in diversity and
richness upon exposure to natural field conditions. Eukaryotic
diversity in the base samples was not calculated as these samples
had reads counts below the threshold (fewer than 4 reads that

align to fewer than 2 marker genes) to be considered present in
the sample. The O3 stress alone did not influence bacterial
(Table S3) and eukaryotic richness and diversity (Table S4) in both
cultivars. However, pathogen infection led to significantly lower
bacterial richness (p < 0.001) (Fig. 2A) and diversity (Kruskal–Wallis,
p= 0.01) (Fig. 2B) as well as lower eukaryotic richness
(Kruskal–Wallis, p= 0.01) (Fig. 2C) and diversity (Kruskal–Wallis,
p= 0.02) (Fig. 2D) on the susceptible cultivar under ambient
conditions throughout the growing season compared to that on
control plants. Under combined stress of pathogen and elevated
O3, there was a significant effect on both richness (p= 0.01) and
diversity (p= 0.04) only during end of the season on the
susceptible cultivar. Inoculation and elevated O3 did not influence
bacterial richness (pinoc= 0.81, penv= 0.07) (Fig. 2A) and diversity
(pinoc= 0.27, penv= 0.62) (Fig. 2B), or eukaryotic richness
(Kruskal–Wallis, pinoc= 0.08, penv= 0.31) (Fig. 2C) and diversity
(Kruskal–Wallis, pinoc= 0.23, penv= 0.82) (Fig. 2D) on the resistant
cultivar. Time of sampling had significant influence on bacterial
richness and diversity (p < 0.01) in both the cultivars.

The effect of O3 levels was significant on the eukaryotic
community, yet was minimal in shaping bacterial community
structure
To visualize the differences in bacterial and eukaryotic community
structure between samples from two pepper cultivar and two
environmental conditions, the taxonomic abundance profiles were
used to compute the Bray–Curtis distance matrix and plotted into
two dimensions using nonmetric multidimensional scaling
(NMDS). To understand the relative influence of each factor and
their interaction on the overall phyllosphere microbial community
structure, we performed a PERMANOVA on Bray–Curtis dissim-
ilarities using cultivar, time of sampling, environment, and

Fig. 1 Elevated O3 exacerbates bacterial spot disease severity on the resistant cultivar but has no effect on the susceptible cultivar. Box
and whisker plots showing the disease severity index (represented as % value) under elevated O3 and ambient environmental conditions
across susceptible and resistant cultivars. Significance levels for each of the treatment combination are indicated by *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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inoculation as independent variables. Overall, the effect of cultivar,
time of sampling, and inoculation were highly significant in
shaping bacterial communities (p < 0.001) in addition to the
interactions of cultivar, time, and inoculation (p= 0.03) (Table S5A),
with separation of inoculated susceptible plants from control
susceptible, inoculated and control resistant plants (Fig. 3A). We
further assessed individual factors’ influence and interactions
across two sampling points. The effect of the cultivar was
significant but diminished over the growing season (mid-season:
R2= 0.23, p < 0.001; end of the season: R2= 0.06, p= 0.03). In
contrast, effect of inoculation increased over the course of
growing season (mid-season: R2= 0.20, p < 0.001; end of the
season: R2= 0.55, p < 0.001) (Table S5B, C). The effect of
interaction among cultivar and inoculation on bacterial commu-
nities remained statistically significant over time, although the
effect decreased in size by the end of the growing season (mid-
season: R2= 0.15, p < 0.01; end of the season: R2= 0.05, p= 0.04).
The effect of elevated O3 was minimal, with it being not
statistically significant by the end of the growing season (mid-
season: R2= 0.05 p= 0.04; end of the season: R2= 0.02, p= 0.15)
(Table S5B, C). The interaction between the environment and
other variables was not statistically significant throughout the
growing season. An increase in O3 levels did not alter the bacterial
community structure on the susceptible cultivar. However, it
influenced bacterial communities on the resistant cultivar
(R2= 0.14, p= 0.02) (Table S5D) in the absence of Xanthomonas.
There was no difference in the microbial communities between
the chambers with elevated O3 (p= 0.69) or ambient environment
(p= 0.85) suggesting there is no effect of chamber in overall
bacterial diversity (Table S5E, F).
Like bacterial communities, eukaryotic communities diversity

was also significantly influenced by the environment, cultivar, time

of sampling, and inoculation (p < 0.01) (Table S6A, B). Cultivar had
a significant effect on eukaryotic diversity with more influence
during the end of the season (mid-season: R2= 0.12 (Table S6C),
p= 0.007; end of the season: R2= 0.37, p= 0.001 (Table S6D, E)).
An increase in O3 levels significantly affected the eukaryotic
communities during the mid-season, while it was not significant
during the end of the season (mid-season: R2= 0.22, p= 0.001
(Table S6C); end of the season: R2= 0.06, p= 0.19 (Table S6D, E).
The effect of inoculation on eukaryotic communities was higher
during the mid-season, and it decreased during the end of the
season (Fig. 3B) (mid-season: R2= 0.15, p= 0.003 (Table S6C); end
of the season: R2= 0.11 p= 0.03 (Table S6D, E)). The influence of
time of sampling on clustering was evident in shaping both
bacterial and eukaryotic communities (Fig. 3A, B).
These findings indicate that microbial communities on resistant

and susceptible cultivars were similar in absence of any stress,
either pathogen or elevated O3, and influence of seasonal
succession was evident on both bacterial and eukaryotic
communities. Pathogen infection led to a shift in the bacterial
community composition on the susceptible cultivar as the
growing season progressed. However, despite presence of the
Xanthomonas population on resistant cultivar, microbial commu-
nity structure was like that observed on uninoculated plants.
Despite increases in disease severity on the resistant cultivar
under elevated O3, bacterial and eukaryotic communities were
similar in their composition to that under ambient environment.

Influence of pathogen infection and O3 stress on relative and
absolute abundance of microbial taxa
The presence of Xanthomonas on control plants of susceptible and
resistant cultivars suggested low levels of natural inoculum in the
field. However, the relative abundance of Xanthomonas on control

Fig. 2 Elevated O3 has little impact on microbial diversity and richness. However, pathogen infection on susceptible cultivar reduces
microbial community richness and diversity. A Bacterial Chao1 richness and B bacterial Shannon diversity index across different environments.
C Eukaryotic community diversity and D richness across different treatments. Inoculated and control samples are indicated with yellow and
green bars on the top, while ambient and elevated O3 treatments are denoted by light blue and red color bars at the bottom, respectively.

R. Bhandari et al.

5

ISME Communications



plants did not increase significantly over time (<5% by the end of
the season). Both relative and absolute abundance of Xanthomo-
nas increased from mid-season to end of the season on inoculated
susceptible and resistant cultivars (Fig. S2A, B). Significant
variation in the relative (~33–87%) as well as absolute
(~13–37%) abundance of Xanthomonas on resistant inoculated
plants under elevated O3 conditions was worth noting. However,
presence of elevated O3 did not result in a significant difference in
relative (Kruskal–Wallis: pECW= 0.12, pX10R= 0.78) or absolute
(Kruskal–Wallis: pECW= 0.15, pX10R= 0.54) abundance of Xantho-
monas in either cultivar (Fig. S2A, B). This observation was
surprising given that disease severity levels under elevated O3

conditions on resistant inoculated plants were significantly higher
than that under ambient environment.
To further confirm the influence of elevated O3 and cultivars on

Xanthomonas population, we analyzed the in planta population of
X. perforans determined using a culture-dependent method for
day 7 and day 14 post-inoculation. While this short-course
experiment may not reflect the outcome for the entire growing
season, it allowed us to evaluate the effect of elevated O3 on the
Xanthomonas population. Similar to the above observations, there
was no significant effect of environment (i.e., ambient vs. elevated
O3) on X. perforans population in these cultivars (pECW= 0.31,
pX10R= 0.34) (Fig. S2C).
As the increase in the disease severity on the resistant cultivar

under elevated O3 was not the result of changes in Xanthomonas
population, we hypothesized that this increase was associated
with a significant reduction in overall microbial density associated
with the resistant cultivar under elevated O3 compared to ambient
environment, referring to an altered prophylactic shield from
microbiota under elevated O3. Microbiota density estimates were
obtained based on microbial DNA content per mg of sample,
similar to those calculated in gut microbiome studies [77]. There
was a significant effect of inoculation on microbiota density
(p < 0.001), while neither cultivar (p= 0.15) nor elevated O3

(p= 0.19) had a significant effect on microbiota density (Fig. 4A).
There was significantly lower microbiota density in mid-season

samples on inoculated resistant cultivar under elevated O3

compared to susceptible cultivar (p= 0.01), but not for end of
the season samples (p= 0.13) (Table S7A–D). We further estimated
absolute abundance of each bacterial genus by multiplying its
relative abundance (Fig. 4B) by the total DNA per mg of sample.
Overall absolute abundance of microbiota was lower on
inoculated resistant cultivar compared to inoculated susceptible
cultivar, under both environments, although this difference was
not statistically significant, accounting for large variation across
samples (Fig. 4C, Table S7E, F). Total absolute abundance of
microbiota associated with inoculated resistant cultivar under
ambient environment was not significantly different compared to
that under elevated O3 environment.
Next, we investigated the temporal dynamics in community

assembly and succession in the phyllosphere, and patterns were
compared between inoculated and control plants. Detailed
taxonomic description of bacteria and eukaryotes across different
treatments is given in supplementary information. The taxonomic
diversity analysis showed that several bacterial (Fig. 4B, Table S8)
and eukaryotic genera (Fig. 4C, Table S9) monopolizing the
phyllosphere environment. These microbial genera are differen-
tially affected by the presence of a pathogen, environmental
stress, and their interaction.
Next, we identified genera that showed changes in relative

abundance in response to cultivars, or elevated O3. Bacterial genera
Pseudomonas, Pantoea, Methylobacterium, Sphingomonas, Methylo-
brum, etc., were negatively affected, while Microbacterium was
positively influenced in the presence of Xanthomonas on suscep-
tible cultivar (Fig. S3A–F). In contrast to the susceptible cultivar, the
relative abundance of Pseudomonas and Sphingomonas increased in
the presence of the Xanthomonas on the resistance cultivar. The
bacterial genus Methylobacterium was negatively influenced by
elevated O3, while the genera Pseudomonas and Sphingomonas
were positively impacted in resistant cultivar (Fig. S3G–L). Regarding
eukaryotes, the genus Bullerawas positively affected by elevated O3,
while the genus Epicoccum and Protomyces had temporal variation
regardless of treatment (Fig. 4C).

Fig. 3 Elevated O3 changes microbial community structure on susceptible cultivars challenged with pathogen infection, but not on
resistant cultivars. A Nonmetric Multidimensional Scaling (NMDS) ordination comparing the bacterial community diversity across two
cultivars, environmental conditions, and time of sampling. B NMDS ordination comparing the eukaryotic community diversity across two
cultivars, environmental conditions, and time of sampling.
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Fig. 4 The effects of elevated O3 on disease outcomes are not fully explained by changes in microbiota density and abundance. A Box
and whisker plot showing microbiota density estimated by microbial DNA quantification (concentration of extracted DNA per mg of leaf
samples) for various treatment in two cultivars. B Relative (Left) and absolute (right) species abundance of top 15 bacterial taxa across
samples. Absolute abundance is obtained by scaling the relative abundance measurements by the microbiota density measurements. C Bar
plots showing the relative abundance of the top 15 eukaryotic genera across the samples. Inoculated and control samples are indicated with
yellow and green bars on the top, while ambient and elevated O3 treatments are denoted by light blue and red color bars at the bottom,
respectively. The time of sampling is indicated by Base (initial samples), Mid (mid-season), and End (end of the season).

R. Bhandari et al.

7

ISME Communications



Functional composition of phyllosphere communities when
exposed to O3 stress and pathogen infection
As the microbial composition was significantly affected by cultivar,
inoculation, and time, we sought to investigate whether observed
taxonomic differences reflected niche-specific microbial functions.
Overall community functions based on the relative abundance of
metabolic pathways (Fig. 5A) as well as associated gene families
that were mapped onto the pathways (Fig. 5B) were not affected
by these individual factors (p > 0.05) (Table S10A, B). However, the
interaction between inoculation, cultivar, and sampling time had a
significant effect on microbial functions and gene families
(p < 0.01) (Table S10A, B), as indicated by dissimilarities in the
functional composition of both gene families and pathways
associated with communities recovered from the inoculated
susceptible cultivar compared to the inoculated resistant cultivar.
We observed significant effect of cultivar during the end of the
season (p= 0.01) (Table S10C). Elevated O3 did not alter the
functional assemblage of phyllosphere microbiome either on
resistant or susceptible cultivars and regardless of the inoculation
status. We observed similar functional profiles both in terms of
genes as well as pathways across timepoints during the growing
season on the respective cultivars despite differences in the
species composition in mid vs. end of the season samples. This is
likely due to substantial functional redundancy in the metabolic
pathways associated with microbial communities over the
growing season despite seasonal succession of taxa in the
phyllosphere.
To find differentially abundant pathways that explain differ-

ences among treatments in response to pathogen infection,
elevated O3, and their interaction, we performed Linear discrimi-
nant analysis Effect Size (LEfSe). Upon pathogen infection and
elevated O3, metabolic pathways related to heme scavenging
(source of bioavailable iron) were enriched in microbial commu-
nities recovered from the resistant cultivar whereas pathways

associated with carbohydrate metabolism (pentose phosphate
pathway, gallate degradation, glyoxylate cycle), protection (lipid
IVA biosynthesis), growth and maintenance (phosphatidyl glycerol
biosynthesis, CDP-diacylglycerol biosynthesis, GDP-mannose bio-
synthesis), and metabolism of unsaturated fatty acid (gondoate
biosynthesis) were enriched in microbial communities recovered
from the resistant cultivar under ambient conditions (Fig. S4A).
Metabolic pathways that were enriched in microbial communities
associated with both the cultivars upon O3 stress included
pathways involved in primary energy production and the
degradation of unsaturated fatty acids (beta-oxidation, pentose
phosphate), various defense-related pathways against oxygen
stress and DNA repair (ubiquinol 7, pyrimidine (deoxy)nucleotides)
and pathways related to oxygen-independent respiration (oxygen-
independent heme b biosynthesis) (Fig. S4B). In the presence of
both the pathogen and elevated O3, pathway related to purine
nucleotide production and degradation was enriched (Fig. S4C).

Microbial network topology is altered under combined
pathogen and O3 stress
To assess whether pathogen infection and O3 stress alone or in
combination affected overall microbial association in the phyllo-
sphere, bacterial co-occurrence networks and their topological
features across treatments were compared. We assessed local
network centrality measures using degree, betweenness, closeness
and eigenvector centrality used to determine hub taxa for bacterial
co-occurrence networks under elevated O3 (Fig. 6A), inoculation
(Fig. 6B), and combined stress of elevated O3 and pathogen
(Fig. 6C), and compared to ambient, control condition or control
condition and ambient environment, respectively. We observed
that all treatment comparisons mentioned above showed sig-
nificant differences for all the local network centrality measures
(Table S11A). A hub taxon is a highly connected taxon and is known
to have strong impact in the network. There was a significant

Fig. 5 Microbial community functions were affected by host susceptibility to pathogens, while elevated O3 had little impact. Nonmetric
Multidimensional Scaling (NMDS) ordination displaying diversity in A metabolic pathways across different treatment conditions in susceptible
and resistant cultivars, B genes mapped to metabolic pathways across various treatment conditions in susceptible and resistant cultivars.
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difference in hub taxa among treatment groups when comparing
control with inoculated samples or control and ambient environ-
ment with pathogen and O3 stress (Table S11A, B). However, there
was no change in hub taxa on plants exposed to elevated O3

compared to ambient environment.
Comparing the overall similarities of the two networks between

the ambient vs. individual stress or combined stress of elevated O3

and pathogen based on adjusted Rand index (ARI) indicated
values close to 0 (ARI= 0.02, p= 0.07) for ambient vs. elevated O3

stress; control vs. inoculated (ARI= 0.03, p= 0.02) and control and
ambient environment vs combined stress (ARI= 0.10, p < 0.001)
(Table S11C). These observations indicate that the partitions of
species into communities show a low degree of similarity in these
comparisons. These results, with differences in topology between
these networks and dissimilarity in local network centrality
measures, indicate that combination of pathogen infection and
O3 stress results shifts in the bacterial community interactions in
the phyllosphere.
Next, we assessed global microbial network properties such as

number of edges as a measure of complexity, modularity, average
path length and clustering coefficient, that compare network
topologies across treatments [78, 79]. The current version of
NetCoMi can only perform 1000 permutations due to the high run
time of a single network construction. Since the minimum
possible p value for 1000 permutations is 1/1000, the power is
quite low, and this results in large p values after adjusting for

multiple testing. Increasing number of permutations may allow
evaluating global network properties with sufficient statistical
power. Thus, in this study, we focused on absolute differences
for each parameter under comparison, rather than associated
p values. Microbial networks under ambient environment showed
higher positive edge percentage, higher clustering coefficient, and
lower average path length compared to elevated O3 (Table S11D).
This suggests more positive interactions in ambient environments
and that O3 stress may foster less complex and negative
associations among community members. On the contrary, the
presence of pathogen infection led to a more positive edge
percentage, lower path length, higher modularity, and higher
clustering coefficient, suggesting that all nodes were highly
interlinked within the networks to form a more complex and
stable network under pathogen infection (Table S11D). However,
in the presence of pathogen infection and O3 stress, more positive
interactions were found under ambient environment and control
conditions with lower path length and higher clustering
coefficient, suggesting that combined stress possibly creates less
complex and less stable associations among community members
(Table S11D).

DISCUSSION
Changing climate and modern agricultural practices have pre-
disposed agro-ecosystems to an increased threat of pests, thus,

Fig. 6 Pathogen infection is associated with microbial communities showing positive and stable interactions, but these interactions are
random and less predictable with a shift in hub taxa in response to concurrent O3 stress and pathogen infection. Comparison of bacterial
association network across different environments. A Bacterial association network for the combined data set of ambient (top) and elevated
O3 (bottom) in both cultivars under control conditions. B Bacterial association network for the combined data set from control (top) and
inoculated (bottom) samples from both the cultivars under ambient environment. C Bacterial association network for the combined data set
from control and ambient environment (top) and inoculated and elevated O3 (bottom) samples from both cultivars. Hub taxa are highlighted
by bold text. Node color represents the cluster determined by greedy modularity optimization. Red edges correspond to negative
correlations, while green edges correspond to positive correlations.
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leaving us with the unpredictability as to how plants will adapt to
the simultaneous biotic and abiotic stressors. Many studies have
proposed the role of plant-associated microbiomes in contributing
towards plant resilience in the changing climate and extending
plant immunity against pathogens [24, 30, 80, 81]. However, we
have yet to fully understand how microbial communities, both
respond to as well as contribute towards plant adaptation, in
presence of simultaneous biotic and abiotic stressors. In this study,
we tested individual and simultaneous effects of elevated O3 and
pathogen stress on phyllosphere bacterial and eukaryotic com-
munity structure, function, and stability, and on overall plant
disease outcomes on susceptible and resistant pepper cultivars.
The resistant pepper cultivar used in this study possesses
resistance genes that provide an intermediate level of resistance
against all currently known pepper races of bacterial spot
Xanthomonas [82]. Our rationale of including this cultivar in this
study design was to understand the durability of this resistant
cultivar that is currently widely deployed in the southeastern US in
response to emerging pathogen species and under elevated O3,
representing future climate.
While the apparent influence of elevated O3 was not observed

on disease severity levels on the susceptible cultivar, the resistant
cultivar displayed higher disease severity under elevated O3

throughout the growing season as compared to ambient
environment (Fig. 1). This change in disease severity may also
be indicative of resistance erosion under elevated O3 conditions.
Unfortunately, the choice of cultivars used in this study not being
near-isogenic prevents us from evaluating the influence of
resistance loci on microbiome as was done in previous studies
[83]. The increased disease severity observed on the resistant
cultivar under elevated O3, however, was not associated with the
increase in Xanthomonas population as estimated by absolute
abundance data when compared to the ambient environment.
Such a culture-independent DNA sequencing method may not
accurately indicate living pathogen cell count and may warrant
confirmation of these findings with a culture-dependent pathogen
population estimate or with methods such as Quantitative PCR
(qPCR) [84, 85], digital droplet PCR [86, 87]. Although not for the
entire growing season, we monitored the dynamics of the
Xanthomonas population during a short-term 2-week experiment
and the results supported the previous findings that Xanthomonas
population was unaffected despite higher disease severity under
elevated O3 on the resistant cultivar. Interestingly, high variability
in the Xanthomonas population counts on the resistant cultivar
under elevated O3 was worth noting. This may indicate a plastic
response of the pathogen during adaptation to the resistant
cultivar under altered environment.
A large body of work has indicated that climatic fluctuations can

have a profound effect on the outcome of plant-pathogen
interactions [88–90], which may result from alteration of the host
environment via modification of host defense pathways, increased
pathogen infection efficiency under altered environments, or
alteration in the microbiome-provided extended immunity. These
three plausible explanations are outlined below that could
synergistically drive plant-pathogen-microbiome interactions and
help to explain the observation from this study of potential
resistance erosion under elevated O3 conditions.
Studies on plant’s response to a combination of abiotic and

biotic stress have shown a unique and more complex response
than that of individual stresses [38, 91–93]. The effect of combined
stress is governed by various factors such as time, degree of stress,
plant genotype, and other climatic or environmental factors, thus,
not necessarily additive in nature [94]. Plants respond to biotic and
abiotic stresses via complex yet overlapping defense signaling
pathways [95, 96], with induction of the abscisic acid (ABA)
pathway observed upon abiotic stress, which antagonizes the
salicylic acid (SA) pathway involved in pathogen defense [97, 98].
Simultaneous stresses of pathogen infection and elevated O3 may

result in altered host immune response on the resistant cultivar.
Oxidative damage of the plant cuticle caused by elevated [O3] can
increase exposure to pathogens, thus, impacting disease severity
[99]. Complementing this current study with host transcriptomics
will explain if such host defense alteration may be what explains
the increased susceptibility on resistant cultivar in presence of
elevated O3. Secondarily, increased pathogen virulence via
increased effector output [89] under altered environment may
explain increased disease severity in absence of significant
increase in pathogen population. The increased variation in
pathogen population could be due to either host plastic response
or plasticity in pathogen population.
Third and the most important explanation for the observations

from this study is the alteration in microbiome-mediated
protection on the resistant cultivar in response to elevated O3

and pathogen infection. Microbial communities recruited by the
resistant cultivar in the phyllosphere could have a protective role
against the pathogen as it has been demonstrated in previous
studies [13, 100] and this protective role may have been altered
under elevated O3, which may have led to increased disease
severity. The bacterial and eukaryotic community composition,
structure and function on the susceptible cultivar did not differ in
the absence of pathogen infection or elevated O3. However,
bacterial community structure on the resistant cultivar were
influenced by presence of elevated O3, but in absence of the
pathogen. Whether such differential influence on microbial
community structure is due to specific resistance loci remains to
be determined since the cultivars that we investigated were not
near-isogenic lines for the resistance loci. On the susceptible
cultivar, the presence of pathogen infection caused a sizeable shift
in the bacterial community structure and function, even though
concurrent O3 stress did not further alter the microbiome structure
and function. Although no significant shift in microbiome
structure and function was observed on the resistant cultivar
upon infection, overall microbiota density associated with infected
resistant cultivar was lower compared to infected susceptible
cultivar. Furthermore, concurrent O3 stress resulted in lower total
microbiota density during mid-season sampling on the infected
resistant cultivar. Whether such reduction reflects impaired
prophylactic potential of microbiome associated with resistant
cultivar under the combined impact of elevated O3 and pathogen
infection remains to be investigated. Further experiments to
assess the microbiome-mediated protection against pathogen can
be designed using synthetic communities associated with the
resistant cultivar, similar to the previous studies [101]. These
experiments may provide opportunities to dissect the influence of
altered environment on absolute abundance of individual
members of the community and their interactions, and associated
functional traits. Interestingly, our data did not reveal any
influence of simultaneous stressors on functions of microbial
communities associated with the resistant cultivar. This was
surprising given the previous studies indicate enrichment of
specific metabolic pathways under abiotic or biotic stressors
[102–104].
Microbial function in the ecosystem is determined not just

because of the number and composition of taxa but also the
various positive, negative, direct, or indirect associations among
the community members [105]. In response to the pathogen
challenge, we observed network parameters indicative of a
densely connected network. These findings of enhanced positive
and complex association among the microbial communities upon
pathogen infection have been observed in both the phyllosphere
and endosphere [106–108]. Such densely connected network
indicates cooperative association such as facilitation, mutualism or
commensalism, and cross-feeding [79, 109]. Such connected
networks, referred to as small-world networks [110], are hypothe-
sized to harbor resistance toward disturbances. In contrast,
microbial co-occurrence networks across O3 stress and
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simultaneous pathogen and O3 stress showed a similar trend of a
relatively unstable random network compared to the control
environment. This finding agrees with the notion that varying
degrees of environmental stress disturb the stability of microbial
communities [79]. The observation from the similarity of the most
central node suggests that microbial communities are consider-
ably different across different treatments. The presence of a
pathogen and simultaneous pathogen and O3 stress considerably
affected hub taxa. However, simultaneous stressors, but not
individual stresses, had considerable influence on the most
influential taxa, suggesting that plants respond to simultaneous
stresses by changing the most influential microbial member in the
random network. It would be interesting to dissect further the
influence of individual cultivar and, thus influence of host defense
responses on microbial community networks, as we observed a
strong cultivar effect on community composition. However, the
present study is limited in sample size, which does not allow
sufficient power to compare the network structure across
individual cultivars. As we observed that elevated O3 impacted
eukaryotic communities more strongly than bacterial communities
and pathogen infection impacted bacterial communities, influ-
ence on cross-kingdom interactions cannot be ruled out in this
case. Nevertheless, the present study has limitations in determin-
ing how specific and concurrent stressors affect cross-kingdom
interactions due to the absence of appropriate methods to
evaluate relative abundance of eukaryotic communities using
shotgun metagenome data. It is possible that elevated O3 will
have an impact on cross-kingdom interactions, as has been shown
with other abiotic stressors [30].
Overall, our study demonstrated that microbial communities

respond to a change by not only altering community composition
but also interactions among members and overall community
function. This work provides a base for our understanding of the
complex response of microbial communities and their interactions
with the host genotype in response to a changing climate. As
plants have evolved in association with their phyllosphere
microbiome members, the community members identified in this
study have shown to be particularly susceptible to a shift in
response to abiotic stress or combined stress. Findings from this
study are crucial to evaluate for future work on harnessing the
microbiome for stress-tolerant plants.
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Sequence data generated from this work have been deposited in the SRA
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repository (https://github.com/Potnislab/AtDep_2021_metagenome).
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